

Table of Contents

Note: If you print this document, it will print all the other documents in
the right order.

	Introduction

	Some thoughts on ProWesS

	Objects

	Keywords

	PWcreate

	Purpose

	Syntax

	Owner

	Type

	Tags

	An example

	The PW Function

	Purpose

	Syntax

	Example

	Passing Parameters

	Using Strings

	A short history

	Using CHR$(0)

	Strings are not copied

	String Arrays

	PWactivate

	Purpose

	Syntax

	Defining objects to return

	A fake return

	Action routines

	Purpose

	The different routines

	Example

	PWquit

	Purpose

	Syntax

	Example

	PWbreak

	Purpose

	The different routines

	Example

	PWremove

	PWchange

	Purpose

	Syntax

	PWquery

	Purpose

	Syntax

	A few exceptions

	Example

	Pwconfig

	Purpose

	Syntax

	Example

	Pwoutln

	Purpose

	Syntax

	Example

	Pwsprite

	Purpose

	Syntax

	Example

	Pwscrsize

	Purpose

	Syntax

	Example

	IS_OPEN

	Purpose

	Syntax

	Example

	Making strings

	MKSTRING$

	MKLEN

	MKLEN0

	Making sprites

	Purpose

	Syntax

	Example

	ERRSTR$

	Purpose

	Syntax

	Example

	GGET/GSET

	Purpose

	Syntax

	Example

	Compilation

	Introduction and legal stuff

	Some things to watch out for

	Some small examples

	A more meaningful example

	An example using sprites

	Details about types and their
tags

	Frequently Asked Questions

PROGS, Professional & Graphical Software

last edited 1996 Aug 06 (wl)

INTRODUCTION

The purpose of the ProWesS SBasic (Programming!) Interface is to let your
SBasic programs use ProWesS. This is achieved quite simply with some new
keywords, which will be explained later.
 It is important to note that this will only work with SBasic as contained
in the SMSQ (/E) operating system - it will not work in normal SuperBasic.
Compiled programmes will work on all machines (see the explanation on compilation for more details). Please note
that on machines other than those running SMSQ(/E) YOU MUST NEVER ATTEMPT
TO RUN AN UNCOMPILED BASIC PROGRAM USING THE ProWesS SBASIC INTERFACE. If
you do, your machine will almost certainly crash. Any damage to you, your
computer or your data will be your own fault, and neither PROGS nor myself
will accept any responsibility for this.YOU HAVE BEEN WARNED!!!!!

First of all, a certain number of concepts should be set out. Even though
this section might seem uninteresting if you want to get going right away,
please do read it.

If you have never heard about object oriented programming, ProWesS may
seem a little intimidating at first. In fact, it is dead easy. The
expression "complex but not complicated" really applies here: complex,
because there are many new things to learn, but not complicated, because
what you learn is not difficult to learn in itself.

This manual in itself should be sufficient, but you might also want to
read the main manual(s), especially that concerning the configuration -and
the configuration definitions- of ProWesS. However, it might be easier to
start by reading this manual. It contains another explanation of how to
look upon ProWesS, which might make things a bit easier sometimes.

[bookmark: some]SOME GENERAL THOUGHTS ON ProWesS

ProWesS, like the Pointer Environment's WMAN, is a window manager. In
other words, it doesn't do anything else than help setting up windows,
printing them on the screen, changing their content and passing the user's
action(s) to the program. You will still have to program the rest of your
program yourself!

Also, programs running under ProWesS still need the Pointer Interface
itself, though not the WMAN window manager since that is replaced by
ProWesS. The Pointer Interface handles very low-level stuff such as
determining in what window the pointer is located. The window manager, on
the other hand, is there to make sure that windows can be drawn nicely.

A knowledge of QPTR, the Basic extensions for the Pointer Environment, is
not necessary here. It might sometimes be an advantage, but at other times
it might be a disadvantage. However, you are supposed to know sufficiently
about the Pointer Environment to know what a HIT, a DO and items are...

Unlike WMAN, ProWesS is object oriented. Thus programming for ProWesS
means creating objects, possibly changing them, "activating" the main
object, and then removing all of the objects once they are no longer
needed.

[bookmark: objects]OBJECTS

The entire window itself is an object, which, in turn, contains other
objects, which can contain yet other objects - and so on. You, the
programmer, never really manipulate the window itself, only the objects of
that window. Normally, the first object you would create would be the
outline of the window - all other objects are then fitted, or poured, into
that outline object. Thus, the outline object is the owner of all the other
objects. The combination of the outline object together with all that it
contains, is known as a system. A program can own several systems. For
example, you might have one system, which corresponds to the main window.
At any time, you might open (pull down in WMAN parlance, or activate in
ProWesS) another window, for example to show some options. This would be
another system. However, all systems are built on the same model: one
outline object followed by objects within the outline.

In other words, the first thing to do is to create an (outline) object.
Once this is done, you can create other objects for it. The entire suite of
objects is a system. Once you have created a system, you can activate it.
Activation means that the window will be drawn on the screen. Once the
window is drawn on the screen, ProWesS waits for the user to hit/do objects
or press certain keys. Your program is then informed what object was hit or
done, so that it can react accordingly.

It may happen that you want to change an object. Let's suppose that an
object contains a string which tells the user what a default directory
might be. The user now changes this default directory. It would be useful
to change the object, or its contents, so that it reflects the new default
directory. Since it would be fastidious to remove the object, create a new
one, and (possibly) activate it, it is also possible to change an object.

Likewise, sometimes it can be necessary to ask an object something about
itself. Even though you created them, you don't always know everything
about the objects (ha, if it ain't magic...)! So, you can query an object
about itself.

When you no longer need an object, you can just remove it. It then no
longer exists. It is interesting to know that, when you remove an object,
you also remove all the objects that are owned by it.

[bookmark: key]KEYWORDS

[bookmark: key]

Thus, again, the main operations you are going to perform on an object
are: create it, change it, query it, possibly activate it, and later remove
it - curiously enough, each operation also corresponds to a new keyword
(magic, again). There are also some other things to do, as you can see from
the list of the new keywords available:

[bookmark: key]
	[bookmark: key]Create an object ...: PWcreate

	Getting Tags...: PW

	Activate an object ...: PWactivate

	Reset the system...: PWquit

	Leave the system cleanly...: PWbreak

	Remove an object ...: PWremove

	Change an object ...: PWchange

	Query an object ...: PWquery

	Check whether a tag exists ...: PWtest

Each operation, and the keyword corresponding to it, are explained in the
relevant sections. You should read the manual in that order, if possible.
There are also some other new keywords, concerning:

	Configuration...: PWconfig

	Setting the outline...: PWoutln

	Getting the window size: PWscrsize

	Making sprites: MKSPRT

	Displaying sprites: PWsprite

	Hit, Do and other routines...: HIT_ROUTINE and
others

	Making strings...: MKSTRING$ MKLEN

	Getting error strings...: ERRSTR$

	Getting/Setting global variables...: GGET/GSET

	Testing whether a channel is open...: IS_OPEN

	Loading new tags for new types...: LoadPWdefn

and an explanation concerning Parameters and strings as used by the ProWesS keywords, which you
also should read!

PROGS, Professional & Graphical Software

last edited 1997 Jun 06 (wl)

PWcreate: CREATE AN OBJECT

This Chapter explains the use of the PWcreate function. It also explains
the concepts of owner, types and tags.

	Purpose

	Syntax

	Owner

	Type

	Tags

	An example

[bookmark: pur]Purpose

The PWcreate function is used to create any and all objects. As we have
said in the introduction, creating an
object is one of the main steps in ProWesS programming. It is also
generally the very first step - you can't really do anything with (or
rather in) ProWesS until you have created some objects. So this step is
paramount.

[bookmark: syntax]SYNTAX

For something so important, it is actually achieved quite easily, by using
the PWcreate keyword. This is a new function with the following syntax:

my_object = PWcreate (owner, type [,tag parameter][,tag
parameter]...)

 This will create an object, and the SBasic variable my_object will be
that object. From now on, whenever you need an object for doing something,
you can use my_object. This is actually no different from using any other
variable returned by a function in SBasic. Sometimes, you will come across
the term "Object ID" which is just this variable, too!

The parameters passed to the function can look more daunting than they
are. What this function does is create the object my_object according to
the parameters you have given. The parameters are logically structured and
correspond to some important concepts within ProWesS.

[bookmark: owner]The Owner

The owner of my_object is the object that will own my_object. As was stated
in the introduction , objects usually
belong to other objects. With this parameter, you tell ProWesS who
my_object will belong to.

Of course, the very first object doesn't belong to anybody, so the owner
is 0. If you now create a second object that belongs to the first object,
the owner of that second object is my_object as returned by the first call
to PWcreate.

[bookmark: type]Type

This parameter of the PWcreate function tells the
software what type of object you are creating. There are many different
types of objects, which will do different things.

Normally, the first object would be the outline of the window, which is
just a sort of container enclosing all the other objects in the window. So
the type of this object would be that of an outline. Another object could
be, for example, a menu item for this outline, or an infotext item.

Each type has one special type word associated to it which is predefined
and explained in the part of the manual concerning the detailed description
of the Types and Tags. Thus, if you want to
indicate that the object is to be of the type outline, you will use the
 PW('TYPE_OUTLINE') type.

[bookmark: tags]TAGS

The types are very different from each other. But there are only a few of
them and it seems logical that you will have to define some more details
for them. This is why the type parameter can itself be followed by other
parameters - for some strange reason, these parameters are called TAGS and
define exactly what characteristics the type should have. For example, if
you create an object of the type loose_item, you should tell this object
whether it contains a string or an icon, and if it is a string, what the
string is. In other words, you would follow the type by a 'tag' saying that
the item is of the type string, and the tag would then be followed by the
string.

Tags are always dependent on a type. Each type has its own tags, even
though they may achieve something similar, like setting a text. For more
detail on what each tag does, you should look to the part of the manual
that contains the detailed description of Types
and Tags.

The Tags are thus parameters for the types. If you remember, in the
introduction it was mentioned that ProWesS is not complicated but complex,
since there is a lot of information to absorb. Most of that information
concerns the tags, and what they mean and do. To be quite frank, I
personally can never remember what type can uses what tags, and what each
tag does. I just keep a copy of the manual handy and look it up whenever I
need to. If you want to learn them by heart, though, feel free to do so.

The part of the manual concerning the detailed description of the Types and Tags contains not only a 'detailed
description' of each type and its tags, it also sets out whether the tags
can be used during creation of the object, changes to the object or queries
to the object. In most cases, all tags that can be used when you create an
object, can also be used when you change an object (with PWchange), even though there are a few exceptions.
On the other hand, all tags used for a change can always be used during the
creating of an object.

[bookmark: example]An example

Here is an example of the PWcreate function. It creates an outline (this is
the type) which has a quit item (one of the tags for this type). The owner
of this outline will be 0.

my_outline=PWcreate (0,PW('TYPE_OUTLINE'),PW('OUTLINE_QUIT'))

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

PW: GETTING THE TAGS

This Chapter explains how you get the value of the tags in SBasic.

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

As you will have noticed in the description concerning the PWcreate keyword, you have to give this keyword
some types and some tags. This is also true for the PWchange and PWquery
keywords. Now, types and tags are actually numerical values, i.e.
TYPE_OUTLINE is equal to $4F55544C and POSITION_BELOW
 is equal to $11000004. In other words, they are variables.

 You can, of course, use the direct values in the functions instead of the
variables, but then you would have to know the value of each variable.
Instead, you will find that in all the examples and explanations, only the
names of the variables are used.

 Since there are over two hundred tags and a few types, this would mean
that learning all the values by heart would be a bit difficult. This
problem doesn't exist for 'C' or assembler programmers who can define
'include files' which contain all of these values and define them as
"variables", since these variable later no longer exist.

One could, of course, simply have a procedure initialising all the
variables, something like:

 DEFine PROCedure init_tags
 TYPE_OUTLINE = $4454544C
 POSITION_BELOW = $11000004
 (...)
 END DEFine init_tags

Since there are 218 definitions like that, each program in ProWesS would
already be at least 218 lines long (or, if you number in increments of ten,
lines 10 to 2190 would already be taken...) without you having done
anything! This would lead to an inflation in program size, and every SBasic
program in ProWesS would have to include this, making the inflation even
larger still!

This is why the PW keyword exists. It is a function which takes as
parameter the name of a type/tag and returns the value for it.

[bookmark: syntax]Syntax

PW is a function, used as follows:

result=PW(tag$)

 Tag$ is the tag or type to get. It would be best if this were within
quotes. It is possible to leave it without quotes since the keyword should
be intelligent enough to figure this out. However,leaving it without quotes
might give rise to problems when compiling
your program later on.

 The names for the tags (and types) can be found in the part of the manual
containing a detailed description of them. If you have a look there, you will notice that they all start with
'PW', and have the format PW(name) - e.g. PW('TYPE_OUTLINE').
The 'C' manual uses the entire name, including the 'PW_'. In the PW
function, you only type the name part.

It doesn't matter whether you write the actual name in upper or lower
case. However, since in the manual they are all described in upper case,
this was used throughout this SBasic manual, and in all of the examples.

[bookmark: example]

[bookmark: example]Example

In the manual, you might find the name PW('OUTLINE_QUIT_ACTION')
for a certain tag. In SBasic, you would thus write:

object=PWcreate(....,PW('OUTLINE_QUIT_ACTION')...).

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

HIT, DO and other action routines

	Purpose

	The different routines

	Example

[bookmark: pur]Purpose

These routines are used whenever a tag allows that an action routine be
passed as paramater. This is the case, for example, for the
OUTLINE_ACTION_DO, OUTLINE_ACTION_INFO etc...
tags. For all of these tags, you pass a parameter which is a "routine",
which returns to SBasic and tells you what routine was called.
In SBasic, you pass HIT_ROUTINE, DO_ROUTINE or any of the other
xxxxx_ROUTINEs as parameter. These are actually functions which return an
address (try: "Print HIT_ROUTINE") and it is that address that
is passsed on to ProWesS. At that address lies a routine that does the fake
return to SBasic. When HIT_ROUTINE comes back , it returns a certain value
in the hit_or_do% parameter to the PWactivate keyword, whereas DO_ROUTINE
returns another value. EXIT_ROUTINE returns yet another value and so on...
This allows you to check which routine was called for a certain object by
SELecting on the hit_or_do% parameter which is changed by the PWactivate
function.

[bookmark: diff]The different routines

Here is a list of the different routines and the values they return. Please
note that all routines are not possible for all of the objects: a
loose_item object, for example, has no provision for you to set a redraw
routine...:

	HIT_ROUTINE

	
This should be used whenever an action routine for a HIT on an item is
required. The value returned (in the hit_or_do% parameter) is 0.

	DO_ROUTINE

	
This should be used whenever an action routine for a DO on an item is
required. The value returned (in the hit_or_do% parameter) is 1.

	RDRW_ROUTINE

	
This should be used whenever an action routine redrawing an item is
required. The value returned (in the hit_or_do% parameter) is 2.

	EXIT_ROUTINE

	
This should be used whenever an action routine is required for the event
that the pointer leaves an object. The value returned (in the hit_or_do%
parameter) is 3.

	MOVE_ROUTINE

	
This should be used whenever an action routine is required when a
MOVE_EVENT is captured by an object. The value returned (in the hit_or_do%
parameter) is 4.

	SCALE_ROUTINE

	
This should be used whenever an action routine is required when a
SCALE_EVENT is captured by an object. The value returned (in the hit_or_do%
parameter) is 5.

	DRAGH_ROUTINE

	
This should be used whenever an action routine is required when the user
starts dragging with a Hit. The value returned (in the hit_or_do%
parameter) is 6.

	DRAGD_ROUTINE

	
This should be used whenever an action routine is required when the user
starts dragging with a Do. The value returned (in the hit_or_do% parameter)
is 7.

	DRAGE_ROUTINE

	
This should be used whenever an action routine is required when the user
Ends dragging. The value returned (in the hit_or_do% parameter) is 8.

	DRAGA_ROUTINE

	
This should be used whenever an action routine is required to trap the
pointer moving out of the object, and making an Adjustment. The value (in
the hit_or_do% parameter) returned is 9.

	INFO_ROUTINE

	
This should be used whenever an action routine is required for an info
item. The value returned (in the hit_or_do% parameter) is 10.

	WAKE_ROUTINE

	
This should be used whenever an action routine is required for a wake item.
The value returned (in the hit_or_do% parameter) is 11.

	QUIT_ROUTINE

	
This should be used whenever an action routine is required for a quit item.
The value returned (in the hit_or_do% parameter) is 12.

	HELP_ROUTINE

	
This should be used whenever an action routine is required for a help item.
The value returned (in the hit_or_do% parameter) is 13.

	INIT_ROUTINE

	
This should be used whenever an action routine is required following a
PW('SYSTEM_ACTION_INIT') tag. The value returned (in the
hit_or_do% parameter) is 14.

	EVENT_ROUTINES

	
There are 8 event routines - EVT1_ROUTINE to EVT8_ROUTINE. They can be used
for the system events. The values returned are 21 to 28.

There is, of course, nothing to stop you from using a HIT_ROUTINE for a
DO_ROUTINE and visa-versa, if you wish. All of these routines are
essentially the same, they only differ in the value they return. So,
provided you adjust your SELect, you can use any routine for anything you
want. I would suggest, however, to use the routines for their purpose, to
avoid confusion...

[bookmark: ex]

[bookmark: ex]Example:

 (...)

 object=PWcreate (0,(...),PW('OUTLINE_ACTION_WAKE'),WAKE_ROUTINE,
 PW('OUTLINE_ACTION_INFO'),INFO_ROUTINE,
 PW('OUTLINE_ACTION_DO'),DO_ROUTINE,
 (...)

Here, indicating the wake item will call the WAKE_ROUTINE which returns to
SBasic, filling in the hit_or_do% parameter with a 11. The object_hit will
be the Wake object (you must previously have queried the Outline object to
know what is the object identifier of the wake object, so that you can
SELect on it).

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

ERRSTR$: Getting error reports

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

 This hasn't got much to do with ProWesS. It is sometimes useful to get
the error string corresponding to an error code. REPORT will only work by
printing to a channel, but in ProWesS you're not supposed to have a screen
channel open, other than the implicit channels used by ProWesS itself,
which are not accessible from SBasic. So you can't use REPORT. You could
include a function in each of your programs, returning the error code
strings, but you would have to write it in several languages if you wish to
'export' your program.

[bookmark: syntax]Syntax

Use this function as follows:
string$= ERRSTR$(error_code%)

	string$ will then contain the string concerning this error. Note that this
is the string returned as by SMSQ itself, which has the advantage that it
will be in the language set by the user.

	The error_code% is the usual negative SMSQ error code. Wrong codes will
produce the message 'unknown error'.

[bookmark: ex]Example

incomplete$=ERRSTR$(-1)

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

Example_1_bas: Some small examples

	Introduction

	Test 1

	Test 2

	Test 3

	Test 4

	The Menu

[bookmark: intro]Introduction

Here are some small examples, using the ProWesS SBasic Interface. These
don't do anything useful, but they might help you to familiarise yourself
with the commands. They are contained in the 'example_1_bas' file, which
you can RUN and LIST. There are several procedures in this, imaginatively
called test1 to test4. I've also made a small menu which is displayed at
the beginning and gives you the choice to call any of these four test
procedures. The menu itself will be discussed later.
The program starts innocuously enough with a call to the set_windows
procedure, and then it just does a loop calling the test procedures
according to your choice.

 set_windows
 REPeat lp%
 choice=set_menu
 SELect ON choice
 =-1: EXIT lp%
 = 0: test1
 = 1: test2
 = 2: test3
 = 3: test4
 END SELect
 END REPeat lp%
 :

The set_windows procedure, which you could use in every program using the
ProWesS SBasic Interface, makes sure that the outline of the window is set
if we are not in a "compiled" program:

 :
 DEFine PROCedure set_windows
 LOCal not_compiled,upper%,xo%,yo%,xs%,ys%,ysize_0%
 not_compiled=IS_OPEN(#0) : REMark window#0 open?
 IF not_compiled
 xs%=0:ys%=0:xo%=0:yo%=0
 PWscrsize#0,xs%,ys%,xo%,yo%
 upper%=28:ysize_0%=50
 PWoutln#0,xs%,ys%-upper%,xo%,upper%+yo%
 WINDOW#0,xs%,ysize_0%,xo%,ys%-ysize_0%
 WINDOW#1,xs% DIV 2,ys%-upper%-ysize_0%,xo%+(xs% DIV 2),yo%+upper%
 WINDOW#2,xs% DIV 2,ys%-upper%-ysize_0%,xo%,yo%+upper%
 BORDER#1,1,255:BORDER#2,1,255
 PAPER#1,2:PAPER#2,7
 INK#1,7:INK#2,2
 CLS#0:CLS#1:CLS#2
 END IF
 END DEFine set_windows
 :

As you can see, this checks whether window #0 is open. If it is, the
outline of that is set. You will notice that this code will work in
programs running under the interpreter (whether they have been EXEC'ed, or
loaded and run) and under QLiberator.

[bookmark: test1]Test1

 Now we come to the first test procedure, which is a very simple program.
It sets up a small window containing two items and two info objects. You
can hit or do the items. Hitting or doing the second item has no result,
whereas hitting or doing the first item changes the text in the two info
objects, to show how often the item was hit:

 :
 DEFine PROCedure test1
 LOCal object, hit%,hits,dos,times$,mhit$,mdo$
 LOCal loop%,add_info
 :
 : REMark first initialise some variables
 mhit$="You have hit the item ":times$=" times":hits=0
 mem=0:object=0:hit%=0
 mdo$="You have done the item ":dos=0
 :
 : REMark now make some strings, note the CHR$(0) at the end!
 :
 my_hit$=mhit$& hits×$&CHR$(0)
 my_do$=mdo$&dos×$&CHR$(0)
 :
 REMark now create the outline object
 :
 outl=PWcreate(0,PW('TYPE_OUTLINE'),
 PW('OUTLINE_QUIT'),
 PW('OUTLINE_SLEEP'))
 :
 REMark now create the item objects
 :
 item1=PWcreate(outl,PW('TYPE_LOOSE_ITEM'),
 PW('LOOSE_TEXT_COPY'),"Hit or Do me",
 PW('LOOSE_ACTION_DO'),DO_ROUTINE,
 PW('LOOSE_ACTION_HIT'),HIT_ROUTINE)

 item2=PWcreate(outl,PW('TYPE_LOOSE_ITEM'),
 PW('LOOSE_TEXT_COPY'),"Hitting or Doing me
 will do nothing",
 PW('LOOSE_ACTION_DO'),DO_ROUTINE,
 PW('LOOSE_ACTION_HIT'),HIT_ROUTINE)
 :
 REMark now we create two infostring objects
 :
 info1=PWcreate(outl,PW('TYPE_INFOSTRING'),
 PW('INFOSTRING_TEXT'),my_hit$)
 info2=PWcreate(outl,PW('TYPE_INFOSTRING'),
 PW('INFOSTRING_TEXT'),my_do$)
 :
 REMark the main loop
 :
 REPeat loop%
 mem=PWactivate(outl,mem,object,add_info,hit%)
 IF NOT mem:EXIT loop%
 SELect ON object
 =item1
 SELect ON hit%
 =0:hits=hits+1
 my_hit$=mhit$&hits×$&CHR$(0)
 PWchange info1,PW('INFOSTRING_TEXT'),my_hit$
 =1:dos=dos+1
 my_do$=mdo$&dos×$&CHR$(0)
 PWchange info2,PW('INFOSTRING_TEXT'),my_do$
 END SELect
 END SELect
 END REPeat loop%
 :
 PWremove outl
 END DEFine test
:

After having initialised some variables, we create the outline of the
window. The window is supposed to have a quit item, and a sleep item.

 Please note that, for the sake of clarity, I have split up the parameters
for the function over several lines. Unless you have the Basic Linker, you
cannot do that, and should always have the parameters for the function on
the same line.

Once the outline is set up, we create two loose items with some text in
them. Notice how the tag used to put the text in the items is a "_COPY"
tag, so that we can give direct strings as parameters (see the strings part of this manual if this isn't clear).
For item1 we also indicate routines to call when the item is "hit"
(HIT_ROUTINE) or "done" (DO_ROUTINE). These don't exist for the other item,
which is why hitting or doing it will have no effect.

After this, we set up two infostring items. They will contain the text
which says how many times you have hit or done item1. For the first
infostring, I have set AUTOSIZE to 0 (i.e. False - by default it is True,
i.e. 1). As you can see, this makes a difference: when the text in the
first item is changed (after a hit), the window is not redrawn, since
AUTOSIZE is not set. If the text in the second item is changed, the window
is redrawn. This is because the length of the text might have changed and
it might have become much longer. This means that the text might no longer
fit in the object. If it doesn't, then, IF AUTOSIZE IS TRUE, the object
containing the string is made larger, and then, of course the window MUST
also be made larger - and redrawn. This is why the window is also redrawn
if AUTOSIZE is TRUE...

These few lines are enough to set up the window! Once this is done, we can
actually have it do something, like drawing it on the screen. So, we come
to the main loop of the program. All ProWesS programs will have such a loop
(or something similar). We first call the PWactivate function which draws
the window on the screen and waits for your actions. At the first call, mem
is 0, which is as it should be. Later on, it is automatically maintained by
the system. Of course, mem is also returned by the PWactivate call. The
PWactivate call comes back whenever you actioned QUIT, or the first item.
It won't come back for the second item, since we haven't given this item a
hit or do routine.

When the PWactivate call comes back, we first check whether mem is 0 or
not. If it is, we should quit the loop since mem will only be 0 if the User
indicated that he wants to leave the window. In that case, we leave the
loop, remove the object with PWremove (which also removes all the other
objects owned by it i.e. all other objects!), and the procedure is
finished.

If mem is not 0, we should check which object was hit. Here we know that
this object was necessarily item1, so we actually don't really need to
check this. On the other hand, we check whether the object item1 was hit or
done. The parameter hit% to the PWactivate function will reflect that: a
DO_ROUTINE will set this to 1, whereas a HIT_ROUTINE will set it to 0.

So, according to whether item1 was hit or done, we change the text in
info1 or info2. The text is changed with the PWchange command, and the info
object is automatically redrawn. For the object info2 this also
automatically redraws the entire window, since AUTOSIZE was left on.

[bookmark: test2]Test 2

 Now we can go on the the second test example. This will set up a an
applic type but doesn't do anything useful...:

 DEFine PROCedure test2
 LOCal xmax,ymax,object_hit,hit%
 LOCal item1,canvas
 LOCal text$(2,20)
 LOCal lp%
 :
 REMark note how I use a Local string variable here, the
 REMark window will be gone when we leave this procedure!
 :
 xmax=10:ymax=10
 text$(1)="Sleep item text"&CHR$(0) : REMark note the chr$(0)
 mem=0:hit%=0:object_hit=0
 :
 outl=PWcreate(0,PW('TYPE_OUTLINE'),
 PW('OUTLINE_SLEEP_TEXT'),text$(1),
 PW('OUTLINE_QUIT'),PW('OUTLINE_QUIT_KEYPRESS'),27)
 REMark use chr$(27) = ESC as keypress for the quit item
 :
 item1=PWcreate(outl,PW('TYPE_LOOSE_ITEM'),
 PW('LOOSE_TEXT_COPY'),"Direct string",
 PW('LOOSE_ACTION_DO'),DO_ROUTINE,
 PW('LOOSE_ACTION_HIT'),HIT_ROUTINE)
 :
 canvas=PWcreate(outl,PW('TYPE_APPLIC'),
 PW('APPLIC_CANVAS_LIST'),
 PW('CANVAS_SIZE_PIX'),100,40,
 PW('CANVAS_ACTION_REDRAW'),HIT_ROUTINE,
 0,
 PW('APPLIC_SCROLLBAR_Y'),
 PW('APPLIC_YSCROLL_LIST'),
 PW('SCROLL_MINDIST'),20,
 PW('SCROLL_MAXDIST'),-20,
 PW('SCROLL_MAXIMUM'),ymax,
 0,
 PW('APPLIC_SCROLLBAR_X'),
 PW('APPLIC_XSCROLL_LIST'),
 PW('SCROLL_MINDIST'),20,
 PW('SCROLL_MAXDIST'),-20,
 PW('SCROLL_MAXIMUM')xmax,
 0)
 :
 REMark now the loop which doesn't do anything other than
 REMark draw the window and wait for you to hit quit
 :
 REPeat lp%
 mem=PWactivate(outl,mem,object_hit,object_hit,hit%)
 IF NOT mem:EXIT lp%
 END REPeat lp%
 :

The ProWesS SBasic Interface: Example 2.

EXAMPLE_2_bas: Something more meaningful

This is a fully functioning application, the purpose of which is to
display the configuration lines in your ProWesS config file, and to change
a setting immediately.

It contains an edline object which lets you edit the name of the ProWesS
config file: Either you HIT the Edline object, in which case you can edit
the name directly, or you DO the Edline object, in which case it pops up a
file select window and lets you select your config file.

Once the file name is given, the file is opened, a (cursory) check is made
on whether it is a ProWesS config file, and then the content of the file,
i.e. the config lines, are displayed. You can now click on a line, this is
then proposed for editing, and the change is made.

The program first calls the set_windows procedure, to make sure that the
outline is set if we are in the SBasic interpreter and to initialise the
ysize% variable, which contains the y size of the screen. Then procedure
test is called.

 set_windows:test
 :
 DEFine PROCedure test
 LOCal object_hit,hit%,lp%,none_yet$
 LOCal text$(2,20),file_name$(50),option_chosen
 LOCAL config_options$(120,80),my_option$(81)
 LOCal number_of_elements%,watermark$,box_left,loose_item
 LOCal fname_edline,infotext,sep_obj,menu_object,fs,add_info
 :
 rem note how I use a Local string variables here, since
 rem the window will be gone when we leave this procedure!
 :
 rem first initialise some variables
 :
 watermark$="% configuration file for ProWesS"
 option_chosen=0
 mem=0:hit%=0:object_hit=0
 text$(1)="ProWesS Config"&CHR$(0) : rem the title, and button text
 text$(2)="Config file: "&CHR$(0) : rem label text
 none_yet$=""&CHR$(0)
 file_name$=none_yet$: REMark name of the config file

:
 rem now create all of the objects needed at first
 :
 outl=PWcreate(0,PW('TYPE_OUTLINE'),
 PW('OUTLINE_SLEEP'),PW('OUTLINE_SLEEP_TEXT'),text$(1),
 PW('OUTLINE_QUIT'),PW('OUTLINE_QUIT_KEYPRESS'),27,
 PW('OUTLINE_TITLE_TEXT'),text$(1))
 :
 rem use chr$(27) = ESC as keypress for the quit item
 :
 ylines=PWquery(outl,PW('DEFAULT_FONTSIZE'))
 ylines=INT(ylines/65536)+6
 ylines=INT((ysize%-80)/ylines)
 :
 infotext=PWcreate(outl,PW('TYPE_LABEL'),PW('LABEL_TEXT'),text$(2))
 :
 fname_edline=PWcreate(outl,PW('TYPE_EDLINE'),
 PW('EDLINE_MAXLENGTH'),50,
 PW('EDLINE_SET'),file_name$,
 PW('EDLINE_ACTION_AFTER'),HIT_ROUTINE,
 PW('EDLINE_KEYPRESS'),CODE('c'),
 PW('EDLINE_ACTION_DO'),DO_ROUTINE)
 :
 sep_obj=PWcreate(outl,PW('TYPE_SEPARATOR'))
 :
 menu_object=PWcreate(outl,PW('TYPE_MENU'),
 PW('MENU_ITEMWIDTH_PIX'),480,
 PW('MENU_VISIBLE_LINES'),ylines,
 PW('MENU_ACTION_SELECT'),DO_ROUTINE,
 PW('MENU_UNIQUE'))
 :
 fs= PWcreate(outl,PW('TYPE_FILESELECT'))
 :
 box_left=PWquery(outl,PW('OUTLINE_BOX_LEFT'))
 loose_item=PWcreate(box_left,PW('TYPE_LOOSE_ITEM'),
 PW('LOOSE_TEXT_COPY'),"Save",
 PW('LOOSE_ACTION_HIT'),HIT_ROUTINE,
 PW('LOOSE_KEYPRESS'),CODE('s'))
 :
 rem now the main loop
 :
 REPeat lp%
 mem=PWactivate(outl,mem,object_hit,add_info,hit%)
 IF NOT mem:EXIT lp% : rem prog is finished
 SELect ON object_hit : rem let's see what was hit
 =fname_edline : rem object hit= filename editor
 SELect ON hit% : rem HIT or DO?
 =0
 file_name$=get_from_edline$ (fname_edline,0)
 =1
 file_name$=select_file$
 PWchange fname_edline,PW('EDLINE_SET'),file_name$
 END SELect
 load_the_file
 =menu_object : rem object hit was menu
 get_choice : rem get the string to configure
 IF LEN(my_option$)>1
 popup_window : rem popup win with this string
 set_option : rem do the configuration
 END IF
 PWchange menu_object,PW('MENU_STATUS_CURRENT'),
 PW('STATUS_AVAILABLE')
 =loose_item
 save_the_file
 END SELect
 END REPeat lp%
 :
 PWremove outl : rem this also removes all objects owned by this one
 END DEFine test
 :
 rem ---

Here, first of all, we create an outline, which contains a sleep item and a
quit item. The quit item is also actioned by the ESC keypress (remember,
ESC=CHR$(27)). The outline has a text in the title, which is nicer than
just the name of the program (since that will always be 'SBasic' in the
interpreter).

 Please note that, for the sake of clarity, I have split up the parameters
for the function over several lines. Unless you have the Basic Linker, you
cannot do that, and should always have the parameters for the function on
the same line.

 We then create a label and an edline object. The edline object will
contain the name of the file to edit. We set the maximum length of this
object to 50 character, since a filename cannot be longer than that anyway,
and set the text in the object to file_name$, which, for the time being, is
still "no file yet".

 After this, we set the ACTION_AFTER to HIT_ROUTINE, and the
ACTION_DO to DO_ROUTINE. This is quite important, since it
will allow us to distinguish between a hit and a do on the object. If the
object is hit, then you can edit the name, and after you finished editing
the name, HIT_ROUTINE will be called, which then returns to SBasic, showing
that the object was "hit". If you "DO" the object, you cannot edit the
name, since DO_ROUTINE will be called instead. This also returns to SBasic,
showing that the object was "done".

 We then create a separator (a nice line) and a menu object. The width
(440 pixels) and the heigth of the menu object are also set. The heigth has
been calculated by dividing the screen y size by the fontsize of the
default font. This is an attempt to make sure that the window always fits
the screen whilst displaying a maximum amount of information for those
having a larger screen. The size of the default font is obtained with the
DEFAULT_FONTSIZE query tag which returns a number that must be
divided by 65536 to obtain the fontsize. The menu object is not (yet)
filled in, so it is just empty. Notice the MENU_UNIQUE tag.

 After this, we create a fileselect object which we will need later. and,
last but not least, we set up the loose item with which to save the file.
We put this in the empty box to the left of the title, so we first of all
get the object which is the container to the left of the title, with the
PWquery. Then we put the loose item into that container by making the
container the owner of the loose item.

 The keypress for the item will be 's', so we use CODE('s')
as keypress parameter.

 Then we set up the main loop of the program. Notice how mem was set to 0
first. As usual, the main loop activates the object. This will await all of
your actions and return with mem set to 0 if you quit the program (or break
the window down with PWbreak), else mem will be <>0. If you quit the
program, we leave the loop, remove the object, and the program just stops.

 Else, we determine what object was hit or done, with the SELect. If the
object actioned was the filename edline object, we further determine
whether it has been hit or done. If it has been hit then the filename was
edited first, so we just get this filename from the object. If this object
was "done", then we call the select_file$ function, which opens the
fileselect window. We will come to that in a moment. After that, we call
the load_the_file procedure, which does as its name suggests...

You will also note that most variables are LOCal variables, apart from
outl and mem, of course. These variables are all visible in all other
procedures/functions called by the test procedure but will not interfere
with any variables used in function that might call test - useful if you
would want to incorporate this into one of your programs... (How's this for
scope of variables? Eat your heart out, 'C'!).

 Now we can examine the procedures or functions called:

 rem ---
 rem the following 2 functions get the filename, they are called
 rem by a hit or a do on the edline object
 rem ---
 :
 DEFine FuNction get_from_edline$ (object,strip_chr0%)
 rem this gets the text from the edline object and returns it
 rem if strip_chr0% is set, the CHR$(0) at the end of the string is
 rem stripped off
 rem the max length of the string is 80 characters
 LOCal my_string$(81)
 PWchange object,PW('EDLINE_GET'),80,my_string$: rem get str frm edline
 IF strip_chr0%
 MKLEN my_string$: rem set new length w/o chr$(0)
 ELSE
 MKLEN0 my_string$: rem set new length keep chr$(0)
 END IF
 RETurn my_string$: rem and return the string
 END DEFine get_from_edline$
 :
 DEFine FuNction select_file$
 rem this activates the fileselect object and
 rem gets the string (composed of dirname + filename) from
 rem the fileselect object
 LOCal f_name$
 PWchange fs,PW('FILESELECT_ACTIVATE') : rem activate fileselect window
 f_name$=PWquery(fs,PW('FILESELECT_DIRECTORY'))
 f_name$=f_name$&PWquery(fs,PW('FILESELECT_FILENAME'))
 return f_name$&chr$(0)
 END DEFine select_file$
 :

The get_from_edline$ function gets the text from the edline object, using
the PWchange command. For various reasons one doesn't use the PWquery
function for this, which would have been more logical. Notice how I use a
local one-dimensional array set to the maximum length of a filename to get
this string. Once I have got the string, I make it the correct length for
SBasic, either stripping off the CHR$(0) at the end or not, depending on
the strip_chr$% parameter to the function. The string is then returned to
the caller. This function is used directly from the main loop if the edline
object was hit, since in that case the string had been edited in that
object first.

 The select_file$ function is called from the main loop when the edline
object was "done". First of all, it activates the fileselect object which
is set up in the procedure test. This activation is achieved, curiously
enough, with a PWchange, and not an PWactivate as one would expect... The
fileselect object is displayed, and will come back if you select a file
(with DO) or quit. Then we query the fileselect object about the directory
of the file, and the filename (which does not contain the name of the
directory).

When you query a fileselect object for the directory and the filename, it
returns a string directly, which is one of the few exceptions to the
PWquery function which normally returns a value.

Please note that, if we had set up the fileselect object in such a way
that it allows multiple filenames to be selected, the object returned (for
the filenames) would have be a menu object (i.e. a value), not a string.
One can then query the menu object for the files.

Example program n� 3.

Example 3: Using Sprites with ProWesS

This is an example of a small SBasic Prowess program which uses sprites as
content of several items and a canvas.

 The program itself doesn't do anything useful, it just displays the
sprite in three different items, and in a canvas:

	One item is in the menu bar.

	Another item displays the sprite using the normal ProWesS function for
this.

	The third item displays the sprite by drawing it directly with normal
PROforma commands.

	Finally, there is also a canvas, which contains the sprite.

 You should now resize the window to make it bigger/smaller. You will see
that the sprite in the menu bar doesn't change size at all. This is because
the menu itself doesn't change size.

 The sprite in the second item will adjust itself so that it fills the
item as much as possible, whilst still keeping correct proportions. This is
the sprite that is drawn using the "LOOSE_SPRITE" tag with a normal ProWesS
loose_item type. This makes sure that the sprite is drawn with correct
proportions.

The third sprite just fills in its item as much as possible. Thus, it gets
deformed when the x and y ratios aren't quite correct...

 The sprite in the canvas behaves just like the second sprite. This is
because it was drawn using the PWsprite
command, which also makes sure that the sprite remains well-proportioned
(like me). Please note that I could have used for this canvas the same way
of drawing the sprite as for the third item...

 You now have the ways to draw sprites in items, or any gstate you want
(such as that of the canvas). The big disadvantage of sprites is that
"pixels" get bigger when the sprite must be drawn bigger. However, this is
not so much of a disadvantage for sprites that are contained in menu items.
As we have seen, the sprite in the menu bar doesn't change, since the menu
bar doesn't change size. Normally, loose items shouldn't change size
either, even if in this example I've used an item that does (it's a case of
do what I say, don't do as I do...). By the way, to make sure that items
don't change size when the user resizes the window, include them in a
direction item, for which you set the scale factor to 0. (You can see an
example of that in the Procon program). I presume that this is what happens
for the title bar, anyway (in the y direction).

As you can see, the sprite is built using the MKSPRT
 keyword.

W. Lenerz

6, rue Daunou

77340 Pontault-Combault

(France)
last edited 1996 Nov 18 (wl)

The Prowess SBasic Programming Interface.

Frequently asked questions

-Q: My program works correctly in the interpreter, but once compiled, it
doesn't work anymore.

-A:

	You probably are using the PWoutln command when
your program runs in the interperter. Are you using this still when
compiled? You shouldn't.

	If the error seems to stem from the PW command
- which is often the case if the other PWxxxx keywords come back with "bad
parameter" or such errors- then there is a large chance that you have
compiled the program with the NAMES option deselected, but are using
somewhere a direct name in the PW command. You should put the paramters to
the PW function between quotes.

-Q: I can run any program correctly (or so it seems...) under the
interpreter, but I always get a "not enough stack" message from a compiled
program.

-A: First try to increase the stack of your application. Include the
following line as the very first line of your program: REMark
$$stak=20000. If it is only a "normal" Qliberator problem, then this
will cure it.

The problem may, however, still persist. The reason for this is rather
technical, BUT it is due to the fact that you did not follow the manual
correctly: Somewhere, ProWesS is coming back to SBasic (QLiberator) in a
manner that was not as it should have been. Typical candidates are
Fileselect objects where you indicated an Action routine (even though you
shouldn't) or Edlines that are activated through a PWchange, and also
include an action_after routine (which they shouldn't).

The ProWesS SBasic Interface: Using Global Variables.

Using global variables.

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

When ProWesS is installed, it automatically installs a things called
"Globals variables", which can be used by the 'C' programs to store some
global variables, such as the directory from which you booted ProWesS.
There is no reason why this couldn't also be used from SBasic, so several
keywords exist, to SET/GET/DELete a determined global variable, or to get
the FiRST or NEXT ones. The keywords are appropriately called GSET, GGET,
GDEL, GFRST and GNEXT.

Global variables have a name, and a value. The name is the name of the
variable itself, just like an SBasic variable, and the value is the content
of this. For example, the global variable PWSDIR contains the name of the
directory from which you booted ProWesS, e.g. flp1_, or win1_pw_, or
whatever. The name of the variable is case sensitive: PWSDIR is not the
same as pwsdir.

[bookmark: syntax]Syntax

	The syntax for GSET and GDEL is:

GSET name$,value$
GDEL name$

where name$ is the name of the global variable, such as PWSDIR, and value$
is the value of this variable. Please note that both parameters are
strings. GDEL deletes the variable - it no longer exists after this. GSET
sets the global variable whose name is name$, to the value$ indicated.

	 GGET is special since it is a function. The syntax for GGET is:

result$ = GGET (name$)

where name$ is the name of the variable the content of which is then
returned in result$. If this variable does not exist, the function returns
"--" (two minus signs).

	 GFRST and GNEXT have the following syntax:

 GFRST name$,value$
 GNEXT name$,value$

where, again, name$ is the name of the global variable, such as PWSDIR,
and value$ is the value of this variable.

 For GFRST, these two variable are filled in on return from the keyword,
it doesn't matter at all what they contain at first.

For GNEXT, the name$ parameter must contain, on entry, the name of the
last global variable (after which you want to find the next one) (e.g. as
obtained with GFRST), and will contain, after the call to GNEXT, the name
of the next one, and so on.

Please note that both parameters are strings and are filled in on return
from the keywords.

GFRST gets the name and value of the first global variable, GNEXT that of
the next one (and the next one, and the next one etc...). This way you can
find out all of the global variables in you system, and the value of them
(see the examples). If there are no more global variables (for GNEXT) or
none at all (for GFRST), the name$ and value$ are both set to '-- '(i.e.
two minus signs).

[bookmark: ex]Example

 GSET "A NEW VARIABLE","This is my value"

this sets the new variable.

 PRINT GGET ("A NEW VARIABLE")

will print 'This is my value'. But:
 PRINT GGET ("a new variable")

will print -- since this variable was not found.

The following small program prints all of the global variables in your
system.

 gname$=""
 gvalue$=""
 GFRST gname$,gvalue$
 IF gname$='--'
 PRINT 'There is NO global variable!'
 STOP
 ENDIF
 PRINT gname$; " = ";gvalue$
 REPeat loop
 GNEXT gname$,gvalue$
 IF gname$='--':EXIT loop
 PRINT gname$;" = ";gvalue$
 END REP loop

You can see how we leave gname$ alone, so that, on each call to GNEXT, it
still contains the name of the last variable, enabling us to get the one
after that, i.e. the next one.

PROGS, Professional & Graphical Software

last edited 1996 Aug 06 (wl)

The ProWesS SBasic Interface: Using IS_OPEN.

IS_OPEN: Checking whether a channel is open

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

As can be seen from the set_windows procedure in the example programs (see
the comment in the example 1, you will
sometimes need to know whether a channel is open or not. This function can
tell you whether a channel is open or not.

[bookmark: syntax]Syntax

The syntax of this command is quite simple:

result%=IS_OPEN(#chan%)

where result% is 1 if the channel is open, 0 if not.

[bookmark: ex]Example

 result%=IS_open(#0)

this tells us if channel 0 is open or not. Please note that the '#' is
necessary! If you leave it out, or leave out the channel altogther, the
function automatically checks channel 0.

PROGS, Professional & Graphical Software

last edited 1996 Aug 06 (wl)

The ProWesS SBasic Interface: The LoadPWdefn keyword.

LoadPWDefn: LOADING NEW TAGS

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

It is probable (or at least hoped) that, in the future course of
development of ProWesS, other people will develop their own types. This
will broaden the possibilities of programming in ProWesS. For the Basic
Programmer, there would however be a slight problem, since the TAGS for the
new types will not be included in the ProWesS Basic Interface. This in turn
would mean that you could not use the PW function for the tags for this new
type.

Consequently, a scheme has been devised by which extension files for the
ProWesS Basic Interface can be made available. These contain further tags
and are linked into the ProWesS Basic Interface. After that, the new tags
can be used with the PW command just like the built-in tags.

 The LoadPWdefn keyword is used to load the extension file and link the
tags into the Basic Interface. The extension files are made by the person
having made the new type, and should be included with the files for this
new type.

[bookmark: syntax]Syntax

This keyword is used as follows:

PLoadPWdefn filename$)

 filename$ is the name of the extension file. A cursory check is made
whether it truely is such an extension file, if it is, it is loaded, and
the new tags are linked in.

[bookmark: example]

[bookmark: example]Example

LoadPWdefn ram1_extension_file

PROGS, Professional & Graphical Software

last edited 1997 Jul 03 (wl)

The ProWesS SBasic Interface: The Maketags program

Maketags: Making a TAG extension file for the ProWesS Basic Interface

	Purpose

	Using the Program

	Example

	Restrictions

	Loading the extension file

[bookmark: pur]Purpose

You will need this program if you have developped your own ProWesS type,
and wish it to be accessible also from Basic. Normally, you will have made
a header file containing the new tags to be used for your type, which you
distribute with your type so that it can be called from other programs with
these tags. For obvious reasons, header files cannot be used in Basic. If
you have looked at the documentation that comes with the ProWesS Basic
Interface, you will note that, for the built-in types, there is a function
called PW which is used to obtain the value of a tag. For example, to
obtain the value for the tag PW_TYPE_LAbBEL, the function PW('TYPE_LABEL')
is used, and returns the numerical value corresponding to the tag.

 If you make your own type with your own tags, there would be a slight
problem for the Basic Programmer, since the tags for the new types will not
be included in the ProWesS Basic Interface. This in turn would mean that
you could not use the PW function for the tags for this new type. In short,
the type couldn't be used from Basic.

Consequently, a scheme has been devised by which extension files for the
ProWesS Basic Interface can be made available. These contain further tags
and are linked into the ProWesS Basic Interface. After that, the new tags
can be used with the PW command just like the built-in tags. It is presumed
that the author of a new type (i.e. you) will make such an extension file
and include it with the type and header file.

 The Maketags program is intended to help you make such an extension
file. It takes your header file(s) and extracts from them all #defines
starting with PW_ and makes a result file which can be linked into the
ProWesS Basic Interface.

[bookmark: op]

[bookmark: op]Using the Program

The program is EXEC'd normally. You will generally pass it the name of a
command file as parameter, eg. EX
_maketags;"commandfilename". If you give it no command
filename as parameter, the program interactively queries for one.

The command file is just a list line containing filenames:

	The first filename is taken as the output filename.

	All of the next filenames are the names of your header files.

There must be one line per filename. If a file cannot be found, it is
searched for first in the current DATA dirctory, then the current program
directory. If the output file cannot be created, it will be created on the
current data default directory.

 The program works in two passes, it creates an intermediary file on
ram1_, which it deletes afterwards.

[bookmark: example]

[bookmark: example]Example

I have created a new type called Pbar. Here is the extract of the makefile
concerning this type:

type_pbar : type_pbar_o core-dll_o
 ${LD} -ms -otype_pbar type_pbar_o \
 core-dll_o -lpw -lpf -lsms -sxmod
 mkxmod type_pbar \"ProWesS External Type Definition\"
 dcopy C@|dev1_prowess_pw_$@
 maketags pbartagscmd ------ line for maketags
type_pbar_o : pbar_h

As you can see, the Make program calls upon Maketags, and passes it the
string "pbartagscmd". This is interpreted as being the file pbartagscmd on
the data default directory. (The datadefault is set to "dev1_prowess_src",
which is where the source files for the type reside). The file pbartagscmd
is the command file, and it contains the following lines:

pbar_extns
pbar_h

The first line is the result file, which will be
"dev1_prowess_src_pbar_extns". The second line contains the (single)
header file, "dev1_prowess_src_pbar_h".

[bookmark: res]

[bookmark: res]Restrictions

Maketags is a rather stupid program. When parsing for the tags, it will
only take into account tags which start with "PW_" and are defined with
"#define". It cannot handle tags containing bits shifted up or down (such
as the PW_TAGINFO_SKIP tag in the Prowess_h file). It does, however,
correctly handle tags composed with PW_TAGMASK_STANDARD and
PW_TAGMASK_MULTIPLE.
 These restrictions should not be a problem, since you will probably make
two (or more?) header files, one of which contains the tags with which your
type can be accessed, and which will be distributed with it.

[bookmark: load]

[bookmark: load]Loading the Extension file

The user must later load the extension file before being able to use the
new tags. This is achieved with the LoadPWdefn keyword, which is explained
in the ProWesS Basic Interface manual. You could do this in the boot file
for your type, or invite the user to do it. You might consider including a
paragraph such as the following with your manual/documention of the new
type:

For the Basic Programmer, a file is included, called "your filename here".
This contains all the necessary tags for the new type. This file must be
loaded first with the LoadPWdefn keyword, as follows:

LoadPWdefn "your filename here"

Once the file is loaded in this way, the new tags are available from Basic
with the PW keywords.

Wolfgang Lenerz
6, rue Daunou
77340 Pontault-Combault
France

The Prowess SBasic Programming Interface: MKSPRT.

MKSPRT: Making sprites

	Purpose

	Syntax

	Example

[bookmark: pur][bookmark: pur]Purpose

You can display sprites with the PWsprite
keyword, or by including a sprite in a loose item definition (see the loose item type tags). In both cases you must
give the address where you can find the sprite. How can you make an address
where one can find a sprite? This is achieved with MKSPRT. This takes
several parameters, one of them a string array containing the data setting
up the sprite. The keyword takes this data, builds the sprite, and returns
the address where the sprite lies.

[bookmark: syntax]Syntax

The syntax for this keyword is relatively simple:

address = MKSPRT (sprite$,x_columns%,[,xo%,yo%])

	address is the address where the sprite lies. ATTENTION, this address is
in a form used for displaying the sprite via the PROforma sprite picture
driver. In other words, the actual sprite data lies at address+60, since it
is preceded by what PROforma calls the FileInfo area. The FileInfo area can
be left empty, ecept for the name of the sprite which must be poked in at
the beginning. The name must end in "_sp4". You should thus use
address+60 if the sprite is intended to be used as a pointer
sprite (in the window/canvas) and address for anything else.

	sprite$ is the array containing the data for the sprite. This is quite
simple: it must be a two dimensional array. Each line is one line of pixels
for the sprite. Each pixel can be either White, Red, Green, blAck or
transparent - other colours are not allowed (yet) since ProWesS only works
in mode 4. For compatiblity reasons with QPTR, W denotes a white pixel, R a
red one, G a green pixel, A a black one, and ' ' (a space) a transparent
pixel. Transparent pixels show what is underneath. Thus you build up a
sprite line by line, determining the pixels for each line. Don't forget
that the first element in the first dimension of a string array is
element(0).

	x_columns%, an integer, contains the number of pixels per line. This
should normally be equal to the second dimension of the array.

	xo% and yo% are the x and y origins for the sprite. These are not
important if the sprite is not used as a pointer sprite. If the sprite is
used as a pointer sprite, then the origins are used to determine where the
sprite is located (i.e. it is the pixels that corresponds to the origin
that determines in what window the sprite is located).

[bookmark: ex]Example

 dim my_sprite$(9,7)
 rem 10 lines with 7 pixels each
 a$(0)= ' w '
 a$(1)= ' waw '
 a$(2)= ' waraw '
 a$(3)= 'waaraaw'
 a$(4)= ' waraw '
 a$(5)= ' waraw '
 a$(6)= ' waraw '
 a$(7)= ' waraw '
 a$(8)= ' waraw '
 a$(9)= ' wwwww '
 :
 address=MKSPRT (my_sprite$,7,4,0)
 :
 sprite_name$="anything_sp4"
 for lp=1 to len(sprite_name$)
 poke address+lp-1,code(sprite_name$(lp))
 end for lp
 poke address+lp,0
 :

With this example I've built a small sprite in the shape of an upwards
pointing arrow. The sprite is black (the 'a's) but surrounded by a white
border, and the innermost column is red. The origin is set to the uppermost
point of the arrow i.e. pixel (4,0). Finally, the name of the sprite is
poked into the FileInfo area (using POKE$ for this would be better!).

 PROGS, Professional & Graphical Software

last edited 1996 Dec 26 (wl)

 The ProWesS SBasic Interface: String handling keywords.

 SOME STRING HANDLING KEYWORDS

 This chapter explains some keywords concerning string handling. You
 should have read the chapter of this manual concerning strings first.

 	MKSTRING$

	MKLEN

	MKLEN0

 [bookmark: mk]MKSTRING$

 Sometimes, some of the query or change tags do not return a string,
 but a pointer to a string. This is an address where the string lies in
 the completely useless 'C' format. The MKSTRING$
 function looks at the string located at that address, and returns it to
 SBasic as a real string.

Syntax:

String$=MKSTRING$(address)

 Example:

 l_item_t=PWquery(my_loose_item_object,PW
 ('LOOSE_TEXT',))
 item_text$=MKSTRING(l_item_t)

 This queries the item and gets a pointer to the text of the item
 from it, and then makes a string out of this, which is returned in
 item_text$.

[bookmark: ml]MKLEN

 Some of the ProWesS calls will set a string passed to them to a new
 value. Of course, ProWesS only sets this in the 'C' format - i.e. it
 forgets to make the new length of the string. MKLEN
 does that - it makes sure that a string passed to it will be so long
 that is stops just before the first CHR$(0) in that string. Use only
 when the string was modified by ProWesS, i.e. when it is a call and
 return parameter to ProWesS. The length of the string that will be set
 does not count the CHR$(0) at the end - in other words, this will no
 longer be part of the SBasic string.

 Syntax: MKLEN string$

The ProWesS SBasic Interface: Passing parameters

Passing Parameters to the Keywords.

The PWxxx keywords (both commands and functions) expect you to pass
certain parameters - types (for PWcreate only), tags and parameters for
tags. Also, the PWquery function returns a value which is like a parameter.

In the section concerning the PWcreate
keyword, it is already explained how types and tags are passed, using the
PW function.

A few observations must be made as to all other parameters. When you look
at the part of the manual describing the tags, you will notice that some of
them require parameters that are not tags. All of these are either numbers,
PROforma numbers, strings/arrays or fixstrings.

	numbers are always integers - not necessarily the "%" kind, just numbers
without a decimal point in them. Floating point variables are quite
alright, but remember: NUMBERS MUST NOT HAVE DECIMAL POINTS IN THEM.

	PROforma numbers are rather special, because they are not integers, but
floating point numbers masquerading as numbers. They are best left alone,
or just obtained (with PWquery) and passed back to ProWesS. You can get the
integer part of a PROforma number by using the formula intnumber =INT
(proforma_number/65536) and the rest with restnumber =
proforma_number -(intnumber*65536) where intnumber is the number
obtained with the earlier calculation.

	strings are a bit more complicated. The handling of
strings is explained in another section of this manual which you should
read after this. Whenever a string is required, you can always pass a
string array element, of course.

	fixstrings don't exist - officially. I just haven't found a better word
for them. Sometimes, ProWesS requires that it be passed a string, which it
will then modify, for example to pass back a string to the user. If you
have read the section on strings, you know that the way ProWesS handles
strings, and the way the rest of the QL world handles strings, are
fundamentally incompatible.

Whenever ProWesS is passed a string which it modifies, it assumes that
this string has a certain length (which you normally indicate to it
before), and it might fill up that string to this maximum length (but not
more).

To make sure that a string in SBasic has a certain length, you can either
fill that string with, say, CHR$(0) (e.g. string$=FILL$(CHR$(0),81))
 or else, you make it into a one-dimensional array:

DIM a$(81)

This makes sure that there are at least 80 characters (+ the CHR$(0) at
the end) in the string!

Thus, a fixstring is a string which has a guaranteed minimum length which
you set with one of the two above methods.

PROGS, Professional & Graphical Software

last edited 1996 June 06 (wl)

The Prowess Configuration Program.

THE PROWESS CONFIGURATOR

This program can be used to edit the Prowess and Proforma Configuration
files.

First select whether you want to edit a Prowess or Proforma configuration
file, by hitting 'P' - that switches between Proforma and Prowess as is
shown in the menu.

 Now give the program the filename of the configuration file, either by
hitting the filename item, and then editing it, or by doing the filename
item and selecting the filename from the standard file selector. The file
must have the line "% configuration file for ProWesS" as its very first
line if it is a Prowess file, or "; PROforma, PROGS Font & Raster Manager,
fontmap config file" if it is a Proforma file, else it will not be
recognized as a valid Configuration file, and the program refuses to load
it.

 Every line in the file -including comments- is displayed. You can edit
each line in turn, except for empty lines. As soon as you have edited a
line, this is passed on the the Prowess or Proforma internal configurator,
for the change to take effect immediately. You can also save the file back,
overwriting the older file without any sort of confirmation request.

 If you want to get rid of an option altogether, the best way to achieve
this is to add a semicolon in front: This will keep the option in the file
for future use, but, it will not be executed by the Prowess or Proforma
configurators.

You cannot edit empty lines.

 The "Add" item lets you add a new line to the file. There cannot be more
than 200 lines.

 This program was written with the Prowess SBasic Interface, and then
compiled with QLiberator. There are two versions of this program: one with
the QLiberator runtimes included, one without.

W. Lenerz
Last edited on 1996 Jun 06 22:30:41

 The ProWesS SBasic Interface: Using PWactivate.

PWactivate: ACTIVATING OBJECTS

This Chapter explains how you can activate objects within ProWesS, and what
that actually means!

	Purpose

	Syntax

	Defining objects to return

	A fake return

[bookmark: pur]Purpose

Activation normally only concerns an outline object. When you activate the
outline with this keyword, control of your program is passed to ProWesS.
ProWesS then (and only then) actually paints the window on the screen with
all the objects you have PWcreated. Once the window is drawn, ProWesS
watches over what happens with the pointer within the window and whether
the user presses any special keys etc... At some predefined point, it will
come back to your program and tell it why it came back, i.e. what has
happened (such as the fact that the user clicked on a loose item).

[bookmark: syntax]Syntax

The syntax of the PWactivate keyword is as follows:

 mempointer= PWactivate
(object,mempointer,object_hit,add_info,hit_or_do%)

where:

	object is the object to activate, as returned by the PWcreate function.

	mempointer is the result returned, and is also used within the call to
PWactivate. It is a pointer to somewhere in memory. THIS MUST BE 0 THE
FIRST TIME YOU USE PWactivate for this object. After this, it is maintained
by the system itself and you do not have to worry about it. This pointer
will be 0 when the user clicked on the QUIT item of your window, indicating
that he/she doesn't want that window anymore. You should then remove the
outline object and (possibly) stop the program.

	object_hit tells you what object was hit (or done or otherwise indicated
by the user) and which thus caused ProWesS to return control to your
program. This enables you to make a SELECT on all objects which are likely
to be actioned by the user, and thus direct the flow of your program to
where you deal with this object.

	add_info is some additional information about the object. What this is
exactly depends on the object, and on the cause for the return from the
PWactivate call. More often than not, this doesn't contain any useful
information... The content of this variable -if any- is set out in the part
of this manual concerning the types and their
tags - if a certain tag causes this variable to contain useful
information, you will be told when this tag is described. In most cases,
you can just ignore this variable.

	hit_or_do% (an integer variable) contains an indication whether the user
hit your object, or did it, since this might be of some importance. If the
value of this variable is 0 upon return, the object was hit. If this
variable is 1, the object was done. This variable can have many other
values - the value depends directly on which action routine you indicated
when setting up an object- see below "A fake return".

So, once you have created all of the objects, your program will be actually
a simple loop, something like this:

 (...definition of your objects here...)
 (... you are presumed to have defined an object called outline...)
 (...and another one called item1, which is a loose item...)

 mem=0:object_hit=0:hit_do%=0:add_info=0
 REPeat loop%
 mem=PWactivate(outline,mem,object_hit,add_info,hit_do%)
 SELect ON mem
 =0 : PWremove outline:STOP : rem user pressed QUIT
 =item1 : take_care_of_this_item
 (...)
 END SELect
 END REPeat loop%

This is actually a very simple program structure - a loop which terminates
when 0 is returned in mempointer.

[bookmark: define]Defining objects to return

So, ProWesS draws the window and then handles everything else, checking
where the mouse is, and so on. This would mean that the PWactivate call
would never return, so there must be a way to tell ProWesS to relinquish
control and return to SBasic. This happens automatically whenever the user
quits the program - in that case, the PWactivate function returns 0, as we
have seen.

All that needs to be explained now is how to tell ProWesS to make a return
from the PWactivate call for other reasons. This is done whenever you
create (and, sometimes, change) an object. If you look at the tags for a
determined type, you can see that some of them permit "do routines", "hit
routines" or other action routines to be passed to an object. An example
would be the tag "OUTLINE_ACTION_DO" for the outline type of
object. If you use this tag, it must be followed by a routine which is
called from the ProWesS Event Handler. In other words, you must tell
ProWesS what routine to call when the user actions the DO item in the
window.

 This means that ProWesS itself, once it has drawn the window, is just a
loop that checks what the user does with the mouse or the keyboard (an
"event"). This piece of ProWesS is the ProWesS Event Handler. If the user
actions the DO item, the ProWesS Event Handler checks whether there is a
routine it should go to (the one indicated by you) and, if so, it jumps to
that (machine code!) routine. That routine then does what it has to do, and
returns control back to the ProWesS Event Handler.

Of course, for the SBasic programmer, the best thing would be if there
was a way to tell ProWesS to call a determined SBasic function or procedure
directly upon such an event. Unfortunately,that isn't possible since you
cannot call an SBasic procedure from within a machine code program. So
there are several new keywords, which, when called from the ProWesS Event
Handler, will return to SBasic: HIT_ROUTINE , DO_ROUTINE and many other routines, which are
explained elsewhere in the manual. You just use these as parameter whenever
a tag requires an action routine.

	[bookmark: fake][bookmark: fake]A fake return

Thus, whenever you use these two keywords to indicate that, upon a hit or
do on an item, ProWesS should come back to SBasic, this is indeed done: the
PWactivate call returns with a certain value in mempointer (other than 0).
You must be aware however, that this is a fake return! In fact, ProWesS
doesn't know that it has returned control back to SBasic: It still thinks
that it is in the routine that was called from within its Event Handler,
since the two keywords return to SBasic without returning to the ProWesS
Event Handler.

It is thus very important that you always check on the mempointer returned
by PWactivate. If this is 0, then a clean return was made from ProWesS -
this can also be seen by the fact that the window drawn by ProWesS has
disappeared: whenever a clean return is made to SBasic, the window is
undrawn first.

If the value returned by PWactivate is not 0, then a fake return was made,
and you must loop back to this call and go back to ProWesS so that a return
is made from the routine called by the ProWesS Event Handler. This also
explains the loop structure of the above example: a simple loop, always
calling upon PWactivate, until 0 is returned.

If you do not do this, but rather call the PWactivate call completely anew
(i.e. with mempointer = 0) then you will certainly loose some memory (at
least 4 KB, this is a guaranteed minimum). Apart from that, it should be
safe to do so, but there is a risk that you might also confuse (i.e. crash)
your copy of SBasic and/or ProWesS and/or the entire system. So don't!

For reasons which are more closely explained in the comment on the PWquit keyword, it is never a good idea that the
outline and the mempointer variables be LOCal variables.

PROGS, Professional & Graphical Software

last edited 1996 Jun 06 (wl)

The ProWesS SBasic Interface: Using PWbreak.

PWbreak: Leaving the system cleanly

	Purpose

	Syntax

	Example

[bookmark: #pur]Purpose

At some stage, you might want to leave the ProWesS window cleanly without
the user hitting the Quit item. We have seen in the PWactivate keyword that only a return with the
user having hit quit in the window is a clean return. You can also make a
clean return with this keyword. This tells the system that, the next time
you go back to it via PWactivate, it should shut down the window cleanly as
if the user had quit, and then return to SBasic.
 Thus, you should use this keyword anywhere in a procedure called from the
main loop (as set out in the PWactivate chapter) and then go back to the
loop. This then does a last PWactivate call, and then this call returns
with mempointer=0 : a clean exit.

[bookmark: syntax]Syntax

The syntax of this command is quite simple:
PWbreak outline_object

where outline_objet is the outline object used by the PWactivate call.

[bookmark: ex]Example

 outl_obj=PWcreate (0,PW('TYPE_OUTLINE'),tags....)
 (...)
 REPeat loop%
 mem=PWactivate(outl_obj,mem,obj,add_info,hit%)
 if mem=0:EXIT loop%
 SELect ON obj
 = (...)
 = whatever
 call_a_procedure
 IF problem : PWbreak outl_obj
 (....)
 END SELect
 END REPeat loop%

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

The ProWesS SBasic Interface: Using PWchange.

PWchange: CHANGE (SOME ASPECTS OF) AN OBJECT

This chapter explains the use of the PWchange command.

	Purpose

	Syntax

	PWChange%

Purpose

With this command you can change some aspect of an object, adding something
to it, or altering something within it. It can happen that, due to a
user-defined action, you would like to make some modification to an object.
For example, you might want to change the keypress for a QUIT item in an
outline according to some runtime preference expressed by the user. You
would then change the outline so that the quit keypress becomes (say) 'x'
instead of ESC.

In some other cases, the change command is also used to actually obtain
something from the object. Normally, this would be done with the PWquery
function, but under some circumstances (as documented with the description
of each type/tag) the PWchange command is
used.

Syntax

PWchange object,tag, [,tags...]

The object is the object to change, the tag is the tag which adds to, or
changes, the object. For a more detailed explanation of what tags are, you
should refer to the PWcreate function.

[bookmark: pwc]PWchange%

There is also a function called PWchange%. This does exactly the same as
PWchange, but, instaed of interrupting the program with an error if there
is an unrecognized tag, it returns a value: 0 means everything went ok, any
other value means that there was an error.

PROGS, Professional & Graphical Software

last edited 1997 Jun 06 (wl)

The ProWesS SBasic Interface: Realtime configuration.

PWconfig: PROWESS CONFIGURATION

This Chapter explains how you can set some configuration values within the
ProWesS system.

	Purpose

	Syntax

	Example

[bookmark: #pur]Purpose

This keyword is used if you want to make some changes to the configuration
of ProWesS. The main manual explains this configuration process quite
clearly, including all of the options one may set. Please note that these
are global options, i.e. they will act on any program using ProWesS, even
those already running in the system.

[bookmark: #syntax]Syntax

PWconfig prog_name$,config_name_and_config_option$

	prog_name$ is the name of the program to configure, either PROforma or
ProWesS (the strange capitalisations aren't needed). Conceivably, other
programs could be configured with this, provided they are an extension
thing with the CNFG extensions that expects its parameter -one string- on
the stack. Do not use a direct string.

	config_name_and_config_option$: This parameter to is always a string,
containing the option to set (such as "SYSTEM-FOREGROUND-COLOUR
") followed by a space and then the new value (such as : 0 0
0). Please note that ProWesS requires that the name of the option to
set always be in UPPER CASE. Also, if the new value to set is a string
(such as FALSE or TRUE) please also use upper case.

Example

PWconfig "SYSTEM-BACKGROUND-COLOUR 100 0 0"

This sets the background colour to red.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: Using PWoutln.

PWoutln: SETTING THE OUTLINE IN THE INTERPRETER

This Chapter explains what PWoutln does.

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

With PWoutln, you set the outline of a window. In an ideal world, this
keyword shouldn't be necessary since, normally, the outline of the window
is set automatically by ProWesS whenever you activate an outline object.
The keyword is necessary, however, when you use the SBasic interpreter.

You may remember that the introduction
mentioned that ProWesS is a window manager, and still needs the Pointer
Interface. The latter is responsible to let programs know that the pointer
is in their window. To be able to do this, however, the Pointer Interface
itself has to be truely aware of the window: it has to know a certain
number of things about the window.

Setting the outline of a window tells the Pointer Interface these things
about the window. Now, normally, this is done by the PWactivate keyword. However, one peculiarity of
the Pointer Interface is that the outline of the very first window of a
program must always be set in this manner - if it isn't, setting the
outline of other windows in the program won't work correctly.

This is no problem when your program is compiled (with the 'WINDS' option
turned OFF - see the chapter on compilation)
or if you EXEC'ed an SBasic program so that it has no windows open at the
start. In the interpreter however, windows#0, 1 and 2 are already open
before you RUN your program - and the outline of window#0 is not set! So,
the PWoutln keyword is used to set the outline of window#0 (the first one
to be opened for the interpreter) of the SBasic you're working in. After
that, everything will work alright.

You can test this by using the test examples supplied here. REM out the
part setting the outline of channel#0 and run the program. You will note
that the windows are still drawn (more or less) correctly, but you cannot
get the mouse to work... In other words, the Pointer Interface doesn't tell
your program correctly that the pointer is in the window, so you must use
PWoutln. Also, the PWscrsize keyword tells you
the maximum size a window (i.e. window #0) can take.

[bookmark: Syntax]Syntax

The syntax of this keyword is as follows:

PWoutln [#chan%],x_size%,y_size%,x_orig%,y_orig%

	 #chan% is the channel ID. Normally this would be channel #0. You can
leave this parameter out, it will then default to channel #0.

	 x_size% and y_size% are the sizes you wish to give to your outline.
ATTENTION: any window open for the program MUST fit within this outline: If
you set the ouline to a small size (say 50,50) you can't open a window
bigger that 50,50, you will get an error out of range if you try!

	 x_orig% and y_orig% are the x and y origins of the window.

Please note that after you have used this command, you will have to
redefine the windows for the job (i.e. channels #0 ,#1 and #2). The example
programs use a procedure called "set_windows" just for that.

[bookmark: ex]

[bookmark: ex]Example

The following example sets the outline of channel#0 so that it covers the
whole screen, but leaves enough space at the top for two rows of buttons.
To do this, it first gets the maximum size of window #0:

 xs%=0:ys%=0:xo%=0yo%=0
 PWscrsize#0, xs%,ys%,xo%,yo%
 PWoutln #0,xs%,ys%-28,xo%,yo%+28

PROGS, Professional & Graphical Software

last edited 1996 Aug 06 (wl)

The ProWesS SBasic Interface: Using PWquery.

PWquery: ASKING AN OBJECT WHAT IT CAN DO

This Chapter explains how to ask an object something about itself.

	Purpose

	Syntax

	A few exceptions

	Example

[bookmark: #pur]Purpose

The purpose of this keyword is to bring an object to tell something about
itself. For example, if you have an object of the menu type, then you can
ask it what the first item in the menu is. Thus, the query is a legal way
to ask an object to deliver some information about itself which you
couldn't get any other way.
 Remember that in an object oriented system, there is (or at least should
be) no way that you can know something about an object unless the object
itself has some method to tell you this. What exactly this information is,
depends on the object (and thus on the type of the object). This is
mentioned in the description of the Types and
Tags: where there is a description of a query tag for any type, you
will find the explanation of what this tag does.

The manual always distinguishes between query tags, and change (&
creation) tags, so there shouldn't be any possible confusion about when to
use them.

[bookmark: #syntax]

[bookmark: #syntax]Syntax

result= PWquery(object,what_tag)

	Result is the result returned. This is a number, which can be either a
direct value, or a pointer to an address, depending on the value that is
returned by the object upon the specific query. This is set out in the
detailed description of Types and Tags.

	object is the object you want to query.

	What_tag is the query tag that determines which query you want to make.

[bookmark: exceptions]A few exceptions

For three well-determined queries, PWquery does not return a number as a
result, but a string. In these cases you must write "result$ =
PWquery(...)" since the string will be returned directly.

The three exceptions are:

	PW('DEFAULT_FONTSIZE')

	PW('FILESELECT_DIRECTORY')

	PW('FILESELECT_FILENAME')

[bookmark: example]Example

 box_left_object= PWquery (outline,PW('OUTLINE_BOX_LEFT'))

This returns the object which makes up the box to the left of a title
within an outline. You can then change this object with PWchange.

l_item_t=PWquery(my_loose_item_object,PW('LOOSE_TEXT',))

item_text$=MKSTRING$(l_item_t)

This queries the item and gets a pointer to the text of the item from it,
and then makes a string out of this, which is returned in item_text$.

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

The ProWesS SBasic Interface: Using PWquit.

PWquit: RECOVERING FROM ERRORS

This Chapter explains what PWquit does - this has no equivalent in the 'C'
functions described in the main manual!

	Purpose

	Syntax

	Example

[bookmark: #pur]Purpose

As was explained in the comment on
PWactivate, a fake return is made to SBasic from any action routine you
may have specified, and it is crucial that a return be made to ProWesS via
the PWactivate keyword again, to avoid memory loss and possible crashes.
This is not, normally, a problem if you follow the simple loop structure
as set out in that comment. BUT, what happens if you have an error in your
SBasic program which is produced just after a return from the PWactivate
call as a result of a hit/do routine? Then the program is interrupted, you
will edit it , and run it again - leading to the loss of memory and
possible confusion mentioned above.

If this happens (i.e. the program stops with an error), the first thing to
do is to use the PWquit keyword. This unravels all of these complications
and makes a clean exit again to SBasic. You can then edit the error and run
the program again. Of course, you do not -and indeed MUST not- use this
when no ProWesS window was still on the screen when the error happended,
since then you are no longer in ProWesS.

[bookmark: #syntax]Syntax

PWquit object,mempointer

The object and mempointer variables are those that were used in the
PWactivate call. Now you can understand why you should not make these
variables LOCal, since after an error, the local variables are sometimes no
longer accessible....

ATTENTION: if you use wrong parameters for this command (i.e variables
that aren't those needed, such as a wrong mempointer), you will:

	Certainly crash the SBasic you were working on.

	Most probably crash ProWesS.

	Very likely crash your whole system.

You have been warned!

[bookmark: #ex]Example

PWquit outline,mem

Since my programs often crash during development (only!), I generally
include the following procedure in my programs:

 DEF PROC unset (o,m)
 PWquit o,m
 PWremove o
 END DEF unset

which makes a clean exit with PWquit, and also removes the object with
PWremove.

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

 The ProWesS SBasic Interface: Using PWremove.

PWremove: REMOVING OBJECTS

This chapter explains how you can remove objects from ProWesS.

Syntax and purpose

Once you don't need an object anymore, you can remove it. This frees the
memory each object eats up when it is created.
If you remove an object, you also remove all other objects that are owned
by that object - in other words, to remove all the objects of a system,
remove the outline which owns them all...!

PWremove object

where object is the object to remove.

PROGS, Professional & Graphical Software

last edited 1996 May 29 (wl)

The Prowess SBasic Interface: The PWscrsize keyword

PWscrsize : GETTING THE POSSIBLE SIZE OF THE WINDOW

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

As was explained in the PWoutln keyword,
sometimes you must set the outline of window#0. It is then a good idea to
know to what size the outline can be set, since the user's screen size may
be different from yours. The PWscrsize command will tell you what the
maximum screen size for a window can be.

[bookmark: syntax]Syntax

PWscrsize [#chan],x_size%,y_size%,x_orig%,y_orig%

	 #chan is the channel ID. Normally this would be channel #0. You can leave
this parameter out, it will then default to channel #0.

	 x_size% and y_size% are the maximum x and y sizes your window can extend
to. Normally, if this is done for window#0, i.e. the first window for a
job, this should be as large as the screen itself. For all other windows
opened for the same job, this should be the x and y sizes of window#0.

	 x_orig% and y_orig% are the x and y origins of the window.

Please note that the parameters passed MUST be integers, and must be
variables.

[bookmark: ex]

[bookmark: ex]Example

The following example sets the outline of channel#0 so that it covers the
whole screen, but leaves enough space at the top for two rows of buttons.
To do this, it first gets the maximum size of window #0:

 xs%=0:ys%=0:xo%=0yo%=0
 PWscrsize#0, xs%,ys%,xo%,yo%
 PWoutln #0,xs%,ys%-28,xo%,yo%+28

PROGS, Professional & Graphical Software

last edited 1996 Aug 06 (wl)

The ProWesS SBasic Interface: Using PWsprite.

PWsprite: Drawing a sprite

	Purpose

	Syntax

[bookmark: #pur]Purpose

This isn't really a ProWesS keyword, but a PROforma one... It allows you to
display a sprite within a Gstate.

You should set the window within the Gstate to the size you want. The
sprite will be made as big as possible within the current pagebox, so that
it fills it as much as possible without being deformed (it will always keep
the same aspect ratio).

[bookmark: syntax]Syntax

The syntax of this command is quite simple:
PWsprite Gstate,sprite

where sprite is the address of the sprite. Please note that this will only
work if you have the sprite picture driver ("sprite_pfd") installed in
PROforma. Gstate is a normal PROforma gstate.

The sprite is a normal Pointer Environment mode 4 sprite, which is
preceded by a 60 byte header, the first bytes of which contain the name of
the sprite, which must end with _sp4.

PROGS, Professional & Graphical Software

last edited 1996 Nov 14 (wl)

The ProWesS SBasic Interface: Using PWtest.

PWtest: Checking whether a tag exists

	Purpose

	Syntax

	Example

[bookmark: pur]Purpose

Various versions of ProWesS can have various new tags (see the PW function for the use of tags). If you use a tag that
doesn't exist in the system, your program will stop with an error (returned
by the PW function). This can happen twice: either if the ProWesS Basic
Interface itself does not recognize the tag, or if the type does not know
what to do with the tag sent to it.

This function can tell you whether a tag is recognized by the Basic
Interface (i.e. the PW function) or not. For the type, see the PWchange% function.

[bookmark: syntax]Syntax

The syntax of this command is quite simple:

result%=PWtest(tag$)

where result% is 1 if the tag exists, 0 if not.

[bookmark: ex]Example

 result%=PWtest('LABEL_UNDERLINE')

this tells you if this tag exists or not.

PROGS, Professional & Graphical Software

last edited 1997 Jun 06 (wl)

The ProWesS SBasic Interface: ProWesS and Strings

USING STRINGS IN ProWesS

	A short history

	Using CHR$(0)

	Strings are not copied

	String Arrays

Whilst using ProWesS inSBasic is generally not very difficult, curiously
enough, one must pay a little bit more attention to what one does with
strings, if they are used as parameters for the PWxxxx keywords. (This
short explanation does not concern the PW function
nor the other keywords which don't start with 'PW', where strings are
handled normally). Some of the tags or types passed to the keywords use
string parameters: for example, the text in an item object. Unless you
adhere to the rules explained below, there can be a slight problem. But
first, a little history lesson is in order:

[bookmark: history]

[bookmark: history]History

The potential problem here stems from the question: how long is a piece of
string? This happens to be not only a bad pun, but also the true reason
things get so involved here. It was originally foreseen that ProWesS would
be programmed in 'C'. To a large extent, ProWesS itself is programmed in
'C'. The 'C' language uses a certain way to determine how long a string is:
it starts at the start of the string (it knows where that is), and then
strings along (groan) until it finds a \0, i.e. a CHR$(0). It then knows
where the end of the string is, and so it can determine how long the string
itself is.

As you may know, the QL uses another way of handling strings: the
characters of the string are preceded by two bytes, which contain the
length of the string. So, there is no CHR$(0) at the end, and the same
string "Isn't computing great" looks, in memory, as follows:

in normal QL mode:

	(length word)Isn't computing great

and in 'C':

	Isn't computing great0

[bookmark: chr$]CHR$(0)

Of course, these two ways of doing things are incompatible... This means
that you, the programmer, must make sure that your strings always end with
a CHR$(0): if you pass a string variable (such as a$), make sure that a$
contains a CHR$(0) at the end: a$=a$&CHR$(0). Likewise for
arrays: if you pass (part of) an array, this must end with CHR$(0):

	DIM B$(20,40)

	...

	B$(5)=B$(5)&CHR$(0)

[bookmark: strings]Strings are not copied

The strings you pass to ProWesS are not always copied to a safe place,
since ProWesS in many cases thinks (just like most 'C' programs) that if
you pass it a string, then you should damn well keep the string until it
has finished. This means that you cannot pass a direct string , or the
result of a string function, to any of the PWxxxx keywords, you must
always pass a string variable (with the CHR$(0) at the end).

Moreover, this string variable must not be a LOCal variable, since these
are thrown away when you quit the function/procedure where they were
declared (unless you are sure that the object won't need the string any
more when you quit the function/procedure, e.g. if you remove the object
before leaving the function/procedure.)

Fortunately enough, there are one or two exceptions: Some of the tags
allow a string parameter with 'COPY', which means that ProWesS does copy
the string to a safe place. In these cases you can pass a direct string.
These tags generally contain the word 'COPY' at the end, so they are easy
to recognise. This is also mentioned in the manual where Types and Tags are detailed.

[bookmark: rules]

[bookmark: rules]The rules for passing strings

In short, here are the rules for passing strings:

	IF the tag with which you use the string, is a COPY tag, you can use any
kind of string:

	string variables, LOCal or global

	(slices of) string arrays, LOCal or global

	direct strings

	string functions

	IF the tag is not a copy tag, use only:

	global string variables

	(slices of) global string arrays

but do NOT use a direct string or a string function. You MAY use LOCal
variables if you are sure that you won't leave the function/procedure where
they are declared before removing the object.

Attention, string functions are not only those you make yourself in Basic
and which return a string, but also such machine code functions as "&":
Never pass as parameter:

a$&CHR$(0)

but always write:

a$=a$&CHR$(0) and then pass a$.

Finally, one small bonus: whenever you can pass a direct string (or string
function), there is no need to append a CHR$(0) at the end, this will be
done automatically.

[bookmark: arrays]

[bookmark: arrays]Arrays

In the 'C' interface, some tags allow you to pass string arrays (for
example MENU_ADD_ARRAY). It has been attempted to keep this
functionality, so that you can also pass SBasic arrays to the corresponding
SBasic keyword. This is no problem, if you keep the following in mind:

	All array elements must end with a CHR$(0). The reason for this is
explained above.

	Only pass a two dimensional string array (e.g. DIM
a$(10,20)).

	When you pass an array after a tag requiring such an array, the array
itself is generally preceded by two numbers which contain:

	The number of the elements in the array. This is quite straightforward and
should correspond to the first dimension of the array (i.e. DIMN(a$,1)+1,
which would be 11 in the above example). The "+1" is due to the fact that
arrays start at element 0, but DIMN returns the number of elements as used
in DIM.

	 The maximum length of each element of the array +2 (or 3). The maximum
length is of course the second dimension of the array (i.e. DIMN(a$,2),
which is 20 in the above example). You must always add either 2 or 3 to
this number - 2 if the length of the array is an even number, 3 if it is an
uneven number. This takes care of the two bytes in front of each element
of the array and which, as is usual in the QL, contains the actual length
of this element of the array, and of the possible padding byte if the
length of the elements is uneven.

	Don't forget that arrays start at element 0!

	Example:

 DIM a$(2,20)
 a$(0)="Element one"&CHR$(0)
 a$(1)="Element two"&CHR$(0)
 a$(2)="Element three"&CHR$(0)

 (...)
 xobj=PWcreate(...PW('MENU_ADD_ARRAY'),3,DIMN(a$,2)+2,a$,...)

or a more generic example:

 DIM a$(x,y)
 a$(0)="Element one"&CHR$(0)
 a$(1)="Element two"&CHR$(0)
 a$(2)="Element three"&CHR$(0)
 (...)
 a$(x)="Element x"&CHR$(0)
 (...)
 length=DIMN(a$,2)+2
 length=length + (length && 1)
 xobj=PWcreate(...PW('MENU_ADD_ARRAY'),x+1,length,a$,...)

The length=length + (length && 1) part of this program makes
sure that 1 is added to length if length is uneven: (x && 1) returns 1 if x
is uneven, and 0 if it is even.

PROGS, Professional & Graphical Software

last edited 1996 Jun 06 (wl)

The ProWesS SBasic Interface: The Applic type

The Application Window Type

	Purpose

	The type words

	The tags

[bookmark: pur]Purpose

An application window is a composite object. It provides a canvas together
with some scrollbars (if you want them). In other words, the application
window object will always also create a
canvas object at the same time. It can also create one or two scroll objects when it is created. This type
is very basic, all you can do is tell the applic to allow horizontal or
vertical scrolling (with or without scroll bars).

It is intended that you never directly use the
scroll type: if you want a canvas with a scrollbar, you should always
use an application window.

[bookmark: words]

[bookmark: words]The Type Words

When creating this type of object, the type parameter is:
PW('TYPE_APPLIC')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object.

The change (and creation) tags
	PW('APPLIC_SCROLL_X')

	
Tells the object that this application window should be scrollable
horizontally, but without a scrollbar. There are no parameters.

	PW('APPLIC_SCROLLBAR_X')

	
The application window should be scrollable horizontally, with a scrollbar,
no parameters. As mentioned above, the scrollbar is actually another
ProWesS type, the scroll type. So the
application object will, if you indicate this tag, create a scroll type
object. This is done automatically and without you having to worry about
it.

	PW('APPLIC_SCROLL_Y')

	
The application window should be scrollable vertically, but without a
scrollbar, no parameters.

	PW('APPLIC_SCROLLBAR_Y')

	
The application window should be scrollable vertically, with a scrollbar,
no parameters. The scrollbar is actually a ProWesS type, the scroll type. So the application object will,
if you indicate this tag, create a scroll type object. This is done
automatically and without you having to worry about it.

	PW('APPLIC_XSCROLL_LIST')

	
Pass the parameters of this tag on to the horizontal scrollbar in the
application window. The parameter should be a list of tags. This means that
you make a list of tags (and their parameters) which you would normally
pass on the a scroll type (in other words, use the tags one would use for
the scroll type in the list!). Such lists
are always terminated with 0, so the last parameter of a list must always
be 0. The application window type will send these tags and their parameters
on to the scroll type, as if you had PWchanged that type.

	PW('APPLIC_YSCROLL_LIST')

	
Pass the parameters of this tag on to the vertical scrollbar in the
application window. See the explanation above.

	PW('APPLIC_CANVAS_LIST')

	
Pass the parameters of this tag on to the canvas of the application window.
See the explanation above, only this time the list must contain tags
relating to canvas objects, not scroll
objects.

The query tags

There are no query tags for this object.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: The canvas type

The canvas type

	Purpose

	The type words

	The tags

	The canvas info

[bookmark: pur]Purpose

A canvas is a general purpose region object. It is a gateway for the
application programmer to have direct access to all events which occur in
it, for example to be used as the drawing area in a graphics program. This
definitely is the object where you can receive the most events through the
action routines.

A canvas doesn't know what is in it. The contents have to be drawn using a
user supplied routine. Therefore the size of the canvas has to be given
explicitly. To allow for scrolling etc., the canvas also has an origin,
which is the coordinate at the top left corner of the canvas. The origin is
there only for information (to be used by the action routines) and is not
used by the canvas type itself.

A canvas can react to the events which can occur inside it. A user
supplied routine can be called when the pointer enters or exits the canvas,
when a timeout occurs inside the canvas, or when the pointer is moved.
Other events which can be reacted upon are a HIT, DO, or
dragging (see below). An action routine can also be called when the canvas
is resized.

Dragging is a HIT or a DO which lasts longer than is
normal - usually whilst moving the pointer, i.e. keeping the mouse button
pressed whilst moving the mouse. A difference is made between dragging with
a HIT and dragging with a DO. An event is generated both
when the dragging starts and when it ends, and you can set action routines
which will return to SBasic with that event. During dragging, the pointer
is not allowed to move outside the canvas region. It the user does attempt
to move outside, the pointer position will be adjusted to stay inside the
canvas. This can also be trapped, for example to	scroll the canvas
automatically when it occurs.

[bookmark: words]

[bookmark: words]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_CANVAS')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object, but query tags are only used for queries.

The change (and creation) tags

	PW('CANVAS_POINTER')

	 Set the pointer which should be used inside
the canvas. The parameter is a sprite (the SBasic interface has no way yet
to define such a sprite, you can use any sprite generated, e.g. by QPTR).

	PW('CANVAS_ACTION_REDRAW')

	 Set the routine which is used to (re-)
draw the canvas. The parameter should be RDRW_ROUTINE. The WindowSub will
be set when the redraw routine is called. All the necessary information for
redrawing the canvas is supplied in the CanvasInfo parameter (see below).

	PW('CANVAS_ACTION_EXIT')

	 Set the exit routine for the canvas. The
parameter should be EXIT_ROUTINE. This routine is called when the pointer
exits the area covered by the canvas. It can for example be used to remove
the border around something in the canvas.

	PW('CANVAS_ACTION_HIT')

	 Set the routine which should be called when
a HIT occurs inside the canvas. The parameter should be HIT_ROUTINE.

	PW('CANVAS_ACTION_DO')

	 Set the routine which should be called when
a DO occurs inside the canvas. The parameter should be DO_ROUTINE.

	PW('CANVAS_ACTION_MOVE')

	 Set the routine which should be called
when a MOVE occurs inside the canvas. The parameter should be MOVE_ROUTINE.

	PW('CANVAS_ACTION_SCALE')

	 Set the routine which should be called
when a the canvas object is scaled. This can be used to extract some
information from the size of the canvas. The parameter should be
SCALE_ROUTINE.

	PW('CANVAS_TIMEOUT')

	 Set the timeout value for reading the pointer
inside the canvas. The parameter should be a number, the timeout. This can
be used for example to draw a preview of an action. The TIMEOUT event is
only triggered when no other event has occured during the duration set with
this tag! (After each other event, the timeout count starts afresh).

	PW('CANVAS_SIZE_PIX')

	 Set the size of the canvas on screen. Two
parameters are required, the x and y size, both positive numbers in pixels.

	PW('CANVAS_XSIZE_PIX')

	 Set the width of the canvas on screen. One
parameters is required, the width, a positive number in pixels.

	PW('CANVAS_YSIZE_PIX')

	 Set the height of the canvas on screen. One
parameters is required, the height, a positive number in pixels.

	PW('CANVAS_SIZE')

	 Set the size of the canvas on screen. Two
parameters are required, the x and y size, both positive PROforma numbers.

	PW('CANVAS_XSIZE')

	 Set the width of the canvas on screen. One
parameters is required, the width, a positive PROforma number.

	PW('CANVAS_YSIZE')

	 Set the height of the canvas on screen. One
parameters is required, the height, a positive Proforma number.

	PW('CANVAS_ORIGIN')

	 Set the current x and y values of the canvas
origin. The two parameter values can be in any metric. The origin of a
canvas is the position at the top left corner of the visible part of the
canvas. It could be in PROforma numbers, lines, pixels, or anything else.
The origin is directly passed on to the application programmer (YOU) via
the CanvasInfo structure (see below) in the action routines. The default
origin is (0,0).

	PW('CANVAS_XORIGIN')

	 Set the current value of the x origin. The
parameter value can be in any metric. The origin of a canvas is the
position at the top left corner of the visible part of the canvas. It could
be in PROforma numbers, lines, pixels, or anything else. The origin is
directly passed on to the application programmer (YOU) via the CanvasInfo
structure (see below) in the action routines. The default origin is (0,0).

	PW('CANVAS_YORIGIN')

	 Set the current value of the y origin. The
parameter value can be in any metric. The origin of a canvas is the
position at the top left corner of the visible part of the canvas. It could
be in PROforma numbers, lines, pixels, or anything else. The origin is
directly passed on to the application programmer (YOU) via the CanvasInfo
structure (see below) in the action routines. The default origin is (0,0).

	PW('CANVAS_XSCROLL')

	 Increment the x origin of the canvas with the
parameter, a number. The canvas will automatically be redrawn when control
is next handed back to ProWesS.

	PW('CANVAS_YSCROLL')

	 Increment the y origin of the canvas with the
parameter, a number. The canvas will automatically be redrawn when control
is next handed back to ProWesS via PWactivate.

	PW('CANVAS_REDRAW')

	 Tell ProWesS that the canvas object should be
redrawn when control is next handed back to ProWesS.

	PW('CANVAS_ACTION_HITDRAG')

	 Set the action routine which should be
called when the user starts dragging with a hit. The parameter should be
DRAGH_ROUTINE

	PW('CANVAS_ACTION_DODRAG')

	 Set the action routine which should be
called when the user starts dragging with a do. The parameter should be
DRAGD_ROUTINE.

	PW('CANVAS_ACTION_DRAGEND')

	 Set the action routine which should be
called when the user stops dragging. The parameter should be DRAGE_ROUTINE.

	PW('CANVAS_ACTION_DRAGADJUST')

	 When the user is dragging, ProWesS
makes sure that the pointer will not move out of the current region (it
won't even pass control to children). To prevent the pointer from exiting,
the pointer position may be adjusted. Such an event can be trapped by the
canvas with this tag and passed on to an action routine which comes back to
SBasic. The parameter should be DRAGA_ROUTINE.

The query tags
	PW('CANVAS_XORIGIN')

	 Get the current value of the x origin. This
value can be in any metric, as determined by the person who set the origin.
The origin can only be modified by setting it, or by scrolling (which can
be done either directly or by a scroll object). The origin of a canvas is
the position at the top left corner of the visible part of the canvas.
Please note that you can only get this once the outline containing the
canvas has been activated. Before that, the value is 0.

	PW('CANVAS_YORIGIN')

	 Get the current value of the y origin. This
value can be in any metric, as determined by the person who set the origin.
The origin can only be modified by setting it, or by scrolling (which can
be done either directly or by a scroll object). The origin of a canvas is
the position at the top left corner of the visible part of the canvas.
Please note that you can only get this once the outline containing the
canvas has been activated. Before that, the value is 0.

	PW('CANVAS_XSIZE')

	 Get the current width of the visible part of the
canvas. Please note that you can only get this once the outline containing
the canvas has been activated. Before that, the value is 0. The value
returned is a Proforma number.

	PW('CANVAS_YSIZE')

	 Get the current height of the visible part of
the canvas. Please note that you can only get this once the outline
containing the canvas has been activated. Before that, the value is 0. The
value returned is a Proforma number.

	PW('CANVAS_XSIZE_PIX')

	 Get the current width of the visible part of
the canvas. This is the width in pixels. Please note that you can only get
this once the outline containing the canvas has been activated. Before
that, the value is 0.

	PW('CANVAS_YSIZE_PIX')

	 Get the current height of the visible part
of the canvas. This is the heigth in pixels. Please note that you can only
get this once the outline containing the canvas has been activated. Before
that, the value is 0.

[bookmark: info]CanvasInfo

When the PWactivate call returns via one of the action routines to SBasic
because of an event in a canvas, the add_info parameter contains a pointer to
a piece of memory where you can find a structure called the "CanvasInfo". You
can PEEK or POKE value into or from this structure. Please note that, in the
description below, all values, except the one indicated by "short", are LONG
WORDS and so you can calculate the offset at which they lie. The "short"
values are words, not long words.

 So, to obtain for example the value of yorg, you would use:
yorg=PEEK_L(add_info + 4)

typedef struct {
 pt xorg, yorg;	 /* coordinate at topleft in canvas */
		 /* could be any type of size sizeof(int) */

		 /* PROforma coordinates */
 pt xsiz, ysiz;	 /* size of area */
 pt xpos, ypos;	 /* pointer position in area */
 Gstate gstate;	 /* Gstate to draw in */

		 /* window coordinates */
 short xpixsiz, ypixsiz; /* size of area */
 short xpixorg, ypixorg; /* origin of area in window */
 short xpixpos, ypixpos; /* pointer position in area */
 Window window;	 /* window to draw in */

		 /* conversion factors */
 pt Xpix2pt, Ypix2pt; /* pixel to point conversion */
 pt Xpt2pix, Ypt2pix; /* point to pixel conversion */
 short zero;	 /* always zero */
 } CanvasInfo;

To allow redrawing (part of) the canvas, the WindowSub is always set to cover
the area of the canvas when this structure is passed to a routine.

PROGS, Professional & Graphical Software

last edited 1996 Oct 07 (wl)

The ProWesS SBasic Interface: The dirselect type

The dirselect type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

This is an object which allows you to select a directory in a directory
select window. However, as there is no special method to have a window type
of object, it is implemented as a keypress object. If the associated key is
pressed, the window is activated, but you can also explicitly active the
window. (Note that if you don't attach a keypress to the dirselect object
(which is done with the PW('KEYPRESS') tag), the window can't
be activated with a keypress).

A directory select window consists of an edline where the directory can be
edited directly, a list of devices and a menu which contains both the
subdirectories to the current directory, and possibly some directories
which have been configured because they are often used.

The devices which are displayed are the devices which have been configured
as being the accessible (or most used) devices on your system (using
DIRSELECT-DEVICE). The often used directories can be
configured using DIRSELECT-DIRECTORY).

The directory which should be used as default in the dirselect window
can be set explicitly (it defaults to "", which is converted to the data
default (as set with DATA_USE) when the window is activated).
The title of the window can also be set.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_DIRSELECT')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object.

The change (and creation) tags

	PW('DIRSELECT_SET')

	
Set the current directory for the directory select object. The parameter is
a string. By default the directory is "". If the directory is "", the data
default will be used as directory.

	PW('DIRSELECT_TITLE_TEXT')

	
Set the text which has to appear in the title bar of the directory select
window. The parameter is a string. By default the title is "dir select".

	PW('DIRSELECT_ACTIVATE')

	
Activate the directory select window: the window is drawn and lets the user
select a directory. This tag has no parameters. The directory select object
is a keypress object. A keypress can be given to it and the window is
displayed when that key is pressed. However, the window can also
explicitely be asked for by passing this tag to the object.

	PW('DIRSELECT_ACTION')

	
Set a function which should be called when the directory select window is
closed. This doesn't make much sense in SBasic.

	PW('DIRSELECT_GET')

	
Get the current directory from the directory select object. Two parameters
are needed, the maximum length of the fixstring and the fixstring itself.
If the text in the object is larger than the maximum length, the string
will be filled as much as possible. Use MKLEN to make the string into a
true SBasic string.

 the query tags

There are no query tags for this object.

PROGS, Professional & Graphical Software

last edited 1996 Jun 06 (wl)

The ProWesS SBasic Interface: The edline/dedline types

The Edline and Direct Edline types

	Purpose

	The type words

	The tags

[bookmark: pur]Purpose

The edline object is designed to allow the user to edit a line of text
(a string). The maximum length of the string can be set when you create the
edline (or a default maximum length will be used). As an edline can not
reasonably determine its width, that also can be given (or a default will
be used).

Edlines are available in two variants:

	The normal edline has to be "indicated" (i.e. hit/done) first to start
editing the string. While the string is being edited, the pointer cannot be
used in the window.

	There is also a direct edline. This variant uses the keypress catching
mechanism. To make sure that you can move the cursor, a direct edline will
make sure that PW('CURSOR_SEPARATE') is TRUE. A direct
edline doesn't have to be indicated to start typing, but it has to be
selected in some way as current catch object. If there is no catch object
when a direct edline is created, then that direct edline will designate
itself as such.

An edline can have an action which has to be executed when the user
stops editing (presses <enter>). Also the programmer can set some
objects which can be navigated to (using <tab>, <shift tab>,
<up>, <down> or <enter>). In the case of a normal edline,
the other objects to navigate to also have to be edlines. For direct
edlines, any object which can be a catch object will suffice.

Edline objects can cope with the edited text being larger than the
object can show (thanks to PROforma). They will also always try to assure
that the cursor is visible with its surrounding characters. The cursor will
therefore never hit the right end of the object, and the left end will only
be touched when the cursor is at the start of the string.

Although you can choose between normal and direct edlines, it is
possible for the user to configure his/her setup to use a direct edline
always. Consequently, as a programmer you should make sure that it is
always possible to navigate to all the other edline objects in the window
without using the mouse.

[bookmark: words]

[bookmark: words]The Type Words

When creating these types of object, the type parameters are:
PW('TYPE_EDLINE') for a normal edline, and

PW('TYPE_DIRECT_EDLINE') for a direct edline.

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for these objects. As usual, change tags are also used
when creating the object, but query tags are only used for queries. There
are also two tags that can only be used during creation.

All the tags which are valid for edline objects, can als be applied to
direct edline (dedline) objects. With the following differences :

	PW('EDLINE_ACTION_DO') does not exist for a direct edline (it is not
indicated).

	For PW('TYPE_DIRECT_EDLINE') all parameters to PW('EDLINE_EDLINE_xxx')
have to be DIRECT_EDLINE objects !

The creation tag: use only during creation
 There is one tag that can be used only when creating the object, not when
changing it:

	PW('EDLINE_MAXLENGTH')

	
Set the maximum length of the string which can be edited in an edline
object. The parameter is a number.

	PW('EDLINE_VISIBLE_LINES')

	
An edline can have several lines. They are independent of each other (i.e.
there is no word warp) and you can get to/from each line with the up/down
cursor keys. This tag determines how many lines there are in the edline.
They are normally all visible in the window. Beware, you cannot change the
number if lines later on - if this tag is not given, the edline only has
one line... The parameter is the number of lines.

The change (and creation) tags: use during creation and/or change

	PW('EDLINE_SET_LINE')

	
Set the string which should be presented for editing in any line of the
edline object. The parameters are the string to set and the line to set it
to.
If the string is longer than the maximum length, then as much as possible
will be used. It is a normal string and can be a direct string since it is
copied to a safe place.

	PW('EDLINE_SET')

	
Set the string which should be presented for editing in the edline object,
in the current line. For a one-line object, this is always the only line
that exists, else it is the line last edited by the user, or line 1.
If the string is longer than the maximum length, then as much as possible
will be used. It is a normal string and can be a direct string since it is
copied to a safe place.

	PW('EDLINE_SET_ARRAY')

	
This uses an array to fill in the strings for the edline, starting at the first
line. There are three parameters: the number of lines to fill in (which should
be the number of elements in the array), the maximum length of each string
in the array (don't forget how this is calculated in Basic: second
dimension of the two-dimensional string array + 2 for the length word + 1
if the second dimension of the array was uneven), and the array itself. The
type makes sure that no overflow can occur if there are more lines in the
array than in the edline, or if the length of each line in the edline is
less than that of each element in the array.

	PW('EDLINE_GET_LINE')

	
Get the string which is contained in a line of the edline. Three parameters
are needed, the length of the fixstring, the fixstring itself and the line
which must be obtained. If the text in the object is larger
than the length of the fixstring, the fixstring will be filled as much as
possible. The string returned should then be treated with MKLEN or MKLEN0
to obtain a normal SBasic string.

	PW('EDLINE_GET')

	
Get the string which is contained in the current line of the edline. For a
one-line object, the current line is always the only line that exists, else
it is the line last edited by the user, or the first line if no editing has been
done yet. This way, you can easily get the last line edited by a user in
case of a multi-line edline. Two parameters are needed, the length of the
fixstring, and the fixstring itself. If the text in the object is larger
than the length of the fixstring, the fixstring will be filled as much as
possible. The string returned should then be treated with MKLEN or MKLEN0
to obtain a normal SBasic string.

	PW('EDLINE_SET_ARRAY')

	
This fills in an array with the lines from the edline, but must not be used
from Basic (it doesn't fill in the length word of the elements, and MKLEN
doesn't work on Basic array elements if their initial length was 0). To
fill in an array with the lines, you should use the following code:

 maxlen%=DIMN(array$,2)
 rem max length of one element
 number_of_element%=DIMN(array$,1)
 string$=FILL$(' ',maxlen%)
 rem make sure there is that much space
 FOR lp%=0 to number_of_elements%
 PWCHANGE edline,string$,maxlen%
 MKLEN string$
 array$(lp%)=string$
 END FOR lp%

	PW('EDLINE_WIDTH')

	
Set the size of the edline object, one parameter, a PROforma number.

	PW('EDLINE_WIDTH_PIX')

	
Set the size of the edline object, one parameter, a number in pixels.

	PW('EDLINE_WIDTH_FS')

	
Set the size of the edline object, one parameter, a PROFORMA number. The
window size is calculated as the parameter times the fontsize used for the
text in the object. You should remember, though, that since ProWesS uses
proportional fonts, this does NOT indicate the exact number of charcaters
that will fit inside the window.

	PW('EDLINE_KEYPRESS')

	
Attach a keypress to the edline. The pressing of the key will be
equivalent to a HIT on the item, so the item can be edited. The parameter
is the primary keypress, which is of type CODE(character$).

	PW('EDLINE_ACTIVATE')

	
This allows you to activate the edline at any time. Normally, edlines
(apart from direct edlines) are only activated (i.e. the user can edit the
text in them) when they are indicated (hit/done). With this, you can
activate the edline whenever you want, notably in reponse to user input in
another part of the window.
This MUST not be used during creation, only when PWchanging the edline.
IT IS ALSO IMPORTANT THAT, IF YOU HAVE AN EDLINE THAT IS ACTIVATED IN THIS
MANNER, YOU DO NOT HAVE AN "ACTION_AFTER" ROUTINE (SEE BELOW) FOR THIS
EDLINE. Once the user finished editing the text, your program will continue
after the line doing the PWchange that activated the edline, so you can get
at the text immediately, anyway. It should be alright to include an
action_after routine for such an edline in SBasic, but in a compiled
program you will have the problem that QLiberator complains that it doesn't
have enough stack left, even if you increase the stack to a very high
number. You have been warned.

	PW('EDLINE_ACTION_AFTER')

	
Set the routine which should be called when the user finished editing the
edline (when the user pressed ENTER), as a post processing routine. The
parameter should be HIT_ROUTINE. This can be used to modify
some part of the system according to the data entered.

	PW('EDLINE_ACTION_DO')

	
Set the routine which should be called when the user indicates the edline
with a PW('EVENT_DO'). If such a routine exists, then this
routine will be called, and the item in the edline cannot be
edited (!!!!!!). If there is no ACTION_DO routine, then a DO is
treated the same as a HIT. The parameter should be
DO_ROUTINE. This can be used to modify some part of the system
according to the data entered.

	PW('EDLINE_EDLINE_AFTER')

	 Some navigation is possible with edlines.
Several edline objects can be linked together so that you can edit several
items and keep your hands on the keyboard. This tag allows you to set the
edline which should be edited once the user finished with this one (when
pressing ENTER). The parameter is an object already created and has to be
an edline object ! Of course, the ACTION_AFTER routine is
called before moving to the next object.

	PW('EDLINE_EDLINE_NEXT')

	
Some navigation is pos

The ProWesS SBasic Interface: The Fileselect type

The Fileselect type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

This is an object which allows you to select one or more files in a file
select window. However, as there is no special method to have a window type
of object, it is implemented as a keypress object. If the associated key is
pressed, the window is activated, but you can also explicitly activate the
window. (Note that if you don't attach a keypress to the fileselect object
(which is done with the PW('KEYPRESS') tag), the window can't
be activated with a keypress).

A fileselect window normally allows the user to select just one file,
but it can also be created to allow the user to select multiple files (in
that case there is no edline to enter the filename, and the All
item appears).

A fileselect window always displays a directory (the subdirectories and
files of which are also visible). The directory can be edited (with a
HIT on the edline), or changed via the directory select window (a
DO on the edline). The fileselect window also contains an edline
in which you can set some file extensions (separated by a semicolon (;)).
Only files which end in one of the extension will be displayed in the menu
(or if Not is indicated, only files which do not end in any of
these extensions will be displayed).

Of course the directory which has to be displayed, and the default
extensions, the status of the Not item and the window name can be
set explicitly. If only one file can be indicated, the default filename can
also be set (note that all these values are preserved across activations of
the window, provided, of course, it is the same fileselect object).

The fileselect window will by default use up the entire possible height.
It contains a wake and quit item, but will also quit in case of a
DO inside the window.

The fileselect object can be customized to a large extent. You can
insert some extra objects in the window in a box between the title bar (the
outline) and the rest of the window. You can also change the title bar
itself. Thus you could add a sleep item, redefine Do etc. This way
you don't have to worry about the file selection etc. features in some
applications.

[bookmark: words]

[bookmark: words]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_FILESELECT')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object, but query tags are only used for queries. There is one
tag that can only be used when creating this object:

 A creation tag

	PW('FILESELECT_MULTIPLE')

	

Make sure that multiple files can be selected in the file select window.

The change (and creation) tags

	PW('FILESELECT_TITLE_TEXT')

	

Set the text which has to appear in the title bar of the file select window.
The parameter is a string. By default the title is "file select".

	PW('FILESELECT_ACTIVATE')

	
Activate the file select window. This tag has no parameters. The file select
object is a keypress object. A keypress can be given to it and the window is
displayed when that key is pressed. However, the window can also explicitely
be asked for by passing this tag to the object.

	PW('FILESELECT_ACTION')

	
Set a function which should be called when the fileselect window is closed.
This doesn't make much sense in SBasic and MUST NEVER be used with the
SBasic Interface.

	PW('FILESELECT_FILENAME')

	
Set the default filename which should be suggested. The parameter is a
string. If PW('FILESELECT_MULTIPLE') was passed during creation
of the fileselect object, then nothing will happen - the filename is only
set if only one file can be selected.

	PW('FILESELECT_DIRECTORY')

	
Set the directory which should be displayed in the fileselect menu. If the
directory is "", then it will default to the data directory. The parameter
is a string.

	PW('FILESELECT_EXTENSION')

	
Set the extensions which should be selected upon in the display of the
fileselect window. The parameter is a string in which the extensions are
separated by a semicolon(';'), e.g. "_doc;_aba;_bas"

	PW('FILESELECT_NOT_STATUS')

	
Set the status for the "not" item in the fileselect window. This tag needs
one parameter, any of PW('STATUS_AVAILABLE') (default),
PW('STATUS_SELECTED') or PW('STATUS_UNAVAILABLE').

	PW('FILESELECT_SHOWSUB')

	
This tag (which has either 1 (=TRUE) or 0 (=FALSE) as parameter) determines
whether subdirectories should be displayed in the fileselect window.

The query tags

	PW('FILESELECT_BOX')

	

To allow the user to modify the behaviour and look of the fileselect window,
there is always an empty box between the outline and the rest of the window.
The user may put some objects in this box. The object identifier is returned
by this query, i.e. the object to use as owner in the PWcreate of the object
to put in the box.

	PW('FILESELECT_OUTLINE')

	
To allow the user to modify the behaviour and look of the fileselect window,
the user is allowed to change the behaviour and look of the outline object
in the window. Therefore, the user can get the object identifier of the
outline with this query tag. The value returned is the outline object of the
fileselect window.

	PW('FILESELECT_MENU')

	
When you have indicated that several files may be selected in the fileselect
window, then these files are contained in a menu object which is built by
the fileselect object. Therefore, once the activation of the fileselect
window is finished (the user hit ESC), you can query the object id of the
menu which contains all the files (including the selected files). You can
then get the names of the files selected with the
PW('MENU_SELECTED_FIRST') and PW('MENU_SELECTED_NEXT')
tags. Please note that here you shouldn't use the
PW('MENU_XXX_XXX_NUMBER') tags, since there is no array to which the
names correspond!

	PW('FILESELECT_FILENAME')

	
Likewise, when the fileselect object only allows one file to be selected,
you can get the name of this file with this tag. This is one of the three
exceptions where PWquery returns a string directly!

	PW('FILESELECT_DIRECTORY')

	
The filename(s) returned by the above two queries only contain the
filename(s) as such, without the directory name in front. With this query
you then get the directory which should be added in front to make a full
filename. This is one of the three exceptions where PWquery returns a
string directly!

PROGS, Professional & Graphical Software

last edited 1996 June 05 (wl)

The ProWesS SBasic Interface: The Direction and Glue types

The Direction and Glue types

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

A direction is a region object which can be used as a container to put
other regions inside. The use of this type can be necessary if you want to
control the positioning of the objects in the window exactly, and the
default scale factor or windowfitting do not suffice for your purposes.

Glue (which is in fact the same as a direction, but the name better fits
the purpose) can be used to create some "special" effects for positioning
objects. Glue is an invisible region which can be used for spacing out
other objects. For example, if you have two objects of which one should
appear at the left of the window and the other one at the right, then you
can put some glue in between, and that glue will stretch to eat unused
space (according to the scale factor).

[bookmark: word]

[bookmark: word]The Type Words

When creating these types of object, the type parameters are:
PW('TYPE_GLUE') or

PW('TYPE_DIRECTION')

[bookmark: tags]

[bookmark: tags]The tags

There are no tags for these objects.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: The Infostring and -text types

The Infostring and Infotext types

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

These two types are quite similar to each other. They both display a text
(lines separated by CHR$(10), the last line ending with CHR$(0)) for
information only. These objects don't react to any events.

An Infostring object is always completely visible. When the text is changed,
the size of the object will change (as with many other types, but this can be
switched off).

Infotext objects have a size which is determined by the designer of the
window. Scroll bars are displayed to allow the user to scroll invisible parts
into view.

[bookmark: word]

[bookmark: word]The Type Words

When creating these types of object, the type parameters are:
PW('TYPE_INFOSTRING'), or

PW('TYPE_INFOTEXT')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for these objects.

The change (and creation) tags

	PW('INFOSTRING_TEXT')

	

Set the text which should be displayed inside the infostring object. The
parameter should be a string in which the lines are separated by CHR$(10).
The line must end with CHR$(0) as usual.

	PW('INFOSTRING_AUTOSIZE')

	

The parameter is either 1 (=TRUE) or 0 (=FALSE). By default, the value is
TRUE. When autosize is TRUE, then the size of the items in the window are
redetermined when the text in the infostring changes. If autosize is FALSE
then the text is always displayed as best possible in the item, and the
window is not notified when the text changes.

	PW('INFOTEXT_TEXT')

	

Set the text which should be displayed inside the infotext object. The
parameter should be string in which the lines are separated by CHR$(10),
the line ends with CHR$(0).

	PW('INFOTEXT_WIDTH')

	

Set the minimum width of the infotext object, one parameter, a PROforma
number.

	PW('INFOTEXT_WIDTH_PIX')

	

Set the minimum width of the infotext object in pixels, one parameter, a
number.

	PW('INFOTEXT_WIDTH_FS')

	

Set the minimum width of the infotext object, one parameter, a PROforma
number. The window size is calculated as the parameter times the fontsize
used for the text in the object.

	PW('INFOTEXT_LINES')

	

Set the minimum number of visible lines in the infotext object.

The query tags

There are no query tags for these objects.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: Types and Tags

A Description of the tags and types

This part of the manual contains a description of each type and the tags
that go with it. For each type there is a small description of what it
does, what the type word is, and what the tags for it are (and what they
do!).

As usual, click on the type that interests you. If you print this
document, you will also print the documentation on each of the types...!

The following types come as standard with ProWesS:

	 The System type

	 The Outline type

	 The Loose_Item type

	 The Title type

	 The Separator & Container types

	 The Label type

	 The Infostring and -text types

	 The Edline/Dedline types

	 The Menu type

	 The Fileselect type

	 The Dirselect type

	 The Keypress type

	 The Canvas type

	 The Scrollbar type

	 The Applic type

	 The Glue and Direction types

	 The Item type

PROGS, Professional & Graphical Software

last edited 1996 Jun 06 (wl)

The ProWesS SBasic Interface: The Item type

The Item type

Purpose

This is not a general purpose type. It is a "support" type which is used by
other types, for example the loose item and edline types. It is used to draw
the border around an item, normally when the pointer is indicating that item.
It is a separate type because it is common to more than one type, which
prevents both duplication of code and strange configurations (the borders
should always be equally thick, no matter what kind of object it is around).

This type should normally only be accessed from within other types.
Therefore, it has no tags and cannot be created directly from within SBasic.
You should only have to use this if you create your own types, which is
something you wouldn't normally do with an SBasic program.

 Two kinds of Item types come as standard with ProWesS: One makes "normal"
items, the other is such that no border is ever drawn around the current item.
They are respectively called "item" and "itemp" and you can set which one of
these you want when configuring ProWesS.

PROGS, Professional & Graphical Software

last edited 1996 Jun 06 (wl)

The ProWesS SBasic Interface: The Keypress type

The Keypress type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

A keypress object is not visible in the window but will react to a
keypress in the window. The keypress to which it should react can be set
with PW('KEYPRESS') (like any object which belongs to the keypress
group). An action routine can be set which should be called when the given
key is pressed, so that a (fake) return is made to SBasic. If a keypress
object does not have an action assigned to it, it will be handled as a
HIT event in the owner (as set when creating the keypress object).

In ProWesS, keypresses are case dependant. However, if there is no
object which reacts to a particular keypress, then the case is changed and
another attempt is made to match that keypress. If there is still no match,
then a PW('EVENT_CATCH') can be generated to an object which is
designated to catch all unmatched keypresses (this object is selected using
PW('CATCH_OBJECT') tag when setting up the outline).

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_KEYPRESS')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object.
 The change (and creation) tags

	PW('KEYPRESS_ACTION')

	

Set the action routine which should be called when the primary or secondary
keypress associated with this object is activated. The parameter should be
a routine, such as DO_ROUTINE. If there is no action associated with the
keypress object, then a HIT will be generated in the parent object (if that
exists).

 The query tags

There are no query tags for this object.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: The Label type

The Label type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

A label object is normally used to indicate what the purpose of another
object is (e.g. to tell what is being edited in an edline). A label assumes
that it is positioned either left of or above the object which it has to
label.

When the label is displayed to the left of another object, the name in the
label will be displayed at the top right. If the label is positioned above
another object, then the text will be displayed at the bottom left.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_LABEL')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object.

 The change (and creation) tags

	PW('LABEL_TEXT')

	

Set the text of the label. The parameter should be a string. The text
should not contain a CHR$(10).

The query tags

There are no query tags for this object.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: The Loose Item type

The Loose Item type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

 A loose item is an object which can be "indicated": When the pointer
appears over a loose item, a border is drawn around it (if the
item type is used, the behaviour is different when using
itemp). The item normally contains some text, although a routine
can be provided to draw an icon in it.

A loose item reacts to both HIT and DO events. If you
want you can also attach a keypress to it, which will be the same as a
HIT event. A loose item can have one of three statusses :
available, selected or unavailable. When an item
is unavailable, it can't be indicated (and thus will not get a border). A
HIT on the item will toggle between available and selected, and a
DO will select the item. Optionally, a user-defined function can
also be called on a HIT or DO event (but not when the
item is unavailable). The designer of the window can also choose that the
status of the item can never change, and that a DO event can be
propagated to the window.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_LOOSE_ITEM')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object, but query tags are only used for queries.

The change (and creation) tags
	PW('LOOSE_STATUS')

	

Set the current status of the loose item. The parameter can be either
PW('STATUS_AVAILABLE'), PW('STATUS_UNAVAILABLE') or
PW('STATUS_SELECTED'). If the new status if different from the old,
then the item will be redrawn when control is handed back to ProWesS. By
default, the item status is set to PW('STATUS_AVAILABLE').

	PW('LOOSE_TEXT')

	

Set the text which should be displayed inside the loose item. The parameter
is a string. When AUTOSIZE is true, then the size of the loose item will be
redetermined when control is handed back to ProWesS. In other words, a
check is made to see whether the new text will fit in the item as is. If
not, the item will be made bigger so that the texts fits in it. In that
case, the whole window will be redrawn since the size of the item may have
changed.

	PW('LOOSE_TEXT_COPY')

	

Set the text which should be displayed inside the loose item. The parameter
is a string. The text is copied into a piece of memory which is allocated
(and released) by the loose items itself, so this can be a direct string.
When AUTOSIZE is true, then the size of the loose item will be redetermined
when control is handed back to ProWesS (see above).

	PW('LOOSE_CHANGE_STATUS')

	

The parameter is either 1(=TRUE) or 0 (=FALSE). By default, the value is
TRUE. The status of the loose item is only changed when change status is
TRUE. In this case a HIT will switch between PW('STATUS_AVAILABLE')
 and PW('STATUS_SELECTED'). In the case of a DO, the
status will always be set to PW('STATUS_SELECTED'). When the
loose item is unavailable (its status is set to
PW('STATUS_UNAVAILABLE')), the status is not changed automatically
(actually, not even a border will be drawn around the item).

	PW('LOOSE_WINDOW_DO')

	

The parameter is either 1 (=TRUE) or 0 (=FALSE). By default it is FALSE.
When the window do status is TRUE, then the ENTER keypress is also handled
by the system (thus a keypress object can react to it).

	PW('LOOSE_CENTER_ITEM')

	

The parameter is either TRUE or FALSE. By default, the value is TRUE. If
the value is TRUE, then the text will be drawn in the centre of the loose
item, else it is drawn in the top left corner.

	PW('LOOSE_AUTOSIZE')

	

The parameter is either 1 (=TRUE) or 0 (=FALSE). By default, the value is
TRUE. When autosize is TRUE, then the size of the loose item will
automatically be redetermined when the text inside the item is changed. In
other words, ProWesS makes sure that the texts fits in the item. If
autosize is FALSE and no size is set explicitly, then the size of the text
in the time when the window is first activated is used.

	PW('LOOSE_ACTION_HIT')

	

Set the routine which should be called when the loose item reacts to a HIT.
The parameter should be an action routine, preferrably
HIT_ROUTINE.

	PW('LOOSE_ACTION_DO')

	

Set the routine which should be called when the loose item reacts to a HIT.
The parameter should be an action routine, preferrably DO_ROUTINE
. If no DO action exists for the loose item (or it is NULL), then
the HIT action routine will be called (if it exists) instead!

	PW('LOOSE_ACTION_DRAW')

	

Set a draw action for the loose item, the parameter should be an action
routine, preferrably RDRW_ROUTINE or PWsprite .
The SubWindow is set to cover the hit area of the loose item. If the item
also contained a text, this will already be drawn. This makes it possible
(in combination with the tags to set the size) to draw icons in loose
items. Please see below, under the PW('LOOSE_SPRITE')
 tag, in what order the content of an item is drawn.

	PW('LOOSE_SIZE')

	

Set the minimum width and height of the loose item. The tag needs two
parameters, the x and y size, both in PROforma numbers. Setting the size
automatically also sets AUTOSIZE to FALSE.

	PW('LOOSE_XSIZE')

	

Set the minimum width of the loose item. The tag needs a PROforma number as
parameter. Setting the size automatically also sets AUTOSIZE to FALSE.

	PW('LOOSE_YSIZE')

	

Set the minimum height of the loose item. The tag needs a PROforma number
as parameter. Setting the size automatically also sets AUTOSIZE to FALSE.

	PW('LOOSE_KEYPRESS')

	

Attach a keypress to the loose_item. Hitting that key will be equivalent to
a HIT on the item. The parameter is the primary keypress, which is of type
CODE (character$).

	PW('LOOSE_AUTOREPEAT')

	
When this tag is passed, then HITting and DOing on the item will
autorepeat, i.e. keeping the mouse buttons, or ENTER & SPACE pressed will
repeatedly perform the action for this item.

	[bookmark: loose]PW('LOOSE_SPRITE')

	
This sets a sprite for this item. The parameter is a number, the address of
the sprite. The sprite itself is a normal, mode 4 Pointer Environment
sprite, which is preceded, however, by a 60 byte header. The header is
mostly empty, except that the first bytes should contain the name of the
sprite, which should end in _sp4.

Once this is set, the sprite will be drawn whenever the item is to be
drawn. The sprite will always be centred in the item, and will be made as
big as possible within the item, provided that it fits correctly in both
dimensions.

 There are thus several ways to set the content of an item: you can set a
text, you can set a sprite, you can use another drawing routine which is
set with PW('LOOSE_ACTION_DRAW') - or you can use any combination of this!

 Indeed, please note that drawing order is as follows:

	 First, if it exists, the text in a sprite will be printed.

	 Then the sprite will be drawn, if it exists.

	 Finally, the external drawing routine will be called, if it exists.

 The query tags

	PW('LOOSE_STATUS')

	

Get the current status of the loose item. The status can be either
PW('STATUS_AVAILABLE'), PW('STATUS_UNAVAILABLE') or
PW('STATUS_SELECTED').

	PW('LOOSE_TEXT')

	

Get a pointer to the text which is displayed inside the loose item. This
text is read only ! Use MKSTRING$ to make that pointer into a normal SBasic
string. Normally, you wouldn't need this, if you keep the text in a
variable anyway.

PROGS, Professional & Graphical Software

last edited 1996 Nov 14 (wl)

The ProWesS SBasic Interface: The Menu type

The Menu type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

A Menu is a special purpose application window (explained later). It
provides a scrollable list of items which can be indicated by the user. The
contents of each item is a string.

A menu is always vertically scrollable. The number of visible lines and
the minimum width can be chosen by the designer of the window (the minimum
width can be the maximum width of an item in the menu).

When a menu is displayed, the items are all displayed in rows. Each row
contains as many items as can be completely visualised (i.e. the width of
the menu is divided by the itemwidth to get the number of items on each
row). The menu is only scrollable vertically. In SBasic, a menu is not
sorted unless you sort the items first, befor adding them to the menu.

A menu can either have no selectable items, at most one selected item,
or all items can be selected and deselected at will. The programmer can
also query all selected, all available or just all items (returning a
pointer to the string, or the number of the item). Also, the status of each
item can be changed at will (normally an item is just available when it is
selected).

[bookmark: words]

[bookmark: words]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_MENU')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, with one exception, change
tags are also used when creating the object, but query tags are only used
for queries.

 A create tag (use during creation only)
	PW('MENU_KEYPRESSES')

	
Set the keypresses which should be used to allow the user to scroll the
menu without indicating the scroll items. This tag needs four parameters,
first the keypresses for scrolling a line up and down, then the keypresses
for scrolling a page up and down. The keypresses are passed as numbers. You
can, if course, use the CODE function. If this tag is not passed, then the
standard keypresses for scrolling are defined as follows: <ALT
up/down> will scroll one line, <ALT SHIFT up/down>will scroll one
page.

The change (and creation) tags

	PW('MENU_ADD')

	
Add an item inside the menu. The item will be added at the end. The
parameter should be a string, it cannot be a direct string. The current
item, as last returned with one of the queries, is reset when adding
something to the menu.

	PW('MENU_ADD_COPY')

	
Add an item inside the menu. Same as above, but the string is copied to a
safe place.

	PW('MENU_ADD_ARRAY')

	
Add all strings from an array of string to the menu. If the menu is not
sorted, then the items are added at the end, in the same order as in the
array. This tag requires three parameters, the number of elements in the
array, the maximum length of each string, and the array itself (see the
section on strings for more explanations on this
subject). The items in the menu will just point to the position in the
array, so the array should persist (i.e. no local arrays, unless the window
is removed before the procedure is left). The current item, as last
returned with one of the queries, is reset when adding something to the
menu.

 It is suggested that this is the best way to handle menus from SBasic.
Whilst it is possible to add elements to the menu with the
MENU_ADD and MENU_ADD_COPY tags, this is not
really practical from SBasic, as finding out later which item in the menu
was selected or not will not be easy. Even adding strings later should be
done in this way. If you have a menu that corresponds to an array, and wish
to add a string to the menu, you should add it to the array first, clear
the menu (with MENU_CLEAR), and add the entire array to the
menu again. Alternatively, you can make sure that your array has some
elements left at the end, put the new string there and add it to the menu.

	PW('MENU_ITEMWIDTH')

	
Specify the width of each item in the menu. The parameter is a PROforma
number.

	PW('MENU_ITEMWIDTH_PIX')

	
Specify the width of each item in the menu. The parameter is a number, the
width in pixels.

	PW('MENU_ITEMWIDTH_FS')

	
Specify the width of each item in the menu. The parameter is a PROforma
number, which is interpreted as a factor, the base unit being the fontsize
used. However, since PROforme uses proportional fonts, this does not mean
that a determined number of characters will fit inside the window.

	PW('MENU_ITEMWIDTH_MAX')

	
Specify that the itemwidth which should be used inside the menu should be
the maximum width of all the items in the menu (this is the default). This
tag requires no parameters. An attempt is made to prevent that the size of
all objects in the window are redetermined when the itemwidth changes
because a larger item appears. This can influence the appearance of the
window (compared with the other case) if items are added while the window
is visible !

	PW('MENU_ACTION_SELECT')

	
Specify a routine which should be called each time an item is selected. The
parameter should be an action routine, preferably DO_ROUTINE.
The add_info parameter to the PWactivate call contains the address of the
string selected, which you can then make into an SBasic string with
MKSTRING$.

	PW('MENU_ACTION_DESELECT')

	
Specify a routine which should be called each time an item is deselected.
The parameter should be an action routine, preferably HIT_ROUTINE
. The add_info parameter to the PWactivate call contains the address
of the string deselected, which you can then make into an SBasic string
with MKSTRING$.

	PW('MENU_UNIQUE')

	
Tell the menu that only one item can be selected at any instant: if ou
select another item, the first one be automatically be deselected. This tag
needs no parameters. When this tag is given, all selected items in the menu
will be deselected!

	PW('MENU_SORT_COMPARE')

	
This is not available in SBasic.

	PW('MENU_VISIBLE_LINES')

	
Specify the minimum number of lines which should be visible in the menu.
Each line could (if the menu is wide enough) contain more than one item.
The parameter is a number.

	PW('MENU_CLEAR')

	
Clear the menu. All the items will be removed from the menu. The current
itemwidth is reduced to zero if the maximum width is the current option.
This tags does not need a parameter. The current item, as last returned
with one of the queries, is reset when adding something to the menu.
 In SBasic, this is an easy way to prepare the menu to accept a new array.

	PW('MENU_WINDOW_DO')

	
The parameter is either 1 (=TRUE) or 0 (=FALSE). By default it is FALSE.
When the window do status is TRUE, then the keypress is also
handled by the system (thus a keypress object can react to it).

	PW('MENU_NONE_SELECTED')

	
This tag is similar to the PW('MENU_UNIQUE') tag, except that in this case,
a menu item will never be displayed as selected. However, when a menu item
is indicated, the menu Select routine will still be called. This tag does
not need a parameter.

	PW('MENU_STATUS')

	
Change the status of an item in the menu. This tag needs two parameters,
the new status and the item. The new status should be one of
PW('STATUS_AVAILABLE'), PW('STATUS_UNAVAILABLE') or
PW('STATUS_SELECTED'). The item is passed as a string which is the
string contained in the item (i.e. if you want to set, say, the first item
of an array a$, pass a$(0)). It is important that the string thus passed is
the same variable as that uses when making the array: do not copy that
string into another string and then pass that other string: the string will
not be found, and no status will be changed. When changing the status of an
item, the Select or Deselect routines are not called, except when it causes
an item to be deselected (because of PW('MENU_UNIQUE')). When
the PW('MENU_NONE_SELECTED') tag has been used, this tag can
only be used to make an item available or unavailable.

	PW('MENU_STATUS_ALL')

	
Set the statusses of all items in the menu. This tag needs one parameter,
the new status which should be one of PW('STATUS_AVAILABLE'),
PW('STATUS_UNAVAILABLE') or PW('STATUS_SELECTED').

	PW('MENU_STATUS_CURRENT')

	
Change the status of the current item, being the last one which was
returned by one of the queries. This tag requires only one parameter, the
new status, either PW('STATUS_AVAILABLE'),
PW('STATUS_UNAVAILABLE') or PW('STATUS_SELECTED'). When
changing the status of an item, the Select or Deselect routines are not
called, except when it causes another item to be deselected (because of the
PW('MENU_UNIQUE') tag). When the
PW('MENU_NONE_SELECTED') tag has been used, this tag can only be
used to make an item available or unavailable.

The query tags

	PW('MENU_FIRST')

	
Get the first item in the menu. This query should be used to initialise
cycling over all items in the menu. The first item will become the current
item. The parameter returned is the address of the string of this item. You
should use MKSTRING$ to make this into a normal SBasic string.

	PW('MENU_NEXT')

	
Get the next item in the menu. This query should only be used if the
current item was initialised using a PW('MENU_FIRST') query.
The returned item will become the current.
The parameter returned is the address of the string of this item. You
should use MKSTRING$ to make this into a normal SBasic string.
If all items in the menu have been returned, then this address will be 0
and the current item is undefined (can be anything).

	PW('MENU_AVAILABLE_FIRST')

	
Get the first available item in the menu. This query should be used to
initialise cycling over all available items in the menu. The returned item
will become the current item.
The parameter returned is the address of the string of this item. You
should use MKSTRING$ to make this into a normal SBasic string.

	PW('MENU_AVAILABLE_NEXT')

	
Get the next available item in the menu. This query should only be used if
the current item was initialised using a
PW('MENU_AVAILABLE_FIRST') query. The returned item will
become the current item. You should use MKSTRING$ to make this into a
normal SBasic string.
If all items in the menu have been returned, then this address will be 0
and the current item is undefined (can be anything).

	PW('MENU_SELECTED_FIRST')

	
Get the first selected item in the menu. This query should be used to
initialise cycling over all selected items in the menu. The returned item
will become the current item.
The parameter returned is the address of the string of this item. You
should use MKSTRING$ to make this into a normal SBasic string.

	PW('MENU_SELECTED_NEXT')

	
Get the next selected item in the menu. This query should only be used if
the current item was initialised using a PW('MENU_SELECTED_FIRST')
 query. The returned item will become the current item. The
parameter returned is the address of the string of this item. You should
use MKSTRING$ to make this into a normal SBasic string.
If all items in the menu have been returned, then this address will be 0
and the current item is undefined (can be anything).
 The above queries are not too much use for an SBasic programmer, since,
to find to what item this corresponds in your array you will have to:

	Get the string with the query.

	Make it into a QL string with MKSRTING$.

	Search for the string in the array.

	

The ProWesS SBasic Interface: The outline type

The Outline type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

An outline is intended to be the first object when a window is
constructed, with all other objects as children (i.e. owned by that
outline). An outline consists of a title item (which by default displays
the program name), with below that a separator line.

Optionally there can be some items at the sides, like a Quit,
Sleep, Help, Do, Wake, Info
item. The info item can be defined by the programmer (both text and
action). The other items have their standard use.

The sleep item should only be used for primary windows (the
first one which is activated). Indeed, it doesn't make much sense to put to
sleep a window pulled down over the main window...All items have their
standard keypresses by which they can be activated.

The quit item can automatically ask for a confirmation request
before exitting the program. If you want, you can also attach a keypress to
the quit item.

The outline also contains two empty boxes at the left and
right. The Object ID of these objects can be queried for, and some
objects can be created inside these objects. Thus the functionality of the
outline can also be extended. These boxes are created with a zero scale
factor.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_OUTLINE')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object, but query tags are only used for queries.

The change (and creation) tags

	 PW('OUTLINE_SLEEP')

	
This indicates that the outline is to contain a sleep item which, when
actioned by the user, puts the program to sleep as a button. This tag needs
no parameters. By default, the sleeping program will display its name. You
should only use this tag in the primary window of your application. Also,
you should not have any screen channel open when this is called, other than
those opened by ProWesS.

	PW('OUTLINE_SLEEP_TEXT')

	
This also makes sure that the outline contains a sleep item. This tag needs
one parameter, a string, which is the text to be is displayed by the
button. You should only use this tag in the primary window of your
application.

	PW('OUTLINE_QUIT')

	
This makes sure that the outline has a quit item. By default, the action of
the quit item depends on the quit confirm status (see below).

	PW('OUTLINE_ACTION_QUIT')

	
Attach a user defined action to the quit item. The outline should already
have a quit item. The parameter should be an action routine, preferrably
QUIT_ROUTINE. Please note that, in this case, the object
returned will be the QUIT object, not the outline object. You can query the
outline to obtain the quit object with one of the queries.

	PW('OUTLINE_QUIT_CONFIRM')

	
Set the quit confirm status. The parameter is either 1 (=TRUE) or 0
(=FALSE). The default quit action uses this status to determine whether a
confirmation request should be popped up before quitting. If this status is
set to 0 (i.e. FALSE), then the window will be exited as soon as the user
has actioned the Quit item, otherwise, a window will pop up to query
whether the user is really sure he/she wants to quit the window. This tag
has no parameter.

	PW('OUTLINE_QUIT_KEYPRESS')

	
Attach a keypress to the quit item. The outline should already have a quit
item. The parameter should be of type CODE (character$). By default the
quit item has no keypress attached to it.

	PW('OUTLINE_INFO_TEXT')

	
This indicates that an info item is included in the outline, and it sets
the text for this info item. The parameter, a string, is the text which
will be displayed in the item. There is only one info item per outline
(but, of course, you can create a loose item with the text set to "Info" if
you want).

	PW('OUTLINE_ACTION_INFO')

	
This also indicates that an info item object is to be included in the
outline and it sets the action routine for this object. If no info item
existed already, the text in it will be "info", else this will apply to the
info item already created (probably with
PW('OUTLINE_INFO_TEXT'). The parameter is an action routine.
It should be INFO_ROUTINE, and is the action routine for the
info item.

	PW('OUTLINE_ACTION_DO')

	
Make sure the outline contains a do item (object), which can be activated
also by a DO keypress. The parameter should be DO_ROUTINE, and
is the action routine for the do item. You must have queried the outline to
obtain the object ID of the DO object.

	PW('OUTLINE_ACTION_WAKE')

	
Make sure the outline contains a wake item, which can be activated also by
a keypress. The parameter should be WAKE_ROUTINE.

	PW('OUTLINE_TITLE_TEXT')

	
Set the title for the outline. The parameter is a string. By default, i.e.
if this tag is not used, the title will be the program name.

	PW('OUTLINE_HELP')

	
Make sure a help item is included in the window. The default action for the
help item is to execute the ProWesS reader (which should be loaded as
resident extension - to make it into an executable thing). The file which
has to be displayed, the directory where it can be found and the position
in the file can be specified by the PW('OUTLINE_HELP_xxx')
tags (see below). This tag requires no parameters.

	PW('OUTLINE_ACTION_HELP')

	
Assign your own action routine to the help item in the outline. If there
was no help item yet, then it will be created. The parameter should be
HELP_ROUTINE.

	PW('OUTLINE_HELP_FILE')

	
Specify which help file should be loaded when the help item is indicated.
This will automatically reset the position in the file (so the file will be
displayed from the start). The parameter is a string with the filename.

	PW('OUTLINE_HELP_POSITION')

	
Specify the position in the current help file which should be displayed
when the help item is indicated by the user. The parameter is a string
(i.e. the reader will go to that string).

	PW('OUTLINE_HELP_DIRECTORY')

	
Specify the directory where the help file should be searched. The parameter
is a string.

The query tags

The query tags allow you to get at some implicit objects, i.e. some
objects which are created at the same time as the outline:

	PW('OUTLINE_BOX_LEFT')

	
To allow the user to modify the behaviour and look of the outline object,
there is always an empty box at the left in the outline. This empty box is
an object itself, and you can may put some other objects in it. The box
object is returned by this query (i.e. you say box_left=PWquery
(outline, PW('OUTLINE_BOX_LEFT')), box_left is then the object, or
Object ID.

	PW('OUTLINE_BOX_RIGHT')

	
Likewise, there is also always an empty box at the right in the outline.
The user may put some objects in this box. The object is returned by this
query.

There are also some other objects, which you can create explicitly when
creating (or changing) the outline, such as a Quit item etc... Here again,
these objects are not returned by the creation or change operation, so you
can query for the object IDs, so that later you can SELect on these
objects:

	PW('OUTLINE_OBJECT_QUIT')

	
This returns the quit object in the outline.

	PW('OUTLINE_OBJECT_INFO')

	
This returns the info object in the outline.

	PW('OUTLINE_OBJECT_DO')

	
This returns the DO object in the outline.

	PW('OUTLINE_OBJECT_WAKE')

	
This returns the wake object in the outline.

	PW('OUTLINE_OBJECT_HELP')

	
This returns the help object in the outline.

 PROGS, Professional & Graphical Software

last edited 1996 June 05 (wl)

The Progress bar type

The Progress Bar type

	Purpose

	Basic and C

	The type word

	The tags

	The defines

[bookmark: pur]Purpose

The purpose of this type is to display a progress bar, with more or less
refinements. In its basic type, the progress bar will just display a bar,
corresponding to the progress (as compared to 100%) made up to now. It is
possible to add text inside the bar, or to have the bar also display the
percentage as a text (or even to combine both).

The bar can be drawn even if control is not passed back to Prowess (e.g.
within a loop).

[bookmark: basic]

[bookmark: basic]Using the type from Basic and C

For the Basic Programmer, a file is included, called "pbar_extns". This
contains all the necessary tags for the new type. This file must be loaded
first with the LoadPWdefn keyword, as follows:

LoadPWdefn device_pbar_extns

Once the file is loaded in this way, the new tags are available from Basic
with the PW keywords.

For the C programmer, the file 'pbar_h' contains all the necessary
definitions and defines.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_PBAR') or PW_TYPE_PBAR for C.

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object.

 The creation tag
There is one tag that can only be used when creating the object:

	PW('PBAR_UPDOWN') - PW_PBAR_UPDOWN

	
Normally, the bar will fill from left to right. With this tag, which you
MUST use when creating the type, you can indicate that the bar should fill
from bottom to top.

 The change (and creation) tags

These tags can be use when creating and/or changing the type.
	PW('PBAR_TEXT') - PW_PBAR_TEXT

	

Set the text in the bar. The parameter should be a string in Basic, and a
type "char *" in C. The text should not contain a CHR$(10) or '\n'. It will
be centered within the bar. If the bar is updown, then the text is
displayed from top to bottom. Please note that the bar will attempt to
resize itself if the text is too large to fit in the window - but only if
control is passed to Prowess before the bar is drawn.

	PW('PBAR_TOTAL') - PW_PBAR_TOTAL

	
Set the total, in user units. This would correspond to 100% of the bar. The
parameter is a number, or a type "int". For example, if you where to read a
file byte by byte and the filelength would be 3659 bytes, then you could
set the total to 3659. After each byte read, you could then call the
Progress Bar with the tag below, to show the progress.

	PW('PBAR_PROGRESS') - PW_PBAR_PROGRESS

	
Set the progress, in user units, up to now. This will cause the bar to
redraw itself, with the new percentage. The bar calculates how much the
progress is in percent and then displays that. The parameter is a
number(Basic), or a type "int" (C). The bar never displays negative
percentages or percentages higher than 100%. In the above example, you
would pass the number of bytes read. Please note that the granularity of
the Progress bar is one percent.

	PW('PBAR_PROGRESS_PERCENT') - PW_PBAR_PROGRESS_PERCENT

	
Set the progress, in percent. If you already happen to have the progress
expresed as a percentage, this is marginally faster than the above
alternative, The parameter is a number, or a type "int".

	PW('PBAR_SHOW_PERCENT') - PW_PBAR_SHOW_PERCENT

	
Instead of a user defined string, the bar can also automatically display
the percentage as a string (e.g. 20%, 100% etc). The parameter for this tag
is either TRUE or FALSE. If TRUE, the percentage will be shown as a string
inside the bar. If you also set a string, then both will be shown.

	PW('PBAR_PERCENT_LAST') - PW_PBAR_PERCENT_LAST

	
By default, when the bar has been set up to show a text as well as the
percentage, the percentage precedes the string. If the parameter for this
tag is set to TRUE, then the percentage is shown after the string. If you
use both a percentage and a string, you should include a space at the
appropriate end of the string.

The query tags

There are no query tags for this object.

[bookmark: defs]The Definitions

	PBAR-INK-COLOUR

	 The RGB Colour which has to be used to display the
text. The ProWesS foreground colour will be used as default when not defined.

	PBAR-BAR-COLOUR

	 The RGB Colour which has to be used to display the
bar. The ProWesS middleground colour will be used as default when not defined.

	PBAR-PAPER-COLOUR

	 The RGB Colour which is used as background for the
bar. The ProWesS background colour will be used as default when not defined.

	PBAR-FONT

	 Set the font to display the text and/or percentage. The
ProWesS default font will be used when not defined.

	PBAR-FONTSIZE

	 Set the fontsize to display any text. The ProWesS
default fontsize will be used when not defined.

Wolfgang LENERZ
6, rue Daunou
77340 PONTAULT-COMBAULT
FRANCE

last edited 1997 Jul 01

The ProWesS SBasic Interface: The Scroll type

The Scroll type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

This object is a scrollbar. It is specially designed to interact with a
canvas. The scrollbar allows vertical scrolling when it is positioned in a
row (usually left or right of the canvas), and it allows horizontal
scrolling when it is in a column. The scrollbar should be attached to a
canvas. That canvas can then be queried for its size and origin, so that
the scrollbar can display that info.

The scrollbar normally contains arrows and a bar to indicate the visible
part in the whole. On creation, the designer of the window can choose not
to display that bar (then arrows will then be larger). The minimum and
maximum origins can be set. This will allow the bar to be displayed
accurately and the scrolling can be restricted to stay between these two
extremes. Because the origin may be in any user defined unit, it may be
necessary to provide a routine to convert a size (of the canvas) into the
unit used for the origin of the canvas.

The user can scroll the canvas by indicating (hitting/doing) the scroll
arrows. The designer of the window can set the distances which should be
scrolled in the case of a HIT (minimum scroll distance), or a
DO (maximum scroll distance) on the scroll arrows.

[bookmark: words]

[bookmark: words]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_SCROLL')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object.

A creation tag

Use this tag only when creating the object, not when changing it.
	PW('SCROLL_NOBAR')

	
When this tag is encountered on creation of the scroll object, then only
the arrows will exist, and no scrollbar. In the case, the arrow items may
be bigger.

The change (and creation) tags

	PW('SCROLL_CALCSIZE')

	

Set the routine which can be used to calculate the size of the visible area
(the bar), to draw the scrollbar. The parameter should be an action
routine, preferrably SCROLL_ROUTINE. The add_info parameter
to the PWactivate call contains the size of the canvas, as a PROforma
number. This should be converted into the size in the metric and type as
used as paramter of PW('SCROLL_MINIMUM') and
PW('SCROLL_MAXIMUM').

	PW('SCROLL_CANVAS')

	

Set the canvas to which this scroll object is linked. The parameter should
should be a canvas object.

	PW('SCROLL_MINIMUM')

	

Set the minimum value for the scrolling. The parameter is a number and can
be in any chosen metric. The scrollbar will not allow you to scroll further
back than this minimum. The metric used should match the metric used as
origin of the canvas. The default minimum is 0.

	PW('SCROLL_MAXIMUM')

	

Set the maximum value for the scrolling. The parameter is a number and can
be in any chosen metric. The scrollbar will not allow you to scroll further
than this maximum. The metric used should match the metric used as origin
of the canvas. The default maximum is 0.

	PW('SCROLL_MINDIST')

	

Set the distance to scroll when the scroll arrow is activated with a HIT.
If the maxdist is not set, it will default to this value as well. If the
distance is negative, the scrolling distance will be (size+mindist).

	PW('SCROLL_MAXDIST')

	

Set the distance to scroll when the scroll arrow is activated with a
DO. If the mindist is not set, it will default to this value as
well. If the distance is negative, the scrolling distance will be
(size+maxdist).

	PW('SCROLL_SCROLL')

	

Force a scroll without an event on the scroll arrows. The scrolling
distance is passed as parameter. The direction is right/down for positive,
left/up for negative distance. Particularly useful to normalise the
scrollbar after a window scale operation (in this case distance=0).

PROGS, Professional & Graphical Software

last edited 1996 June 05 (wl)

The ProWesS SBasic Interface: The Separator and Container types

The Separator and Container types

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

To seperate two (or more) objects, you often want to put a line between
them. A separator does exactly that.

In some cases you don't just want a line somewhere, but you want a box
around an item. In that case you can use a container object and put the
items which should be in the box inside.

[bookmark: word]

[bookmark: word]The Type Words

When creating these type of object, the type parameters are:
PW('TYPE_SEPARATOR') for separator objects.

PW('TYPE_CONTAINER') for container objects.

[bookmark: tags]

[bookmark: tags]The tags

There are no tags for these types. If you want to put an object into a
container, create the container [cont= PWcreate (outline,
PW('TYPE_CONTAINER')] and use cont as owner of the object to be put
inside the container. It's as simple as that.

PROGS, Professional & Graphical Software

last edited 1996 May 30 (wl)

The ProWesS SBasic Interface: The System type

The System type

	Purpose

	The type word

	The tags

[bookmark: pur]Purpose

The system is not really a type, but it can be queried or changed
through any object which is part of that system.

[bookmark: word]

[bookmark: word]The Type Word

Since this is no type, you cannot create it - it always exists. So, there
is no type word for the creation of this object.

[bookmark: tags]The tags

Here are the tags for this object. It is curious that you have any tags at
all, since the system cannot be created or changed. These tags are always
used with another object, whether it is for creation, change or query.

 The creation tags

As was mentioned, these tags can be used when you create another object, and
determine something about the way this object is seen by the system.

	PW('POSITION_RIGHT_OF')

	

One parameter, the object which should be to the left of the newly created
object. This tag is only valid for region objects.

	PW('POSITION_LEFT_OF')

	 One parameter, the object which should be to
the right of the newly created object. This tag is only valid for region
objects.

	PW('POSITION_ABOVE')

	 One parameter, the object which should be below
the newly created object. This tag is only valid for region objects.

	PW('POSITION_BELOW')

	 One parameter, the object which should be above
the newly created object. This tag is only valid for region objects.

	PW('POSITION_NEXT_ROW')

	 The newly created object will be the first
object in a new row, which is positioned at the bottom inside the parent
object.

	PW('POSITION_NEXT_COLUMN')

	 The newly created object will be the
first object in a new column, which is positioned at the right inside the
parent object.

	PW('SLEEP_OBJECT')

	 The newly created object is the object which
should be displayed when the window is put to sleep. This tag is only valid
for region objects.

 The change tags

Here again these tags are used with other objects.
	PW('OBJECT_AUXILIARY')

	
Each object can have an auxiliary value a (number), which is set to the
parameter. The auxiliary is normally used to store data which is needed for
the specific case of some of the action routines. These auxiliary variables
are only important in 'C' to write code without global variables, so that
the code is re-entrant. This isn't really necessary for SBasic!

	
PW('GLOBAL_AUXILIARY')

	
The system can also have an auxiliary value (a number), which is set to the
parameter. The auxiliary is normally used to store (a pointer to) the global
data structure. This auxiliary variable is important in 'C' to write code
without global variables, so that the code is re-entrant. It isn't really
necessary for SBasic.

	PW('SYSTEM_BREAKDOWN')

	
This command tells ProWesS to stop the activation of the window of which the
object is part. When the control is next returned to ProWesS, it will remove
the window from the screen, and the program can continue after the
PWActivate call. This behaves as if the user had quit the window.

	PW('POINTER')

	
Set the pointer which should be used in the window. The pointer is normally
restored when the current region is exited from. The parameter is a sprite.

	PW('WINDOWFIT')

	
Determine whether the object should be "windowfitted" or not, the parameter
should be either 1 (=TRUE) or 0 (=FALSE). Windowfitting is the action of
making the region fit inside the parent in the secondary direction (e.g. if
the parent is a row, then the secondary direction is the height). This tag
is only valid for region objects.

	PW('SCALE_FACTOR')

	
Set the scale factor for the object, the parameter should be a positive
number. The scale factor is used to make the objects fit inside the parent
in the primary direction. The remaining unused space is divided among the
objects according to the fraction (scale factor for current object / total
of scale factor for all children of parent). This tag is only valid for
region objects.

	PW('WINDOW_SIZE_PIX')

	
Set the preferred size of the window. This has two parameters, the x and y
size, both in pixels.

	PW('WINDOW_XSIZE_PIX')

	
Set the preferred width of the window. The parameter should be a number, in
pixels.

	PW('WINDOW_YSIZE_PIX')

	
Set the preferred height of the window. The parameter should be a number, in
pixels.

	PW('WINDOW_SIZE')

	
Set the preferred size of the window. This has two parameters, the x and y
size, both in PROforma numbers.

	PW('WINDOW_XSIZE')

	
Set the preferred width of the window. The parameter should be in PROforma
numbers, with a value between 0 and 720.

	PW('WINDOW_YSIZE')

	
Set the preferred height of the window. The parameter should be in PROforma
numbers, with a value between 0 and 540.

	PW('WINDOW_ORIGIN_PIX')

	
Set the prefered position of the window on the screen. This has two
parameters, the x and y position, both in pixels.

	PW('WINDOW_XORIGIN_PIX')

	
Set the prefered horizontal position of the window on the screen. The
parameter should be a number, in pixels.

	PW('WINDOW_YORIGIN_PIX')

	
Set the prefered vertical position of the window on the screen. The
parameter should be a number, in pixels.

	PW('WINDOW_ORIGIN')

	 Set the prefered position of the window on the
screen. This has two parameters, the x and y position, both in PROforma
numbers.

	PW('WINDOW_XORIGIN')

	
Set the prefered horizontal position of the window on the screen. The
parameter should be a PROforma number, with a value between 0 and 720.

	PW('WINDOW_YORIGIN')

	
Set the prefered vertical position of the window on the screen. The
parameter should be a PROforma number, with a value between 0 and 540.

	PW('KEYPRESS')

	
This command is only valid for keypress objects. The parameter will be the
the CODE of the keypress to which the object reacts. The object will also
react to the secondary keypress (the different case keypress) if no other
keypress object exists which reacts to that other keypress as primary.

	PW('SYSTEM_SLEEP')

	
Tell ProWesS that the window should be put asleep. The SLEEP_OBJECT will
then be activated as current window, and the window will be put inside the
button frame (if that exists). See also PW('SLEEP_OBJECT'),
PW('WINDOW_BUTTON').

	PW('WINDOW_BUTTON')

	
When this tag occurs, the window will automatically position itself inside
the button frame (if this is possible). If there is not enough room inside
the button frame, then the system will revert back to normal behaviour.
Please note that a window which is positioned inside the button frame cannot
be moved or scaled. This tag does not require a parameter.

	PW('WINDOW_NOSCALE')

	
This makes sure that the size of the window cannot exceed the minimum size.
Scaling thus becomes impossible. This tag does not need a parameter. When no
scaling is possible, a DO on the scaleborder will be interpreted as a
request to move the window.

	PW('WINDOW_NOXSCALE')

	
This makes sure that the horizontal size of the window cannot be changed.
Horizontal scaling thus becomes impossible. This tag does not need a
parameter. When no scaling is possible in either direction, a DO on the
scaleborder will be interpreted as a request to move the window.

	PW('WINDOW_NOYSCALE')

	
This makes sure that the vertical size of the window cannot exceed the
minimum. Vertical scaling thus becomes impossible. This tag does not need a
parameter. When no scaling is possible in either direction, a DO on the
scaleborder will be interpreted as a request to move the window.

	PW('CURSOR_SEPARATE')

	
This tag needs one parameter, 1 (=TRUE) or 0 (=FALSE), which determines
whether the cursor keys (and space and enter) are treated as separate, or as
ordinary mouse moves, hit and do.

	PW('CATCH_OBJECT')

	
The ProWesS systems passes keypresses which are not handled by any keypress
object to one of the objects in the system. This object can be set with this
tag. The parameter is another object i.e. the object designed to catch the
keypresses.

	PW('SYSTEM_ACTION_INIT')

	
This tag allows you to pass a routine which has to be executed by ProWesS
after the window is initialy drawn, but before the pointer is displayed
(thus before any events are caught). The parameter is an action routine,
such as INIT_ROUTINE. The object which is returned by the
PWactivate call in this case is the outline itself.

	PW('SYSTEM_ACTION_EVENT1

PW('SYSTEM_ACTION_EVENT2

PW('SYSTEM_ACTION_EVENT3

PW('SYSTEM_ACTION_EVENT4

PW('SYSTEM_ACTION_EVENT5

PW('SYSTEM_ACTION_EVENT6

PW('SYSTEM_ACTION_EVENT7

PW('SYSTEM_ACTION_EVENT8')

	

Pass an action which has to be executed when the given software event is
generated for the job. The parameter is a routine. There are 8 routines
(EVT1_ROUTINEEVT8_ROUTINE) for this. The object which
"receives" the event can be any object in the system and is, of course,
returned in the object_hit parameter to the PWactivate call (an access point
to the window is needed). These events can only be generated and trapped on
SMSQ/E systems (v2.71 or later).

The Query Tags
	PW('OBJECT_AUXILIARY')

	
Each object can have an auxiliary value (a number), which is returned by
this query. The auxiliary is normally used to store data which is needed for
the specific case of some of the action routines. These auxiliary variables
are important in 'C' to write code without global variables, so that the
code is re-entrant. When the auxiliary value for the queried object is NULL,
then the auxiliary value of the owner is returned (recursively until either
no more owner or a non NULL value is encountered). Normally, SBasic is
intelligent enough that you shouldn't need this.

	PW('GLOBAL_AUXILIARY')

	 The system can also have an auxiliary (int
sized) value, which is returned by this query. The auxiliary is normally
used to store (a pointer to) the global data structure. This auxiliary
variable is important in 'C' to write code without global variables, so that
the code is re-entrant. Normally, SBasic is intelligent enough that you
shouldn't need this.

	PW('SYSTEM_GSTATE')

	 Sometimes, you may need a Gstate to query
PROforma about something (this is explained in PROforma). As a ProWesS
system always owns a gstate, there is no need to allocate a new one for
that. Therefore, this tag allows you to know the gstate which is currently
used by the system. The value returned is a number, the Gstate. Please note
that ProWesS may replace its gstate by another one at any time. Therefore,
it can not be guaranteed that the Gstate still exists after the next time
that control is given to ProWesS.
The ProWesS SBasic Interface: The Title type

The Title type

	Purpose

	The type word

	The tags

Purpose

This is a type which should be used to display a title. It displays the
title centred in a bar (which is at least slightly wider than the title).
The bar is usually displayed in a different colour to make the title stand
out a little. The title is there for information only, it does not react to
any events.

[bookmark: word]

[bookmark: word]The Type Word

When creating this type of object, the type parameter is:
PW('TYPE_TITLE_ITEM')

[bookmark: tags]

[bookmark: tags]The tags

Here are the tags for this object. As usual, change tags are also used when
creating the object, but query tags are only used for queries.

 The change (and creation) tags

	PW('TITLE_TEXT')

	

Set the text of the title item. The text should not contain '\n' nor a
CHR$(10). The parameter is a string.

 The query tags

There are no query tags for this type.

PROGS, Professional & Graphical Software

last edited 1996 June 05 (wl)

The ProWesS SBasic Interface: Compiling Programs.

COMPILATION: HINTS AND TIPS

This Chapter explains -and solves- some problems that might arise with
compilation.

	Introduction and legal stuff

	Some things to watch out for

[bookmark: intro]Introduction and legal stuff

Programs produced for ProWesS with the ProWesS SBasic interface can easily
be compiled with QLiberator. Do not try to compile them with Turbo, it
won't work! In principle, anything that works under the interpreter should
work once compiled.

You may not link in the SBasic interface into the compiled code using the
$$asmb directive. This is due to technical reasons, and also
because it wouldn't make sense: If your compiled program needs these
keywords, this means that it (only) works in ProWesS. Thus, all users of
your programs must have ProWesS. And if they have ProWesS, they have this
interface anyway.

This is also why you can load the ProWesS SBasic Interface into normal
SuperBasic, so that one can run compiled programs. As was mentioned in the
introduction, you must not try to run
uncompiled programs on machines which are not running SMSQ(/E). Again,
there are technical reasons for this (for the non-technical user, skip the
next paragraph):

As you may know, SuperBasic is special in that it, and its data area, may
zip around memory according to how the TPA expands and contracts. This is
why A6 must always be kept constant when using Superbasic extensions, the
operating system can change that at any time. The problem here is that
ProWesS modifies and uses A6 for itself. One could of course make sure
that, when coming back from ProWesS, one finds the correct value of A6 and
sets it to that before going back to the interpreter - but what happens if
the operating system changes A6 whilst that is being used by ProWesS?
ProWesS wouldn't know of this, of course - instant crash when it tries to
use a (now changed) A6!

Also, and since the Interface must be initialised ina special way which
won't be possible from within QLiberator, the upshot is that permission is
explicitly denied to include the ProWesS SBasic Interface in your own
compiled programs with the $$asmb directive, or in any other way.
Again, as mentioned above, this is no problem since all who have ProWesS
also have this interface!

[bookmark: things]Some things to watch out for

	PW
As was mentioned in the part of this manual concerning the PW keyword, the parameter passed to it can either be a
string between quotes (largely preferable) or just the tag/type name, the
keyword being sufficiently intelligent to convert the direct name to a
string.

HOWEVER, if you compile your program with the NAMES option deselected
(i.e. NONAMES) then you MUST enclose the parameter between quotes, else
QLiberator will complain and/or the PW function will not be able to find
the value corresponding to the tags or types and/or return strange values.

	PWoutln
You should not need this keyword in a compiled program. Thus, you should
not use this keyword in a compiled program. Look at the examples to see how
they determine whether a program is compiled or not.

	Windows
When compiling a program that is to work under ProWesS, you should take
care to use the "NOWINDS" option, i.e. have the "WIND" item in the
QLiberator interface des