— g | — ||

QL Archive

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited)

QL Archive is a database program which enables you to create filing systems for any
type of information you choose. You are free to decide how this information will be stored
and retrieved.

You will quickly discover how Archive can be used for creating simple card index systems
such as address lists or customer records. Once you have mastered the creation of
straightforward systems such as these, you may wish to develop more complex muilti-file
relational systems where information is shared between, for example, purchase and stock
control records.

Information may be presented using the screen layout that Archive provides, or you may
design your own. Printed forms and reports can be produced from the information in
the file in any format you choose.

One of the most powerful features of Archive is its command structure. Once you have
created a file and stored some records in it, these commands can be used to find
particular records, make searches and selections or display the information in the file
in a particular order.

The commands combine to form a powerful programming language, similar to
SuperBASIC, which can be used to construct a multitude of specialist applications.

At all times you will be guided by an informative set of prompt messages which never
leave you in doubt about what your options are or what you are expected to do. If you
require further information you can use the Help files. You may ask for Help at any stage,
no matter what you are doing, and will automatically be given the information that is
most relevant to your current needs.

The real power of Archive becomes apparent when you write your own procedures in
the command language. You can create a named procedure to do exactly what you
want and then use it as an additional command, in the same way as you use the
commands provided with Archive.

The mechanics of writing and modifying a program are aided by a full procedure editor
which, together with the input line editor (which is available at all times), make editing
a simple and painless task.

The data files themselves use variable length fields and records. Not only does this lead
to the most efficient use of available memory and cartridge space, but also to simplified
file creation. You never need to decide in advance how large a record needs to be.

This manual contains a number of working examples. Try these out to see some of the
range of things that can be done. They contain many general purpose procedures which
you might include in your own programs.

If, at any time, you are not sure what to do, remember that you can ask for Help by
pressing F1. Also remember that you can cancel any partially completed operation (e.g.
typing in a number, or using a command) by pressing ESC.

Archive has been designed to give you the greatest possible flexibility. As a consequence
it cannot give as much assistance with the selection of options as the other QL programs.
If you are not familiar with computers and computer programming you may find it helpful
to read the Beginner’s Guide to SuperBASIC before attempting to write Archive programs.

12/84

CHAPTER f
ABOUT
QL ARCHIVE

CHAPTER 2
GETTING

STARTED

LOADING
QL ARCHIVE

GENERAL
APPEARANCE

Load QL Archive as described in the Introduction to the QL Programs. When loaded
Archive will display the following message:

LOADING QL ARCHIVE
version x.xx
Copyright © 1984 PSION SYSTEMS
database

where x.xx represents the version number, eg. 2.00.

The program will then wait for a few seconds before starting.

The Help information is not loaded into the computer's memory together with the program.
It is only read from the Archive cartridge when it is needed. You should therefore not
remove the Archive cartridge from Microdrive 1 if you intend to use the Help facility.

When you have loaded Archive the screen should look like Figure 2.1. This is the main
display.

HELP COMMANDS create Look open close COMMANDS

press F1 delete display back alter find press F3

PROMPTS first insert last next quit ESCAPE

press F2 type command & press ENTER (F3 for more) press ESC
>

Figure 2.1 The main display with a monitor. (80 characters)

If you are using a domestic television, the screen is arranged slightly differently. This
is because a television is not normally able to show clearly 80 characters per line. Archive
therefore only shows 64 characters. .

The screen is divided into three sections: the display area, the work area and the control
area.

12/84

As its name suggests, this is where all information produced by Archive is shown.

The work area uses the bottom four lines of the screen. All commands that you type
in, together with any error messages, are shown here.

Figure 2.2 The display area Figure 2.3 The work area

These two areas almost invariably work together, since commands typed into the work
ared produce their results in the display area.

As an example, type in the following short program, exactly as it is shown below.
let x=13:while x>0:print x:let x=x-1:endwhile [ENTER

The text of this program will appear in the first line of the work area. When you press
ENTER, the numbers from thirteen down to one will be printed on successive lines of
the display area. The bottom line of the display area will be left blank except for a red
cursor indicating the next position at which text will be displayed. The numbers from
fifteen to one are displayed which, together with the bottom blank line, occupy all sixteen
lines of the display area.

The command:
cls [ENTER
will clear the display area completely.
The control area occupies the top few lines of the screen. It shows the normal options:

Help (F1), to turn the prompts on and off (F2), cancel any incomplete operation (ESC),
and use a command (F4). ‘

Figure 2.4 The control area Figure 25 The commands

Archive’s commands form a programming language and you must type their names
in full. This may seem long-winded at first, but later you will be shown how to create
procedures which allow you to enter commands with a single keystroke.

12/84

Getting Started

The Display and
Work Areas

The Control Area

USING THE
COMMANDS

Getting Started

THE
MODE COMMAND

There are four different lists of commands which can be displayed by pressing F3. If
a command list is already being shown, pressing F3 will display the next list in sequence.
These commands are used simply by typing in the name and pressing ENTER. However,
some commands need further information and will ask for it.

You can use any of the commands, even if its name does not appear in the current
display in the control area.

You can combine the control, display and work areas into a single area with the mode
command. Used by itself mode will combine the three areas into a single area. Typing
mode 0 will also have the same effect. Try

mode |[ENTER

and the input from the keyboard and anything displayed by a command or program
will share the whole of the screen. A value of 1 divides the screen back into three areas.

You can also use the mode command to change the number of characters displayed
across the screen. To do this you must supply a second number separated by a comma
from the first. The second number must be a 4, 6 or 8 to select a 40, 64 or 80 column

display. Try typing
mode 0,4

to change the display to 40 characters and to combine all three areas on the screen.
Note that the 0, which originally was optional must be typed to change the size of the
display.

Try some different combinations to see the effect on the display. Finish with a command
that leaves the screen divided into its three areas, but choose the number of characters
that gives a clear display on your television or monitor.

12/84

An Archive file behaves rather like a card index. A real card index consists of a box
containing a set of record cards, each card containing various items of information. For
such a card index to be useful, there have to be rules to determine where each piece
of information is written.

Suppose, for example, that we have a name and address index. You would normally
write the person’s name across the top, followed by the address and telephone number
(if any). It would be very difficult to use if some cards had the name written at the top
and others had it written near the bottom. You would normally expect to be able to use
the index by flipping through the cards, reading only the top line, until you found the
name you were looking for.

If you had two sets of record cards, such as a set of name and address records and
a set of stock records, you would not normally store them both in the same box. You
would use two boxes and label them, for example, “Customer Records” and “Stock
Records”

The card index system contains most of the ideas necessary to understand how an
Archive file works. A file is like the card index box and is given a name to identify it.
The file is made up of a collection of records, each of which serves the same purpose
as a record card. A file, then, is simply a collection of related records.

Like a card index, the information in each record is organised in a regular way. Individual
items of data, such as telephone numbers might be kept on a specified area of the
card. A record in an Archive file is organised in the same way. Each item is stored in
a separate region of the record, known as a field. A record in a customer file, such as
that described above, would contain a name field, an address field, a discount field and
SO on.

If this were the whole story there would be little point in using an Archive data file in
preference to a physical card index. There are, however, many advantages when you
use computerised records. A customer record card index would normally be arranged
in alphabetical order of customer names which makes it an efficient way to find the
information about a particular customer. Suppose, however, you want to send a letter
to all your customers who have not placed an order with you during the last six months.
It would be a very tedious task to go through the entire contents of a card index to compile
such a list. In Archive you can make such a search by using a few simple commands.
Furthermore, it is easy to arrange for a set of address labels to be printed at the same time.

You can save a great deal of time and effort by using Archive to store and manipulate
your records.

12/84

CHAPTER 3
QL ARCHIVE

FILES
FILES RECORDS
AND FIELDS

CHAPTER 4
EXAMINING
A FILE

DISPLAYING
A RECORD

EXAMINING
OTHER RECORDS

SEARCHING A
FILE

Find

The best way to start learning about Archive is to look through the demonstration file
gazet, provided on the Archive cartridge. This is a file which contains information about
various countries — the continent, the capital, the currency, the language, the population,
the land area and the gross domestic product per capita.

Most of the examples in chapters 4 and 5 refer to the ‘gazet” file. Before using it, you
should make a copy of it using the following procedure:

When you have loaded Archive, put a formatted cartridge into Microdrive 2 and type:
backup
mdv1_gazet dbf
mdv2_gazet_ dbf

Wait until the two Microdrives have stopped; be patient as the file is quite Iong and can
take a while to copy. Use the copy, now on the cartridge in Microdrive 2, for
experimenting.

From now on we will not always write ENTER at the end of every command but please
remember that it must still be used.

The look command opens a file so that you may read its contents, but you are not able
to make alterations or additions to the file. It is a safer command than open if you are
merely looking through a file because the file is protected against accidental modification.
You can examine the copy of the ‘gazet” file on Microdrive 2 by typing:

Look '"gazet'

To look at the first record type:

first
display

Dont forget to type ENTER after each command and then the display will show the
first record of the file. '

Note the first line shows the logical name of the file; Archive automatically supplies the
name “main” for a single file. Logical file names are usually used when you are using
more than one file at a time and are described later.

Having looked at the first record of the file, you may want to move on to the following
record. Type:

next

and the display shows the next record in the file. When you are typing single commands
after a display command the display area is continuously updated to show the contents
of the current record. You can use the next command to step through the file, record
by record until you reach the end (it will not pass the last record).

There are three other related commands which you can use to control which record
of the file is displayed. ‘

back — which displays the previous record,
first — which displays the first record,
last — which shows the last record of the file,

Try using these commands to move around the file, displaying any record you like. Note
that the four commands first, last, next and back do not themselves display the record.
They merely move from record to record regardless of whether or not you have used
display command.

The first and simplest search command is find. This will search from the beginning of
a file, looking for the first occurrence of a specified piece of text in any of the text fields.

12/84

For example:
find "africa"

When you press ENTER there will be a slight pause and then the first record containing
the word ‘africa’ in any of its text fields will be displayed. Note that this search is
independent of whether the text is in upper or lower case and will therefore find Africal
AFRICA or ‘africal

If the first record that is found containing the text is not the one that you want, you can
find the next occurrence by typing:

continue

The continue command will repeat the previous search, looking for the next occurrence
of the text in any text field of the following records.

It is possible that you may have to repeat a search several times before finding the record
you require. Press F5 and Archive will put the previous command back in the command
line. Press ENTER and the command will be executed.

Another method of locating a particular record is to use the search command. This allows
you to find a record by specifying the contents of one or more specific fields, for example:

search continent$=""EUROPE'" and language$=""FRENCH"

will find the first record in the file which matches both conditions. You must type in the
full field name.

Unlike the find command, search will only test the fields you specify and will differentiate
between upper and lower case letters. Use the upper()or lower() case functions to make
the search case independent, for example:

search Lower(continent$)="europe"
Again the continue command can be used to find the next occurrence of the text.
In many cases, you may want to look at a sub group of the records within a file. Suppose,
for example, you only want to look at the details of countries in Europe. You can use
the select command to pick out from the file all those records which satisfy a certain

condition. The file will then behave as though only those selected records are present.
Try this command on the ‘gazet” file to see how it works. First type:

print count ()
which will tell you how many records there are in the file. Then type:

select continent$="EUROPE"
print count ()

and you will see how many records have been selected. The records that are removed
from the file are still held in the computer's memory and you can restore them to the
file at any time by using the reset command. Type:

reset

and print the value of count() again, to check that the file has been restored to its original
state.

When you use the print command from the keyboard, any file shown on the screen
will be erased. This is because, in general, display and print use areas of the screen
which overlap. After using print you must type display again to restore the display.

The file records may not always be in the order you need. You can sort the file by the
contents of numeric or text fields. Only the first eight characters of text are taken into
account by order.

Suppose, for example, you want to sort the records of the ‘gazet” alphabetically by capital
city. You can do this by using the order command as follows:

order capital$;a

The ‘a" following the semicolon specifies that you want to sort the file in ascending order.
Replace it by ‘d” if you want the file sorted in descending order. The capital$ field becomes
the sort key for the file. You can specify a sort key composed of up to four fields by

12/84

Examining a File

Continue

Search

Select

SORTING A FILE

Examining a File

LOCATE

CLOSING A FILE

giving a list of fields after the order command. For each of the keys you must specify
whether the sort is to be in ascending or descending order. The following command,
for example, will sort the file into descending order by population and ascending order
by capital.

order pop;d,capital;a

[}

Note that a semicolon separates each field name from the ‘@’ or ‘d” that specifies
ascending or descending order, but that each pair (field name and letter) is separated
from the next by a comma.

When more than one field is specified for sorting purposes the records are initially sorted
according to the contents of the first field in the list. If two or more records have the
same contents for this field, they are ordered according to the next field in the list. If
records exist which are equal in respect of the contents of both of these two fields, they
are ordered according to the contents of the third field, and so on.

When a file has been sorted, you can use the locate command to make any particular
record the current record in the file. Its action is to find the first record whose first sort
field is greater than or equal to the given expression. This record becomes the current
record in the file.

For example, if the ‘gazet” file has been sorted as described in the last example, the
command:

locate '""100"

locates the first country in the sorted file which has a population of 100 million. If there
is no such country Archive will locate the first country with a population less than 100
million (remember that the file was sorted in descending order).

Locate is followed by an expression which may be either text or numeric, but must be
of the same type as the field used to sort the file. (See the Reference chapter)

You can locate a record with respect to the contents of more than one sort field by using
locate with multiple expressions, separated by commas. For example,

let a="100"
let b$="D"
locate a,b$

will find the first country with a population of 100 million or less, and with a capital whose
name either starts with ‘D" or is after “D” in the alphabet. In this example Archive will
locate Bangladesh, which has a population of 76.1 million and whose capital is Dacca.

The only restriction on the number of expressions that you can use with locate is the
number of fields used to sort the file.

You cannot use continue after locate. Repeating a locate with the same condition will
always locate the same record.

Locate is the fastest way of locating a record in a large, sorted, file. Because of the

uncertainty in the record that is located, you may have to make a further check on the

record to make sure it is what you want.

When you have finished looking at a file you must tell Archive. You can do this by typing
close

This will only act on files and will leave any program or screen layout intact. You can
close all your files and clear out your data and display area by typing

new
This will clear Archive to its initial state after loading.
This only acts on the data files, leaving any program, or screen layout, intact.

Alternatively, if you have finished using Archive, you can go back to SuperBASIC by
using quit. This command closes all open files automatically before leaving Archive.

Remember that you should never remove a cartridge from a Microdrive while it contains
open files.

12/84

Before typing in examples in this chapter, type new first to ensure that Archive is cleared
and ready for a fresh start.

The open command prepares a file for both reading and writing.

If you open a file with the open command, instead of look you will be able to write to
the file to change its contents as well as read it. This means that any additions, deletions
or modifications will make a permanent change to the copy of the file when it is closed.
Type:

open ''gazet"

If you have opened a file for reading with look then you must not use any commands
which will attempt to modify the data. If you do, Archive will report an error. The commands
described in this chapter modify data files and so should only be used with a file opened
with open.

Display the first record of the file with:

first
display

When you have finished modifications to the file you must close the file (using close
or new) to ensure that all the changes are recorded.

If you do not close a file properly (for example, if you just turn off the computer when
you have finished) the file may be changed and your most recent changes will not be
recorded. Always make sure that there are no open files on a cartridge before you
remove it from the Microdrive. Do not switch off the computer without first closing
all open files and removing the cartridges from the Microdrives.

The insert command is used to add one or more records to the current file. When you
use insert you will be asked to type in the contents of each field of the new record. Type:

insert
The display area will now show:

Logical name : main
country$
continent$
capital$

currency$
languages$

pop

area

gdp

You can now type in the contents of each field. You can step from one field to the next
by pressing ENTER or TABULATE or you can step back to the previous field by holding
down SHIFT and pressing TABULATE. You can make as many changes as you like
to the fields until you are satisfied. The new record can be inserted into the file by pressing
F5. Press F4 to leave insert. Try typing:

SCOTLAND TABULATE
EUROPE TABULATE
EDINBURGH TABULATE
POUND STERLING TABULATE
ENGLISH TABULATE
10 TABULATE
30 TABULATE
50 TABULATE

12/84

CHAPTER 5
MODIFYING
A FILE

CLOSING THE FILE

INSERT

Modifying a File

DELETE

CHANGING
A RECORD

Alter

Update

The display area should now show:

Logical name : main

country$: SCOTLAND
continent$: EUROPE
capital$: EDINBURGH
currency$: POUND STERLING
languages$: ENGLISH

pop : 10

area : 30

gdp : 50

When you are satisfied that you have typed in the new information correctly, press F5
to insert the new record into the file. The fields you have just typed in will then be blanked
out ready for you to insert a new record. Press F4 when you have finished inserting.

You can also end the entry for each field and move to the next one by pressing ENTER.
The new record is added to the file automatically when you press ENTER after the last
value.

If the file has been sorted the new record is inserted at the correct position to maintain
the order.

You can use the delete command to remove a record from the file. delete removes the
current record (the one shown by display) from the file. All you have to do to remove
a particular record is to display it, and, having made certain that it is the correct one, type:

delete

Itis also simple to modify the contents of any or all of the fields within an existing record.
There are two methods.

Select the record you want to change (use display and find) then type alter. Alter works
in the same way as insert except each field shows its old contents. You can step over
those fields you do not want to change (use TABULATE or ENTER). Type in a new
value or use the cursor keys to modify an old one. Press F5 to replace the record.

As with insert, the record is replaced automatically if you press ENTER after the last
field in the record.

Select the record you want to change then change the contents of the field variables
until the displayed record is as required. Type update to change the record.

For example, suppose that you decide that Iceland should be in Europe instead of the
Arctic. Find the record by typing

find "Iceland"
display

Use the let command to change the contents of the continent$ field:
let continent$ = "Europe"

Finally put this change into the record by typing update.

In both of the above methods the new record will be inserted in the correct position
if the file has been sorted. Otherwise the replacement record is inserted in an unspecified
position in the file.

The alter command is simpler to use, but always affects the current record. The update
command can be useful when you are using multiple files.

Remember that you must close the file with the close, the new or the quit command,
before switching off the computer.

12/84

If you have been following the examples up to this point, you will have been using Archive
only to look at the file provided for you. This chapter will show you how to create your
own file with your own choice of file names.

If necessary, type new to clear anything in the computer's memory and to close any
open files. Make sure that the formatted cartridge on which you are going to create
the file is in Microdrive 2.

Suppose you want to use ARCHIVE to make a catalogue of your books. To do this,
you will have to create a new file called “books” The first thing to do when creating a
file is to decide what it is going to contain, that is, what fields you will use in each record.
In this case you will obviously need to record the author, title and subject; you may also
like to include other details, such as the type (fiction or non fiction), ISBN (International
Standard Book Number), shelf location, a brief description and so on. In this example
we shall simply use three text fields to contain the author, title and subject and one numeric
field which will be used to hold the ISBN.

You create a file with the create command. You must specify the name of the file to
be created and the names of the fields to be used in each record. The $ sign indicates
that the field contains text. When you have finished defining the fields of a record you
end the create command with endcreate. You can create a simple book catalogue file,
as described above, by typing in the following sequence.

create ""books"
author$
title$
subject$
isbn
endcreate

Note that you do not have to type in the final endcreate command. You can do so if
you want, but you can end the creation of the file simply by pressing ENTER on a blank
input line. You must, however, include endcreate if you use create in an Archive program.

When you have created a fil, it is open for both reading and writing, but it contains
no records. Records can be added using insert. Type:

insert
and the display area will show:

logical name : main
author$:

title$:

subject$:

isbn :

All you have to do is to type in the contents of each field. For example, type:

Bloggs, J TABULATE
A Boring Manual TABULATE
Cannon Making TABULATE
1234567 TABULATE

the display area should show

Logical name : main

author$: Bloggs, J
title$: A Boring Manual
subject$: Cannon Making
isbn : 1234567

Insert the record into the “look” file by pressing F5. The field value will be cleared ready
for inserting another record.

12/84

CHAPTER 6
CREATING A
FILE

CREATE

ADDING RECORDS

Creating a File

Remember that you can also end the entry for each field and move to the next one
by pressing ENTER and that pressing ENTER after the last value will add the record

to the file.
When you have finished press F1, and remember to use close or quit to save the file first

12 12/84

When you use the display command on a file that you have created, the records are
shown using the standard Archive screen layout.

You can design your own screen layout, better suited to the information in your data SCREEN I-AYOUT

fle. Open an existing file and type in:
display

You select screen editing with the sedit command - type in:
sedit

The display area shows the current screen layout, which will be the one that Archive
creates automatically. If there is no screen layout in the computer's memory, the display
area may be blank.

You will see that the values of the fields of any file are not included. The spaces where
these values are normally shown are marked by rows of dots. You should think of a
screen layout as a background against which the values of a number of variables are
shown in specific positions. Archive shows a screen layout into two stages — first it draws
the background text and then it shows the values of the variables at the marked positions
on the screen.

You are initially at the main level of the command and you have three options:

type background text into the screen
press ESC to leave sedit
press F3 to use a screen editing command

To design a screen layout, press F3 and then C to clear the screen and make a fresh
start. Press ENTER to confirm your choice; any other key will return you to the main
level of sedit.

Choose paper and ink colours by pressing either P or | and pressing any key to switch
between the four available colours. Press ESC to return to the main level to enter
background text.

Background text might be explanatory, such as:
Andrew Young’s World Gazeteer

Or it might consist of a new name for one of the fields in your file:
Population (millions):

You can move the cursor to any point in the display area by using the four cursor keys.
Anything that you type will immediately appear in the display area at the position of
the cursor and will become part of the background of the layout. The only exception
is if the cursor is positioned within an area of the screen reserved for the display of a
variable. Archive shows the name of the variable in the work area at the bottom of the
screen. You cannot type background text into this area unless you first free the area,
as described later.

The four screen edit commands enable you to produce attractive and colourful formats
for displaying your data. Clearing the screen has already been explained. You may need
to experiment to completely master the remaining three so make sure you are using
a copy of your data file which is expendable.

Suppose you want to show the value of the variable country$ at a particular position in the
screen. Move the cursor to that point and press F3 and then the V key. Archive asks
you to type in the name of the variable. You type:

country$

Note that this name does not appear on the screen — you are just marking the point
where the value is to be shown. When you press ENTER Archive asks you to show

12/84

CHAPTER 7
SCREEN
LAYOUTS

DEFINING A

SCREEN EDIT
COMMANDS

Mark Variable (V)

13

Screen Layouts

Ink (1)

Paper (P)

ACTIVATING A
SCREEN LAYOUT

SAVING AND
LOADING SCREENS

14

how much space is to be reserved for showing the value. You press any key except
ENTER to mark the space with a row of dots. CTRL and the left cursor key can be
used to delete reserved space. When you have reserved enough space you press
ENTER and Archive takes you back to the main level of sedit.

If you move the cursor into one of the reserved areas, (marked by dots), Archive shows
the name of the variable for which space is reserved in the work area.

If you reserve space for a variable in a region which overlaps any area that is already
reserved, you are given the option of cancelling the old area. You can then use the
option again to allocate space for a new variable.

Suppose you want to change the ink colour. Move the cursor to the point where you
want the new colour text to start and press F3 and then the | key. Archive shows the
four available colours in the control area. The one that is selected will be the one that
is highlighted. Press any key to change the selected colour and then press ENTER
to record your choice. Any subsequent text that you type will appear in the new colour
until the ink command is used again.

Changing the paper colour works in the same way — except that you press F3 and
then the P key.

If you want a colour change to affect only part of a line, you should move the cursor
to the start of the region and select the paper and ink colours that you require. You should
then move the cursor to the end of the region and make a second selection of paper
and ink colours, returning them to their original values.

Once you have designed a screen layout and have left sedit, the screen layout will be
active. This means that the values of all the variables in the screen layout will be displayed
automatically every time Archive completes a command or a program. If, for example,
you type the command next Archive moves to the next record of the current file and
shows those fields that are included in the screen layout. Any active screen is deactivated
each time you use the cls command.

If a screen layout is not active, you can activate it with the screen command. This displays
the background text of the screen layout, but does not show the current values of the
variables.

You can save your screen design on a Microdrive cartridge using the ssave command:
ssave ""filename"

where ‘flename” is a name of your choice. The screen layout is saved exactly as it
appears.

You can reload the screen layout by typing in the command:
sload "filename"

When you load a screen layout, it is automatically displayed on the screen and made
active.

Archive will not automatically update an active screen layout from within a program.
Suppose you want to show all the records of the current file, one after another, and tried
to do so by typing the one-line program:

first: let x=0: while x<count():next:let x=x+1:endwhile

(The while and endwhile commands cause the section of program that they enclose
to be performed repeatedly, while the condition following while is true. For correct
operation every while command must have a matching endwhile.)

This program would fail to do what you want, since Archive only updates the contents
of the screen layout at the end of the program.

12/84

You can, however, force a display of the values of the variables in an active screen from
within a program using the sprint command. The following one-line program will show
all the records, as required.

first:let x=0:while x<count():sprint:next:let x=x+1:endwhile

If there is no active screen sprint has no effect.

Remember that the display command uses the standard layout. It will always replace
any screen layout with its own simple list of the fields of the current record of the current
file. You must therefore ssave your screen layout before you next use display. If you
do not, your screen layout will be replaced and you will not be able to get it back again
except by redesigning it with sedit.

12/84

Screen Layouts

THE SPRINT
COMMAND

THE DISPLAY
COMMAND

15

CHAPTER 8

PROCEDU RES To use the examples in this chapter, first type new to clear the computer, then type look

CREATING A
PROCEDURE

LISTING AND
PRINTING
PROCEDURES

“gazet” to open the example file on your data cartridge, which is assumed to be in
Microdrive 2.

The commands and functions of Archive together form a programming language which
you can use to write programs that will manipulate your files. You will find that Archive
programs are simple to write.

An Archive program is made up of one or more separate sections. Each section is
known as a procedure which is simply a named section of program. You can refer to
a procedure by its name, like the procedures which you write and use in SuperBASIC.
In Archive you can run a procedure by typing its name at the keyboard. When you
write a procedure you are effectively adding a new command to Archive.

No procedure may contain more than 255 lines, and each line must not contain more
than 160 characters.

You use the program editor whenever you want to write or change a procedure. This
editor allows you to change, delete or add to the text of procedures.

The program editor is described in detail in Chapter 9, but in this chapter we will look
briefly at some of its features so that we can write a few short procedures. We shall assume
that initially there are no procedures in the computer's memory.

Type:
edit
to enter the program editor. The control area changes, showing that you should type

in the name of the procedure. Entering the editor will always allow you to create a new
procedure if none are defined or loaded.

The first thing to do, therefore, is to decide what the new procedure should do. Let us
start with a very simple task; to make life easier by renaming the display command.
We will save typing by giving it the name ‘d"

Just type
d

The left hand side of the display area now shows the name, and the right hand side
a listing of the procedure. The procedure, as yet, contains no commands; the proc and
endproc which mark the beginning and end of the procedure were automatically added
by Archive.

The body of the procedure must be added; that is sequence of actions it is to perform.

The control area shows that you can add lines of text to the new procedure. In terms
of the current example this text is the display command. Type:

display

and Archive will insert the new text into the procedure below the highlighted line. If you
have followed this example the display will contain:

d procd
display
endproc

You could add more lines of text — each line would be inserted below the highlighted line.

In this case, however, the procedure is complete so you can leave the edit command
by pressing ESC twice.

All you have to do to use the procedure is type its name, followed by ENTER. This new
procedure will perform the same function as typing the command display in full.

Whenever you call the edit command you are shown a list of the names of all the defined
procedures present in the computer's memory.

12/84

You can list any one of these procedures from within edit by pressing the TABULATE
key to move down the list or the SHIFT and TABULATE keys together to move up the
list until the particular procedure name is highlighted. The procedure is automatically
listed at the right hand side of the screen. If the procedure is too long to fit in the display
area, you will be shown the first part and you can then scroll up and down through
the procedure using the up and down cursor keys. When you have finished you can
leave the edit command by pressing ESC.

If you want a printed listing of your procedures you can use the llist command. Type:
Llist
and all the procedures currently in the computer's memory will be listed on a printer.

WARNING: Do not use this command unless a printer is attached since this will cause
the program to “hang”.

If you want to keep the procedures that you have defined, you can use the save
command. This stores all defined procedures in a single named file on Microdrive
cartridge. If you want to save the new display procedures that you have just defined
in a file called “myprocs’, you should type in

save ""myprocs'

At any later time you can bring these procedures back into the computer's memory
by typing:

load "myprocs"

The load command deletes any existing procedures in memory before loading the new
ones from the Microdrive cartridge. If you want to add the new procedures to those
already in memory, you can use the merge command. For example:

merge ""myprocs"

This works like load, except that the existing procedures are not deleted. If a new
procedure has the same name as an existing one, the new one will replace the old
version.

Renaming commonly used commands with single-character names is one way of making
life easier for yourself. An alternative would be to write a longer procedure to replace
several commands by single key presses. Try using the edit command to define the
following procedure. It allows you to open and examine any of your data files, providing,
of course, that the file you wish to use is not already loaded.

If you have already defined a procedure, typing:
edit

will not automatically give you the option to create a new procedure. From within edit
you must press F3 and then the N key to start a new procedure.

Don't worry if you make a few mistakes while typing in the example — you will learn
how to correct them in the next chapter.

12/84

Procedures

SAVING AND
LOADING
PROCEDURES

EXAMINING FILE
RECORDS

17

Procedures

18

proc vufile

cls

input "which file? ";file$

look file$

display

let key$=''z"

while key$<>'qg"
sprint
let key$=lower(getkey())
if key$="f":first:endif
if key$="Il":last:endif
if key$=""n":next:endif
if key$="b'":back:endif
endwhile

close

endproc

Remember that you leave edit by pressing ESC twice.
You can use the procedure by typing:
vufile

It will first clear the display area and then prompt you to type in a file name such as
‘gazet’ If ‘gazet” is already loaded, however, you will receive an error message. To recover,
type new and load and run the procedure again. When you have entered the name
of one of your data files the procedure will open that file in read-only mode and display
its first record. It will then wait for you to press a key and will respond to the keys f,
l, n, b or g. The first four of these will cause the appropriate display action (first, last,
next or back) and pressing the g (quit) key will close the file and end the procedure.

Since this is the first program of any great length that we have written, a few comments
might prove helpful. First note how the example is indented to clarify the structure of
the procedure. There is no need for you to type it like this, the indents are added
automatically as you write, list or print the procedure.

The main part of the procedure (waiting for a key to be pressed and performing the
appropriate action) is enclosed between while and endwhile commands. This repetitive
loop will only be left when the condition following while is false, in this case, when you
press the g key.

The if command, used several times within this loop, also requires that each if has a
matching endif to mark the end of the sequence of instructions to be executed if the
condition is true. If and endif are separate commands and can be used on different
lines. We could, for example, have written the first of the if statements in this procedure as:

if key$="f"
first
endif

You may include several lines of statements between if and endif; they will all be executed,
provided the condition following if is true. In the vufile procedure these statements are
sufficiently short that each can be written on a single line, using the colon to separate
the individual statements.

As you can see, a sprint command is used within the main loop of this procedure to
make sure that each new record is shown on the screen. Remember that, although
the display commands (first, last etc.) always move to the correct record, the data in
the display area is not automatically changed until the end of the procedure. If we had
not included the sprint command, no information would have been shown in the display
area until you pressed the g key to leave the procedure. In that case all you would see
would be the result of the last of any sequence of keypresses that you have made.

12/84

This chapter describes the program editor. We shall include a few simple examples, but
the best way to learn is by using them yourself. Start by typing new to clear the computer’s
memory.

When you have read this chapter you could try writing a few simple programs of your
own, or you could try modifying the procedures you typed in while working on the last
chapter. If you want to use longer examples you could use the editor to type in all or
part of the programs in the following chapters.

You enter the main level of the program editor with the edit

As an example we can create a procedure and add a couple of statements to it. From
the main level of edit, press F3 and N to create a new procedure. Type in test when
prompted for the name of the procedure.

Press ESC twice to leave the editor without adding any statements. Then use the edit
command again. If you have no other procedures loaded, the screen will show:

test proc test
endproc

If the procedures you created in the last chapter are still loaded, then test is highlighted
on the left as the current procedure among these other procedures. Press F4 to insert
lines of text. The line containing proc will be highlighted.

Now type:
print "this is a test'"[ENTER]

print '"there are two statements' [ENTER][ENTER]

Pressing ENTER twice in succession takes you out of insert. When you have finished
the screen will look like:

test proc test
print '"this is a test"
print '"there are two statements'
endproc

The line containing the second print statement is highlighted.

Remember that until you press ENTER you can use the line editor to correct any text
that you type. However, once you have pressed ENTER the line is inserted into the
procedure. To get it out again to edit it you must press F5. Pressing ENTER will then
replace the old line with the new line.

You are not allowed to edit the endproc statement at the end of the procedure. You are
also not allowed to edit the word proc but you may edit the rest of the contents of this
line. You can, therefore, rename a procedure by using the line editor to delete the old
name and replace it with a new one. The list of procedures at the left of the screen
is rearranged automatically to keep the procedures in alphabetical order.

There are four separate editing commands which you will have noticed in the command
section when creating a new procedure. You can select one by pressing F3 and then
typing the first letter of its name.

You type in the name of the procedure you want to create. If you type in the name of
an existing procedure, you will not be allowed to create a second procedure but will
be offered the option of editing the existing procedure.

When you press ENTER at the end of the name the new procedure becomes the current
one, listed at the right of the screen. You are presented with an empty procedure —
that is, one containing only the proc and endproc statements.

This command deletes the current procedure from your program. You must first select
the procedure you want to delete by using the SHIFT and TABULATE keys, as described
earlier, to make it the current procedure. You then select the command by pressing F3
and then the D key.

You must press ENTER to confirm that you really do want to delete the procedure. If
you change your mind at this stage you can press any other key to go back to edit
without deleting the procedure.

12/84

CHAPTER 9
EDITING

THE PROGRAM
EDITOR

Editing Commands

New Procedure (N)

Delete Procedure (D)

19

Editing

20

Cut (C)

Paste (P)

Be careful when you use this command since there is no way to restore a deleted
procedure, except by typing it in again.

This command removes one or more lines of text from the current procedure. The text
that is removed can be inserted in another position, or even in another procedure, by
means of the paste command.

Before you select the command you should use the up and down cursor keys to make
the current line either the first or the last line of the section you want to remove. You
can then select the command by pressing F3 and then the C key.

If you then press ENTER the current line will be removed from the procedure. Alternatively
you can use the up or the down cursor key to move the cursor to the other end of a
section of text that you want to remove. The region of text that will be removed is marked
by highlighting. When you have marked the text you want to remove you should press
ENTER. Archive will immediately remove the marked text.

This command inserts the text removed by the last use of the cut command into the
current procedure, below the current line. The text can be inserted in another position,
or even in another procedure.

Before you select the command you should, if necessary, use the SHIFT and TABULATE
keys to select the procedure in which you want to insert the text. You should also use
the up and down cursor keys to highlight the line immediately above the position where
you want to insert the text.

Archive immediately inserts the text, underneath the current line. When you have used
paste to insert the text, the paste buffer is empty. You can not, therefore, insert the same
text in more than one position.

12/84

CHAPTER 10
PROGRAMMING

This chapter will describe the development of an actual working example and each new lN ARCHIVE
technique will be described as it is needed.

Suppose you are involved in running a club or society which charges a subscription
and produces a newsletter. You will need to send a copy of each issue to every paid-up
member. You will also need to send a reminder to each member when his or her
subscription falls due.

This example allows you to construct a mailing list and then print a set of address labels
on request. The address label includes a reminder when a subscription is due. The
example assumes that you send out six issues of the newsletter per year and that a
person's subscription falls due when he or she has received six issues. It could easily
be adapted to any situation where you regularly send out some form of circular letter
to a number of people on a mailing list.

In this example we shall make as much use as possible of the existing facilities and A MA”.'NG LIST
introduce some new ones. If you need help with a feature or command you have not
yet encountered, or one that seems to do things you don'tt understand, you may now
find it quicker to look for help in the reference section or use the help function by pressing
F1. We use the insert and alter commands for all additions and changes to the file
records. We shall, however, need to write special routines to print out the address labels.

We shall have to cater for the following set of requirements:

Add a new record to the file.
Delete a record.

Modify a record.

Record subscription payments.
Produce the address labels.
Leave the program.

We shall write a procedure to handle each of these tasks and link them together by
another procedure which will allow you to select any of these options.

In this application it is quite clear what fields each record must contain. The name and
address are essential plus one field to record the number of issues the person has
received. We can create the necessary file immediately, as shown below.

create "'mail"

title$
fname$
surname$
street$
town$
county$
postcode$
issues
endcreate

We have used three string fields for the person's name; to hold the title (Dr, Mr, Mrs etc),
the first name and the surname respectively. We could probably have managed with
just a single field.

There are four string fields for the address, nominally reserved for the street address,
the town, county and postcode. You do not always have to use them in this way, but
can treat them as four general fields to hold the address. Four fields should normally
be quite sufficient.

There is only one numeric field, to hold the information about how many issues remain
to be sent.

Now that we have the file, we can use it to test the various procedures as we write them.
Itis a good idea to test each procedure as far as possible as you go along. You can
then spot each mistake as it occurs and correct it immediately. If you leave all the testing
to the end it will be much more complicated as several things may be going wrong
at the same time. Keep things as simple as possible while you are still testing your
procedures. Try to make sure that each procedure works correctly before you move on
to the next one. That way you will find that your final program will usually work as soon
as you have written the last procedure.

12/84 21

Programming

22

Insertion

Deletions

Payments

We do not need to write a procedure to add a record. We can use insert. Remember
that you must use sprint to force the display of the contents of the record from within
a procedure. You can use insert immediately to add a few records to the file so that
you can test the other procedures on a real file.

At some time you will want to remove the records of people who have not renewed
their subscriptions. We shall write a procedure, wipe, which allows you to scan through
the file, examining the records of all people who have not renewed, and to decide which
should be deleted.

We shall use the field variable issues to hold the number of issues that a person is entitled
to receive. All records for which the value of issues is zero are therefore candidates for
deletion.

proc wipe
rem **x*xxx delete non-paying subscribers x*xxx
cls
display
select issues =0
all
sprint
print at 10,0; "DELETE (y/n)? '";
let ok$ =lower(getkey())
print ok$
if ok$ ="y"
delete
print '"DELETED'"; tab 15
else
print tab 15
endif
endall
reset
endproc

Since a deleted record cannot be recovered, the full contents of the record are displayed
and you are asked to confirm that you really want to delete it. We use the getkey() function
which waits for a key to be pressed and then returns the ASCII code of that key. Note
that lower() converts the code to the lower case character so that you can type the letter
in either upper or lower case.

Once you are satisfied you have correctly entered this procedure, you may try it out
on your file, (provided, of course, that you have entered some test records). First, leave
edit by pressing ESC (twice if necessary) and save your procedure in a file called “Maillist”

Type:
save "Maillist"

The procedure called wipe is now stored and can be called whenever “Maillist” is loaded.

After entering each of the following procedures, repeat these steps, each time storing
the new procedure in “Maillist”

You will normally want to record a batch of subscription payments from a list of names
and addresses. You will therefore need to get the record of a particular person. The
quickest way is to write a separate procedure, getrec, to locate a particular record and
then incorporate it in a pay procedure.

The getrec procedure asks for a text string (n$) and then locates the first record in the
file which contains that text. If you reply by just pressing ENTER, n$ is set to the empty
string and no search is made. This will, however, indicate that you have finished recording
payments.

12/84

From the edit level, press F3 and N to start entering getrec.

proc getrec
rem *x*x*x |locate a particular record *xx%x
cls
let ok$ ='n"
input "who? '"; n$
-if n$ <>Hll
find n$
while ok$ <>"y'" and found()
print title$; ' '"; fname$(1); " "; surname$
print street$
print "OK (y/n)? ';
let ok$ =lower(getkey())
cls
if ok$ <y
continue
endif
endwhile
if not found()
print n$; " not found"
endif
endif
endproc

The search uses the find command, so that the text is found in any string field. You
can therefore identify a record by name or by address. Of course, the first record which
matches may not be the one you want, so we have to be able to continue the search.
This is the purpose of the while endwhile loop. This prints out the name and first line
of the address, to identify the record, and asks you if that is the right record. If you do
not respond by pressing the Y key, it continues the search. The loop ends either when
you answer by pressing the Y key or when the text is not found in any of the remaining
records. Note that the function found() returns a true (non-zero) value if the search is
successful.

Since ok$ could initially be “y” (from a previous successful search) we must give it some
other value at the beginning of the procedure, before entering the loop. This makes sure
that the loop will be used at least once.

We can now write the pay procedure:

proc pay
rem ****x%* record subscription payment **%%x%
cls
let n$ ='x"
while n$ <>nn
getrec
if ok$ ='y"
let issues =issues +6
update
endif
endwhile
endproc

The loop in this procedure continues until n$ is an empty string. This allows you to record
several payments without having to select the pay option for each one. When you have
finished, just press ENTER in response to the “whao?” prompt. If the value of ok$ is “y”
after the call to getrec then the payment is recorded by marking it as valid for a further
Six issues.

Again we have to set the initial value of n$ to some appropriate value (anything except
the empty string) to make sure that the procedure is not affected by a previous operation.

The procedure to allow you to change the contents of a record is now very easy. Again
you must be able to select a particular record to change, so the general structure can
be identical to pay.

12/84

Programming

Changes

Programming

24

PARAMETERS

proc change
rem **x*x*x alter record ***x*x*
let n$ ="x"
cls
while n$ <>
getrec
if ok$ ="y"
alter
cls
endif
endwhile
endproc

We shall now take a short break from the development of the program to describe the
use of parameters with procedures. You can use a parameter to pass a value to a
procedure, rather than using the value of a variable. We shall show you a few examples
of how they can be used. You do not need to save these procedures in ‘maillist” and
you may delete them before moving on to the section of the program which deals with
labels.

Try the following simple example. Using the line editor, you add the parameter to the
line containing the procedure name.

proc test; a
print 5*a
endproc
This defines a procedure called test which requires one parameter, ‘a’ Notice that the
parameter is separated from the name of the procedure by a semicolon. Whenever you

use the procedure you must always supply a value for the parameter. For example, you
could type:

test; 3

which will print the value 15 — the number (3) has been passed to the procedure as
the value of the variable a.

You may specify any number of parameters for a procedure, provided you separate
them by commas. For example:

proc trial; a,b,c
print a * b * ¢
endproc

which you can call by:
trial; 3,4,5

The values you supply do not have to be literal values, but could be variables, as shown
below:

let x = 2
let y =5
let z = 7

trial; x,y,z

Note that the names of the variables do not have to be the same as the names used
within the procedure. We can distinguish between the formal parameters (eg. a,bc) in
the definition of the procedure, and the actual parameters which are the actual values
that are passed to the procedure.

You can also pass the results of expressions:
trial; x*2,z/y,(z-y)*x

You are not restricted to using numeric variables but can also pass strings (or string
expressions) as parameters, provided you specify string variables in the definition of the
procedure. For example:

12/84

proc try; a$
print a$
endproc

let t$ = '"'message"
try; t$

The only requirement is that the number and types of parameters supplied must match
the list of formal parameters in the definition of the procedure.

The reason for the brief interlude about parameters is that they give a neat way of writing
the procedure to print an address label. For the purposes of testing we shall first write
the procedure to show the addresses on the display and later convert it to send the
output to the printer. We shall assume that the labels are eight lines of print-out in length.
I this is not right for your printer and label combination you will have to change the
number of lines of space in the procedure so that it matches your requirement. Remember
to start saving your procedures in “Maillist” again.

First we shall write a procedure that displays a single line, the contents of which are
passed via a parameter.

proc doline; x$
print x$
endproc

We can now use this procedure to display eight lines of text for the address label.

proc dolabel
rem *x*x% print labels **%%x*
if issues
if issues =1
doline; '"REMINDER - Subscription Now Due'
else
doline; '""
endi f
doline; "
doline; title$ +'" "+fname$ (1)+'". "+surname$
doline; street$
doline; town$
doline; county$
doline; postcode$
doline; "
let issues =issues - 1
update
endif
endproc

The procedure includes a reminder in the address label if the person is about to receive
his or her last issue. Each time a label is printed, that person's issue count is reduced
by one. If this number has reached zero then the label is not printed.

You can begin to see how useful parameters can be — without them this procedure
would be much longer. Look how easy it is to combine the title, initial and surname for
the first line of the address.

Perhaps you are wondering why we went to the trouble of defining doline when we
could have just used print statements throughout dolabel. The reason is that the routine
in its present form shows the addresses on the display screen. We can convert it to
send its output to the printer merely by changing one line in doline, instead of having
to change every print statement in dolabel. All we need to do is change doline to read:

proc doline; x$
lprint x$
endproc

12/84

Programming

Address Labels

25

Programming

Leaving the Program

26

ERRORS

Finally we can write the procedure to print all the address labels:

proc despatch
cls
all
dolabel
endall
endproc

The final option is to leave the program when you have finished. This procedure can
be very simple — all it has to do is to make sure that the file is closed properly before
returning control to the keyboard. We have also added a short sign-off message to make
it clear that the program has ended.

proc bye
close
print '"bye"
stop endproc

It is quite likely that sooner or later you will make an error while using this program.
You may, for example, accidentally press the ESC key or you may type in some text
when a number is expected. This type of mistake is detected by Archive and normally
results in the display of an error message and a return from your program to the keyboard.

You can use the error command to mark a procedure to be treated specially if any error
is detected. Any error occurring in the marked procedure, or any procedure that it calls,
results in an immediate, premature, return.

The normal method of handling errors is switched off for the marked procedure and
it is left to you to decide how to deal with it. You can find out the number of the last
error that occurred by using the errnum() function. You can use it to read the error
number more than once as the value is only cleared to zero by the next use of the
error command. If no errors have occurred since the start of the program, or since the
last time error was executed, then errnum() will return a value of zero.

This method, although not easy to understand at first, gives you a very powerful and
flexible control of how to deal with errors. The following example shows a typical way
of using error. It gives you an error-resistant method of inputting a number.

proc dotest
input x
endproc

proc test
let n =1
while n
error dotest
let n =errnum()
if n
print "You made error number " ;n ;'', try again"
endif
endwhile
endproc

The first procedure simply waits for your input to the variable x. The second procedure
handles any error during the execution of the input procedure. If any error occurs within
dotest it will be terminated prematurely and the error number will be set. This number
is then read by errnum() and, if it is non-zero, the error message is printed (this error
message could, of course, be anything you like). Since these statements are enclosed
in a while endwhile loop, any error will cause them to be executed again. The error
number is cleared by error, ready for the next try. You can not leave test until you have
typed in a valid number.

This example reports the number of the error that was detected. On most occasions
you will not be concerned about which error occurred. The main use of errnum() is
to differentiate between there being no error and there being a detected error of any
type. A list of error numbers and possible explanations is included in the Reference
chapter.

We can now write a procedure which will allow you to select any one of the six options
with a single keypress. It is sufficiently simple that no explanation is necessary.

12/84

proc choose
rem *x*x% choose an option ****xx
cls
print
print ' Add Despatch Pay Change Wipe Quit';
pfrint "7 *;
let choice$ =lower(getkey())
print choice$
if choice$ ="a'": insert : endif
if choice$ ='"d": despatch : endif
if choice$ ="p'": pay : endif
if choice$ ='"c'": change : endif
if choice$ ="w'": wipe : endif
if choice$ ="qg'": bye : endif
endproc

All that remains to be done to complete our program is to write a start-up procedure
which opens the file and calls choose. We must include choose in a loop so that you
are offered the options again, each time you complete your previous selection.

You will see that the while endwhile loop in the following procedure will never end. Such
aloop will only come to an end when the expression following while has a zero value.
In the above procedure the expression always has the value 1, so the loop will continue
indefinitely. The only way of leaving this loop is to choose the Quit option. The stop
command in bye immediately returns control to the keyboard.

proc start
**k%x%k* rem start procedure *x%x*%

cls
open ''"newmail.dbf"
while 1

error choose

let n =errnum()

if n
print "Mistake - Press any key to continue"
let m$ =getkey()

endif

endwhile
endproc

Within this loop is a sequence of statements which handles any errors, using a similar
method to that described in the previous section. If you make a mistake the program
will not continue until you press a key. This allows you to look at what you have just
done so that you can find out how you made the error.

The main procedure in the mailing list program is called “start” This is so that you can
use the run command when using the program. We have already used this command
when we used the ‘loader” program to load the ‘gazet’ data file

Save this final procedure in “maillist’ When you want to run the program you will need
to load the procedures into the computer's memory and then execute the main procedure,
which will call all the others. One way is to use the load command and then type in
the name of the main procedure, for example:

load "maillist"
start

The run command will load a named program and then automatically execute the
procedure called “start” (if it exists). You can run the program exactly as in the previous
example just by typing:

run "maillist"

The remaining two sections of this chapter include some general purpose procedures
which you may find useful.

Most variables that appear in procedures are global. This means that they are recognised
throughout the program. They may be used or changed in any procedure, and not just
the procedure in which they are first assigned a value.

12/84

Programming

THE RUN
COMMAND

LOCAL VARIABLES

27

Programming

28

The variables used as formal parameters in a procedure are local variables and they
are not recognised outside the procedure in which they appear.

The following example may help to make the distinction clear. Before going on, type
new to clear the computer’s memory. First we create a procedure which uses two local
variables a and b$, as well as assigning values to two normal (global) variables u and v$.

proc demo; a,b$
print a,b$
let u=3
let v$=""text"
print u;v$
endproc

Then we use demo:
demo 5;'"'words"

All four values are printed showing that all four variables are recognised inside demo.
Typing

print u;v$
shows that both of these variables are also recognised outside the procedure. However,
typing

print a,b$

results in an error because a and b$ are not recognised outside demo. All formal
parameters are local variables, but you can also declare other variables to be local, as
in the following example:

proc dumbo
print "inside dumbo"
print p; a; r
endproc
proc dummy
local q,r
let p 2
let g 3
let r 4
print "inside dummy"
print p; q; r
dumbo
endproc

If you attempt to use dummy by typing:

dummy

you will find that the values of p, g and r are all recognised (and therefore printed) in
dummy, but dumbo does not know the values of g and r, which are local to dummy.

The values of local variables are not defined anywhere except in the procedure in which
they are declared — not even in procedures called from the declaring procedure. The
variable p is global and is recognised everywhere.

You may be wondering why local variables are necessary. To illustrate their usefulness,
suppose you write a program containing several procedures that you, or someone else,
originally write for use in other programs. It is quite possible that two or more of these
procedures might use variables with the same name for quite different purposes. If these
variables were global then one procedure could alter a value so that it would be wrong
for another. In such a situation you would have to check all the procedures that you
use and, if necessary, change the names of the variables. If, however, the variables were
local it would not matter if they had the same name. Provided they were in different
procedures, changing one would have no effect on the other.

Furthermore, it does not matter if a procedure calls another which uses the same name
for a variable — provided at least one of them is local. For example, the procedure choose
in the section on errors, earlier in this chapter, declared the variable choice$ to be local.
This means that there is no need to check whether any of the many procedures called
by choose also use choice$ — the called procedures cannot change the value of choice$
in choose.

12/84

Displaying a prompt and waiting for a key to be pressed is one of the most commonly
needed actions, so it is worth writing a general-purpose procedure. The procedure must
be able to display a wide range of messages. A simple way of allowing the procedure
to print any message is to pass the message to the procedure in the form of a parameter.

proc prompt; m$

print m$ + '": ';

let x$ =lower(getkey())
print x$

endproc

The message to be displayed is passed to the procedure as a parameter in the local
variable m$. The function getkey() waits for a key to be pressed and returns the ASCII
code for the key. In this procedure the ASCII code is converted to lower case by the
function lower(), so that the result is independent of upper or lower case. Finally the
resulting value is assigned to the variable x$. This is a global variable, so that the key
that was actually pressed is available to any other procedure in the program.

A useful procedure is pause. It uses prompt to print a message and then simply waits
until a key is pressed. Since you are not usually interested in knowing which key was
actually pressed, it uses a local variable, y$, to preserve the original contents of x$.

proc pause
rem **xx* wait for any key **xxxx

local y$

let y$ =x$

print

prompt; ''press any key to continue"
let x$ =y$

endproc

Accepting text as typed input is quite simple. Any collection of characters is a valid text
string (even if it does not make sense) and will not cause an system error. You will not
normally need to take any special precautions when accepting text input. It will usually
be sufficient to use a line such as the following, which asks you to type in your name:

input '""Please type your name: '‘;name$

Note that a space is included as the last character of the prompt text; this small point
makes a lot of difference to the appearance of your program when you use it.

You can input several items with one input statement. All you have to do is to include
all the prompts and variable names, separated by semicolons.

input "Your first name? ";fname$;'"Your surname? '';sname$;

This last input statement also ends with a semicolon - this stops the cursor moving
to the following line after you have typed your input.

When you use the input command to enter text to a string variable the computer wil
accept anything that you type, without complaint. If, however, you try the same thing
with input to a numeric variable you will get an error message if you type anything except
a valid number. Assuming that you do not want to leave your program every time your
finger slips while you are typing in a number, you must make sure that your program
can cope with such errors.

The most useful way is to make use of the error command, which was described earlier.
The following procedure, for example, will accept any valid number within a specified
range. It even provides the display of any prompt message you want to appear.

12/84

Programming

PROMPTS

PAUSE

DATA ENTRY

Text

Numbers

29

Programming

proc getnum; m$,min,max
rem x*%x* get number in range *x**x
local wrong
let wrong=1
while wrong
print m$; "2 ';
error readnum
let wrong=errnum()
if not wrong
if num<min or num>max
let wrong=1
print "Allowed range is '";min;'" to ';max
endif
endif
if wrong
print "Try again'
endif
endwhile
endproc

Since error must be followed by the name of a procedure, we define readnum to input
a value for the variable num.

proc readnum
input num
endproc

Suppose you want a procedure that checks that a number is within the range 1 to 10.
You can do this using getnum in the following way:

proc check
getnum; 'Numeric value?",1,10
endproc

30 12/84

This chapter extends the explanation of how to use the Archive programming language
by describing how to work with two or more open fles. When you have more than one
file open at the same time you must be able to identify which file you want to use for
any particular operation. You must give each file a unique logical file name when you
open or create it and then refer to it by that name in all commands that refer to the file.

Archive automatically supplies the logical file name, “main’, when you open a single file.
It is called a logical file name to distinguish it from the physical file name - the name
you give to the file when you save it.

Since a program refers to a file by its logical file name, you can write a program that
will work with several different files.

Logical file names are essential for multiple file operations since you can only open a
second file by using both its physical file name and its logical file name. Note that the
logical file name is not saved with the file when it is closed and must be specified each
time the file is opened.

Two or more data files could contain fields with the same name. When this happens
you can identify the file to which the field belongs by adding the logical file name to
the field name. For example, if the field country$ appears in two files whose logical file
names are ‘main” and ‘b” you could refer to each of them respectively as ‘main.country$”
and “bcountry$”

The first example demonstrates how to add, delete or rename fields within an existing file.

Suppose that you want to make some changes to the ‘gazet” file, to create a new file
containing only European countries. The ‘continent$” field becomes irrelevant and we
need not include it. We shall also rename the “pop” field as “population’

The most convenient way of changing the file is to create a second file containing the
fields you want and then to copy the required records from the old file to the new one.
Let us call the new file “europe’ The following procedure will do the rest of the work.

proc start
rem *x*xx create europe file **%xx*
create "'europe' logical '"e"
country$
capital$
languages$
currency$
population
gdp
area
endcreate
look ''gazet' Llogical ''g"
select continent$=""EUROPE"

all ngn
print at 0,0;g.country$;tab 30
let e.country$=g.country$
let e.capital$=g.capital$
let e.language$=g.language$
let e.currency$=g.currency$
let e.population=g.pop
let e.gdp=g.gdp
let e.area=g.area
append 'e"
endall

close 'e"

close ''g"

print

print '"DONE"

endproc

12/84

CHAPTER 11
USING
MULTIPLE
FILES

LOGICAL
FILE
NAMES

CHANGING THE
RECORDS OF A
FILE

31

Using Multiple Files

THE CURRENT FILE

32

STOCK CONTROL

The Stock File

The Supplier File

You can see, from this example, that you can use the same name for a field in both
fles — they can be distinguished by including the logical file name. If you do not include
the logical file name then it will be assumed that the current file is to be used. The last
file to be opened automatically becomes the current file. In this example the current
file will be ‘gazet” (with logical file name ‘g") so we could make use of this by simply
writing the g before the field name in the previous program.

If you do not include the logigal file name in any case where it is optional, Archive will
assume that the command refers to the current file. It is usually safer to include the logical
fle name explicitly, to avoid any possibility of confusion.

You can, at any time, specify the current file by means of the use command. If you
included the command:

use He”

in the above example, then ‘europe” would be the current file until you changed it again,
either by opening another file or by means of the use command.

Now for a more complex example. In a stock control system you will need to:

Find information on a particular stock item.

Obtain a report on the current stock levels of all items.
Record sales and modify the stock records accordingly.
Order new supplies, to maintain adequate stock levels.
Record deliveries of stock.

You will obviously need a file to hold the details of all items held in stock and it is convenient
to have a second file to hold details of all your suppliers. You will need to be able to
access either file from the other — for example you may want to know all the possible
suppliers of a particular item, or to find out what items are supplied by a particular
company.

In order to keep the application as simple as possible we shall not use the menu-driven
approach of the examples in the previous two chapters. We shall write it as a series
of separate commands which can be used — like the standard commands — by typing
their names.

Since the procedures will be strongly dependent on the file structure we use, we must
first give some thought to their appearance.

The stock file must contain full details of the stock situation for each item. The following
list explains all the fields we shall use.

Field Name Use Example
stockno$ The internal stock code A101
description$ Item description Widget, large
aqty Number in stock 500
sellpr Selling price 1.25
reorderlev Reorder when stock 200

level falls below this value.
buyqgty How many to order 400

We can create the file by:

create ''stock'" logical 'sto"
stockno$
description$
qty
reorderlev
sellpr
buyqty
endcreate

This file holds the names, addresses and telephone numbers of the companies that
supply the goods you sell. It will be useful also to include the name of a contact person
in the company. In order to be able to access this information efficiently we shall include
a code for each company. We shall use the following fields:

12/84

Field Name

Use

Example

coname$
street$
town$
county$
postcode$
contact$
tel$
code$

The company’s name
First line of address
Second line of address
Third line of address
Last line of address
Name of a contact
Telephone number
Your code for the

Wonder Widgets plc
27 Belmont House
LIVERPOOL
Merseyside

L31 2HK

Andrew Cummins
051-532 7133

a

company

We can create the file by:

create "'supplier' logical '"sup"

coname$

street$

town$

county$

postcode$

contact$

tel$

code$

endcreate

This file forms the link between the previous two files. It uses the following fields:

Field Name Use Example
stockno$ Your stock code A101
code$ Your code for the a
supplier
scode$ The supplier's code 123-456
for the item
price The supplier's selling 0.87
price
delivery The supplier's delivery 28
time, in days

Each record in this file links one record in the stock file with one record in the supplier
file. The above example shows that Wonder Widgets (supplier code “a’) can supply you
with large widgets (stock code “A101"). In addition, we include details of the price, delivery
time and the supplier's own stock code. These items are useful when you order more
stock.

Using this file allows you to cater for the cases where one supplier supplies more than
one stock item (equal values for code$, but different values for stockno$) and where
one stock item is obtainable from several suppliers (equal stockno$ but different code$).

Create the file with:

create '"orders' logical '"ord"
stockno$
code$
scode$
price
delivery
endcreate

Having created these files, we now need some procedures to handle the information
they will contain. You will find that the most frequently-needed facility is to find information
about a particular stock item in response to customer enquiries. You will need to find
the information as quickly as possible, but may need to find a particular record from
either the part number or the description. We shall therefore use the find command
so that you can give any valid text to start the search.

12/84

Using Multiple Files

The Orders File

Enquiries

33

Using Multiple Files

34

Stock Report

The procedure must be able to ask for you to confirm that the record is the one you
require. We shall delegate this task to a separate procedure, so we can use it in different
situations if necessary.

proc confirm
print : print "Confirm (y/n)";
let yes=lower(getkey ())=""y"
cls
endproc

It leaves the variable yes containing 1 if you press the Y key — otherwise the value
is zero. Note the use of the = sign for assignment and also in a logical condition.

proc inquire
rem xxx*% inquire stock item x**%x
print
input '"Stock item? '"; name$
use ''sto"
find name$
let yes=0
while found() and not yes
display
sprint
confirm
if not yes
continue
endif
endwhile
if not found()
print
print name$; ' does not exist"
endif
endproc

This procedure merely locates the correct record. A more usable procedure for
interrogating the stock file is query:

proc query
inquire
clear
endproc

This uses another procedure, clear, which waits until you press a key, clears the screen
and then prints a list of the commands you can use. We shall leave this procedure until
we have written the procedures it must list. Remember to leave edit from time to time
to save these procedures as you enter them.

We can also write a simple procedure to produce a general stock report.

proc report

rem *x**x stock report *x%xx*

cls

print tab 2; "ITEM"; tab 11; '"CODE";

print tab 20; "QUANTITY'"; tab 31; "PRICE'";

print tab 40; '"'STOCK VALUE';

print

let total=0

use ''sto"

all
print description$(to 10);tab 11;sto.stockno$;

tab 20;qty;

print tab 31;"£'";sellpr; tab 40;"£'";sellpr*qty
let total=total+sellpr*qty
endal l

print

print "Total stock value =f'"; total

clear

endproc

12/84

All we need to do to record a sale is to subtract the number of items sold from the
relevant stock record. It is advisable to include some form of confirmation that we are
dealing with the right stock item and that the stock is sufficient to meet the order.

proc quantity

rem *x%xx%x print items in stock **x*x%

inquire

print

input '""How many? ''; num

print

cls

print num;" * ";sto.stockno$;" (";sto.description$;'")"
endproc

proc sale

rem xx*xx* process sale *x*xxx*
quantity
if num<=sto.qty
print '"Order value:- £'"; num*sto.sellpr
confirm
if yes
let sto.gty=sto.qgty-num
update
sprint: rem *** show the modified record **x*
endif
else
print '"Not enough stock'
endif

clear
endproc

The following procedure allows you to record the delivery of stock. Again it requests
confirmation of the details you type in before accepting them and updating the relevant
stock record.

proc delivery

rem x**x%* in case stock on delivery ****xx
quantity
confirm
print
if yes
print '"Accepted"
let sto.gty=sto.qty+num
update
sprint
else
print '"Delivery not recorded"
endif
clear
endproc

So far our procedures have only referred to the stock file. When we want to order more
stock we shall have to refer to the supplier and orders files for the name and address
of the company, the price, and so on.

Assuming that we have identified the item in the stock file (with inquire) we select, from
the orders file, those records that have the correct stock code. These records contain
the codes for all the companies that can supply the item. Since the records also contain
the price and delivery time for each supplier, we can decide whether we want the
cheapest item or the shortest delivery time.

We use locate as a fast way of finding the required supplier record. This means that
the supplier file must be ordered (with respect to the supplier code, code$) before we
use doorder.

12/84

Using Multiple Files

Recording Sales

Recording Incoming
Stock

Ordering New Stock

35

Using Muttiple Files

36

proc doorder
rem **x*xxorder new stock *x%*xx
inquire
use '"'ord"
select sto.stockno$=ord.stockno$
print
print '"fast or cheap (f/c)'";
if lower(getkey())="f"
fast
else : cheap
endif
let ycode$=scode$
reset
use ''sup"
locate comp$
doform
print
print "Expected delivery is '";del;'" days"
clear
endproc

The procedure cheap finds the supplier with the lowest price, and fast works in the same

way to find the supplier with the shortest delivery time.

proc cheap
rem **%%x% find cheapest **x*x*
use ''ord"
let pri=price
let comp$=code$
let del=delivery
all
if price<pri
let pri=price
let comp$=code$
let del=delivery
endif
endall
endproc

proc fast
rem **%x*x fastest delivery *xxxx
use ''ord"
let del=delivery
let comp$=code$
let pri=price
all
if delivery<del
let del=delivery
let comp$=code$
let pri=price
endif
endall
endproc

The procedure doform produces the actual order form. You should modify it to your
own requirements. We shall use a simple version which shows the order details on the

screen.

proc doform
rem *x%x*x%x produce order form **x%x
cls
print
print sup.coname$
print sup.street$
print sup.county$
print sup.postcode$
print
print "Please supply '"; sto.buyqty;

12/84

print ' * part number ';
print ycode$
print "('"; sto.description$; ') ';

print '"at £'"; pri; ' each."

print

print "Total value: £'"; sto.buyqgty*pri
endproc

The final command that we need is one to close all the files when we have finished
using them.

proc bye
confirm
if yes
cls
print : print "bye"
close '"'sto"
close '"sup"
close '"ord"
cls
endif
endproc

We can now write a short procedure to run the application. It must open all three files
with the correct logical file names, clear the display and show you the additiona
commands that you have. Note that, in normal use, the stock file is the only one whose
records will need to be changed. The other two files are opened as read only files. It
also orders the supplier file so that we can locate a company by its reference code.

proc start
cls
print at 5,5; "STOCK CONTROL DEMONSTRATION"
print
open '"'stock'" logical ''sto"
look '"supplier'" logical '"sup"
look '"orders'" logical '"ord"
use ''sup"
order code$; a
clear
endproc

Finally we can write clear, which simply clears the screen and shows a list of the extra
commands available:

proc clear
rem ***x**x clear screen and get command kkxkk*x'
local x$
print
print '"Press any key to continue '";
let x$=getkey)
cls
print
print '"Query Report Delivery Doorder Sale Bye'":print
print "Type in your choice"
endproc

12/84

Using Multiple Files

37

CHAPTER 12

QL ARCHIVE
REFERENCE

VARIABLES

SYNTAX

EXPRESSIONS

Syntax Conventions

38

Syntactic Entities

Variable names may be up to thirteen characters in length, and must not start with a
digit (0 to 9). They may contain any combination of upper or lower case alphabetic
characters, or digits. Other characters are not allowed, except for $ and . which have
special meanings.

If a variable name ends with a § it is a string variable. Strings may be up to 255 characters
in length. If the name does not end with a $ the variable is numeric. A variable name
may refer to the contents of a record in a file and is then known as a field variable, Field
variables are normally assumed to refer to the current file but may be made to refer
to another open file by including a logical file name, separated by a . from the variable's
name. Such a field variable is written as:

logical__file__name . field__name

For example main.continent$. If a variable name includes a dot then it must refer to
a field in an open file. If there is no dot an attempt is made to match the name to an
existing variable in the following sequence:

1 a field of the current file
2 a local variable (a parameter in the current procedure, if any)
3 a global variable

An error message is given if no match is found.
The term syntax refers to the exact structure of a command or function. The syntax of

a command specifies the parameters that the command needs, in what order they must
appear, and the symbols (if any) used to separate them.

This section describes the notation used to express the syntax of Archive's programming
language.

An expression is a combination of literal values, variables, functions and operators which
results in a single value. A numeric expression results in a numeric value and a string
expression results in a text value. Examples are:

3 * y * sin (x) + len (a$) {numeric}
“abc” + a$ + rept (" - " 5) {string]

An expression may, as in the above examples, be composed of several sub-expressions.
In such a case you may not mix sub-expressions of different types. They must all be
string expressions or all numeric.

The syntax definitions are similar to those used to define the syntax of SuperBASIC, ie.:
Symbol Meaning

italics denotes a syntactic entity

[] encloses an optional item

*K encloses items that may be repeated
| or

{] comment

s.lit literal string

sexp string expression

n.exp numeric expression

exp expression, either string or numeric
ptm print item

var variable name, either string or numeric
Ifn logical file name

fnm physical file name (up to 8 characters)
pnm procedure name

A literal string is text enclosed in quotes, for example text. or “text”

A string expression is a literal string, or a combination of literal strings, string variables
and string functions that results in a text value for example:

“fred” +a$+chr(72)

12/84

A numeric expression is either a number, or a combination of numbers, numeric variables
and operators (+, —, *, /, etc) that results in a numeric value for example:

(8+x)/sin(y)

A print item is one of four possibilities: at, tab, ink, paper. A full description of a print
item in our syntax notation is:

print__item:= | at n exp, n exp
| tab n exp
| ink n exp
| paper n exp

Logical file names and procedure names have the same restrictions as variable names.
Physical file names must also not exceed eight characters.

As an example of a syntax definition, consider the syntax of the order command. In
our notation it appears as:

order spec:= var; a | d
order order spec *| , order spec |*

Order therefore needs to be followed by at least one order specification which itself
consists of a variable separated by a colon from a letter which must be either a or d.
In addition you can also include up to three further order specifications provided each
pair is separated by commas. Clearly the syntax notation provides a much more compact
description.

Note that the syntax notation does not tell you the meaning or purpose of the symbols
so you will have to read the rest of the description for each command. The syntax only
gives you a formal description of the number and kind of items that go to make up
a valid command. In addition the syntax notation does not tell you the maximum number
of repetitions allowed for the repeated items. Order will accept up to four pairs of a variable
and a letter.

A field is the space reserved to hold either a string or a number.

In Archive, each field is identified by a field variable name. Whether a particular field
can hold a string or a number is dependent on the name given to the field at the time
it was created — string fields have a name ending with a $. An Archive string field may
hold up to 255 characters. A numeric field has a name that does not end with a $ sign.
All numbers are stored in the same amount of space, regardless of their value. The
possible range for a number is the same as the valid numeric range for the arithmetic
operators.

A record is a collection of fields, whose contents are related in some way. The fields
of a record might, for example, be used to hold the name, the address and the telephone
number of a particular person. In Archive the records are of variable length so that each
record only takes up as much room as is necessary to hold the information contained
in its fields. There may be up to 255 fields in an Archive record.

A data file is made up from a number of related records. To continue the above example,
a data file could consist of a collection of name, address and telephone number records
for many different people. The number of records in an Archive data file is limited to
roughly 15 000. In practice, you are limited to the capacity of one Microdrive cartridge,
which will hold about 1000 records of 100 characters. A file is the basic unit that you
can save on, or load from, a Microdrive cartridge. Each file has a name to identify it.
In Archive you give a physical name to the file when it is created, but you can change
the logical name at any time.

When you want to read from or write to a data file you must first open it. Generally
speaking, opening a data file transfers a copy of the file from the Microdrive cartridge
into memory although, in the case of a long file, it is possible that only part of the file
will be present in memory at any one time.

You can open a data file in read only mode with look which, as its name suggests, means
that you can not change its contents. You also have the option of opening a data file
in update mode with open so that you are allowed both to read and to change its contents.

12/84

Reference

ARCHIVE DATA
FILES
A Field

A Record

A File

Opening and
Closing Files

Reference

Logical File Names

PROCEDURES

THE PROGRAM
EDITOR

40

Every time you open a data file, Archive reserves space for the field variables needed
by a record within the file. The field variables always contain the values of the current
record.

When you close a data file with close or quit any changes that you have made are
copied into the file stored on the Microdrive cartridge. The copy held in memory is
discarded. Closing a file is the only way of ensuring that the copy on the Microdrive
cartridge contains your latest version. Since an open file uses part of the computer's
memory, you should not leave files open if you are not using them.

When you leave Archive with the quit command, all open files are closed automatically.

Do not turn off the computer, or remove a cartridge from a Microdrive, while the
cartridge contains open files.

Each open data file has an associated logical file name, given to it when the file is opened.
If you do not specify a logical file name when you open the file, it is automatically given
the logical file name “main’

The logical file name is used to identify a particular file when you are using several files
at once.

A procedure is a named section of program, starting with a procedure declaration of
the form:

proc pnm|; var *|, var] * |
and ending with:
endproc

It may be referred to by name from any other program or procedure, including itself.
It acts as though its code had been inserted at the point from which it is called.

In Archive, the proc and endproc commands cannot be entered directly at the keyboard,
but are added automatically when you use the program editor to create a procedure.

The program editor is entered using the edit command.

If there are no procedures present in memory, you will be immediately offered the option
of creating a new procedure. Otherwise you are given a list of all the procedures in
memory on the left hand side of the display area. The first procedure is highlighted and
is listed in full on the right hand side of the display. The first line of the procedure is
highlighted to mark the current procedure and the current line.

Once in edit you have five options:

Select a procedure
Press TABULATE to move down the list of procedures, press SHIFT and TABULATE
to move up the list. The listing on the screen always shows the current procedure.

Select a line
Use the up and down cursor keys to select a line within the current procedure. The
current line is highlighted.

Press F3 for the menu of editing commands.
There are four commands, which are selected by pressing the key corresponding to
the first letter.

Delete Press ENTER to delete the procedure highlighted on the left of the display.
Press any other key to leave the command without deleting the procedure.

New Type in the name of the new procedure and press ENTER. If a procedure
of that name already exists you will be offered the opportunity to edit it.

Cut Removes text from the current procedure and transfers it to the paste buffer.
Before calling this command use the up or down cursor keys to make the first
(or last) line of the region to be removed the current line. Then use the up and
down cursor keys to mark the region of text to be removed. Press ENTER to
remove the text into the paste buffer.

Paste Copy the contents of the paste buffer into the current procedure below the
current line. Paste will clear the paste buffer

12/84

Insert text

Press F4 to insert one or more lines of text below the current line in the current procedure.
Type the text and press ENTER. Pressing ENTER without any preceeding text will leave
the insert option.

Edit text

Press F5 to edit the current line of the current procedure. The line of text is copied into
the input line and can be edited with the line editor. Press ENTER to replace the old
line with the new line.

The screen editor is entered with the sedit command. It allows you to design a new
screen layout or modify an existing one. Once you have designed a layout you can save
it on a Microdrive cartridge with the ssave command and load it with the sload command.

A screen layout is composed of two parts, the fixed background text and the variable
values that are displayed in it. The screen command shows the background text and
the sprint command adds the current values of the variables it contains.

Sedit has two options:

type text into the screen background
press F3 to use a screen editing command.

There are four screen editing commands available after pressing F3:

C — clear the screen

V — mark a region to show a variable
I set the ink colour

P — set the paper colour.

A screen layout is made active by:

sload
screen

When a particular screen is active it will show the current values of its variables after
sprint, or when control returns to the keyboard after executing a program (or a command).
A screen layout is made inactive by clearing the screen with cls. If there is no active
screen, sprint has no effect. You may only have one screen layout in the computer’s
memory at any one time.

The display command creates and uses its own screen layout. It will therefore replace
any other screen layout with its own design.
The following commands are available.

Scans through the logically present records of the file in the fastest possible time.
Syntax: all [/fn] : ... : endall

This scan will not, in general, be in any particular sequence. The optional logical file
name will force it to refer to a specified open file. If the logical file name is not given
then it will scan the current file.

The all loop is primarily designed for examining the file records rather than for changing
them. Do not use update within an all loop, unless you are sure that the length of the
record will remain unchanged. You may, for example, change the value of a number,
or convert a text field to upper case. If in doubt, use a while loop — using the value
of eof() to detect the end of the file. For example

first
while not eof()

update
next

endwhile

Alters the current screen layout to display the current values of the variables.

Syntax: alter

12/84

Reference

THE SCREEN
EDITOR

THE COMMANDS

ALL

ALTER

41

Reference

42

APPEND

BACK

BACKUP

CLOSE

CLS

CONTINUE

CREATE

DELETE

DIR

You can change the contents of any one or more fields of the current file whose values
are shown in the screen layout. Note that it is not necessary for all the field variables
to be shown. You can not change a field that is not shown. If none of the field variables
appear in the screen, Archive forces a display of the file.

First select the field to change by pressing TABULATE or ENTER until the cursor is
at the correct field (variables that are not fields of the file are skipped). You can then
type a new value or use the line editor to modify the existing value. Press TABULATE
or ENTER to move to the next field. (Pressing SHIFT and TABULATE together moves
back to the previous field.)

When you have made all the changes you want, press F5 to replace the old record
with the new one. The record is replaced automatically if you press ENTER. If the file
is ordered the new version of the record is inserted in sequence.

Adds a record to the specified file, or to the current file if the logical file name is not given.
Syntax: append | /fn]

The fields of the record take the current values of the field variables. If the file is ordered,
the insertion is in sequence.

Moves backwards one record in the specified file, or in the current file if the logical file
name is not given.

Syntax: back [/fn]

Makes a copy of the specified file. You should make copies of all your files, to protect
against accidental damage or erasure.

Syntax: backup oldfnm as newfnm

Closes the specified file, or the current file if no logical file name is specified.

Syntax: close [/fn |

Clears the display area and switches off any display screen. See screen, sload, sprint.
Syntax: cls

Continues the previous search or find, from the record following the current record in
the current file.

Syntax: continue

Creates a named open file whose records contain the fields given by the list of variables
specified in the command. You have the option of specifying a logical fle name — if
you do not the file is created with the logical file name “main’.

Syntax: create fom | logical: Ifn | : var *| : var] * : endcreate

Deletes the current record from the specified file, or from the current file if no logical
file name is given.

Syntax: delete [/fn |
Warning: Use this command with care since you can not recover the deleted record.

Displays a list of files on a Microdrive cartridge.
Syntax: dir [drive |

You may specify the Microdrive to be either mdv1 or mdv2. If you do not include the
Microdrive name Archive will automatically list the files on the cartridge in Microdrive 2.

Before showing the list of files, Archive displays the volume name of the cartridge (the
name you gave when you formatted it).

12/84

Shows the logical file name of the current file and a list of the field names and the values
of the field variables for the current record. If the file is sorted, it also shows the sort
fields and their sort priority.

Syntax: display

The command replaces any existing user-defined screen layout with this list, which
becomes the active screen layout.

Syntax: dump | ; var | *[, var | *

Prints the specified fields of the selected records of the current file in tabular form ser1
output. If you do not give a list of field variable names, all the fields are printed.

You can divert the output to a Microdrive file with spoolon.

Calls the procedure editor to create a new procedure or to edit an existing procedure.

Syntax: edit
See all.
See create.

Syntax: error pnm| ; exp *| , exp | *|

Marks a procedure for the purposes of error-handling. Any error which occurs during
the execution of this procedure, or any other procedure which it calls, causes a premature
return from the marked procedure. The procedure can determine the nature of the error
by using the errnum() function to read the error number. This error number is cleared
each time that error is executed.

Saves the named fields of the selected records of the current Archive file on a Microdrive
cartridge in a form suitable for import to QL Abacus or QL Easel.

Syntax: export fam | ; var | *| , var|* [quill |

If you do not specify a list of field variable names, all the fields are exported. If you include
the optional parameter quill, (separated by at least one space from the last variable name)
the file is exported in a form suitable for import by QL Quill.

The export file is named fam and, unless you specify your own file name extension,
Archive uses the extension __EXP.

See the Information section for a full discussion of import and export.

Rewinds the file to the beginning and searches for the first record containing a match
to the specified string in any string field. The match is independent of upper or lower
case text.

Syntax: find sexp

You can continue the search with the continue command, and determine whether the
search was successful by examining the value returned by the found() function.

Finds the first record of the specified file, or the current file if no logical file name is
specified.

Syntax: first [/fn |

Formats the cartridge in Microdrive 2 (the right hand drive). It gives the cartridge the
name you specified. This name is reported when you subsequently use dir to show
a directory of the files on that cartridge.

Syntax: format “you specified”

12/84

Reference

DISPLAY

DUMP

EDIT

ENDALL

ENDCREATE

ERROR

EXPORT

FIND

FIRST

FORMAT

43

Reference

44

IF

IMPORT

INK

INPUT

INSERT

Allows a specified condition to control subsequent processing.
Syntax: if nexp : ... [: else : ... | : endif

Without else.
If the expression is non-zero, the following statements are executed. If the expression
is zero execution transfers to the statement following endif.

With else.

If the numeric expression is non-zero, the statements between if and else are
executed. Otherwise the statements between else and endif are executed. In either
case execution continues with the statements following endif.

Reads a file, namet, exported from QL Abacus or QL Easel and produces an Archive
data file name2. As with open and look you have the option of specifying a logical file
name for the data file.

Syntax: import name? as name2 [logical /fn]

where: namet:= fnm
name2.= fnm

See the Information section for a full description of import and export.

Sets the foreground colour for all following text to the colour specified by the value of
the expression.

Syntax: ink n.exp

The colours are: 0 and 1 black
2 and 3 red
4 and 5 green
6 and 7 white

If the expression evaluates to more than 7, the value taken is the remainder after division
by 8, for example ink 9 is equivalent to ink |, both setting the print colour to black. If
ink is used within a print command it will only change the print colour for the duration
of that command.

Requests input from the keyboard to the variables listed in the command. Each variable
in an input list may be preceded by a initial string which will be displayed as a prompt
for the input. All input items must be separated from each other by semicolons. If the
list has a final semicolon, the cursor will not move to a new line after the input,

Syntax: input [var | siit | ptm *[; var | siit | ptm |*]| ;]
The list of input items may include the cursor-positioning items

at linecolumn
tab column

where: line:=n.exp,
column:=n.exp

The first of these positions the cursor at the specified line and column position, and
tab moves the cursor to the specified column within the current line. If the cursor is already
to the right of the specified column, tab will have no effect.

These two items may not be used outside an input or a print command.

You may also use ink and paper as input items. If used within an input command they
will only affect the ink and paper colours to the end of the input, when the colours will
return to their original settings.

Adds a new record to a file.
Syntax: insert

Uses the current screen layout to display the current values of the variables. You can
type a new value for any one or more fields of the current file whose values are shown
in the screen layout. Note that it is not necessary for all the field variables to be shown.
You cannot type a value for a field that is not shown. If none of the field variables appear
in the screen, Archive forces a display of the file.

12/84

First select a field by pressing TABULATE or ENTER until the cursor is at the correct
field (values that are not fields of the file are skipped). You can then type a new value.
Press TABULATEor ENTER to move to the next field. (Pressing SHIFT and TABULATE
together moves back to the previous field.)

When you have typed all the values you want you should press F5 to add the new record
to the file. The record will also be added to the file if you press ENTER when the cursor
is in the last field. Any field that you have not given a value will be zero (if it is a numeric
field) or an empty string (if it is a text field). If the file is ordered, the new record is inserted
in sequence, otherwise the insertion takes place at an unspecified position.

Erases the specified file from the Microdrive cartridge.
Syntax: kill fnm

Warning: Use this command with care since you cannot recover the erased file.

Finds the last record of the specified file, or the current file if you do not specify a logical
file name.

Syntax: last | /fn |

Used to assign a value to a variable (as in SuperBASIC).
Syntax: let var = exp

Lists all the procedures currently in memory on a printer.

Syntax: llist

Loads the specified procedure file from a Microdrive cartridge into memory.
Syntax: load | object | fnrm

If you include the optional object Archive will expect the file to be in binary rather than
ASCI| form, see save.

Within a procedure, forces the following list of variables to be local variables. These
variables exist only within the procedure in which they are declared and are undefined
in any other procedure. Their values are destroyed on exit from the procedure.

Syntax: local var *| , var|*

Finds, in an ordered file, the first record whose field contents match the expression(s).
Syntax: locate exp * [,exp | *

The record is located much more quickly than if you used find, but the file must first
have been sorted. Each expression must explicitly refer to the contents of a particular
sort field. In the case of a string field the match is case-dependent.

If you have ordered the file with respect to more than one field, you can specify several
expressions (one for each sort field). The expressions are separated by commas and
must refer to the fields used to order the file. They must be in the same sequence as
in the preceding order command. For example:

order animal$; a , weight ; a
locate "Elephant'" , 2000

will find the first record in which the field animal$ contains the text “Elephant” and a
weight that equals (or exceeds) 2000.

If there is not an exact match locate will still find a record. This record will be the first
one whose field contents ‘exceed” — in the sense of the ordering (i.e. ‘d" comes after
‘e" if the file is sorted in descending order) — the specified values.

Opens the named file for read access only. If the logical file name is not specified, it
is given the default value “main”

Syntax: look fam | logical /fn |

12/84

Reference

KILL

LAST

LET

LLIST

LOAD

LOCAL

LOCATE

LOOK

45

Reference

46

LPRINT

MERGE

MODE

NEW

NEXT

OPEN

ORDER

PAPER

Displays the values of the following list of items on a printer attached to SERT, in the
same way as for llist.

Syntax: lprint [exp | ptm *[; exp | ptm]+] [;]

Adds the procedures of the specified program file to the procedures already in the
computer's memory. If the file contains a procedure with the same name as one already
in memory, the new procedure replaces the old one.

Syntax: merge [object | fnm

If you include the optional object Archive will export the file to be a binary rather than
ASCII format. See Save.

Changes the form of the display.
Syntax: mode var,var

The first variable may have a value of 0 or 1. A value of 0 joins the control, display and
work areas into a single region. A value of 1 separates them back into three distinct areas.

The second variable may have a value of 4, 6 or 8 and switches the display between
showing 40, 64 or 80 characters per line.

The initial setting, when you load Archive for use with a monitor, is equivalent to:
mode 1,8

Deletes all the data from the computer's memory, ready for a fresh start. Any open files
are closed. (The command does not delete files stored on a Microdrive cartridge.)

Syntax: new

Moves to the next record in the specified file, or in the current file if you do not specify
a logical file name.

Syntax: next [/fn |

Opens the specified file for both reading and writing. The file is given a logical file name
‘main” if you do not specify one.

Syntax: open fnm [logical /fn |

Orders the records of the file according to the contents of the specified fields.
Syntax: order order__spec *| , order__spec | *
where: order__spec:= var; a | d

The first field specified in the list is the primary sort field. Records which have equal
contents of their primary sort field are further sorted according to the contents of the
next field in the list (if it is specified) and so on. For each specified field an ordering
direction must be given. This must be either a or d to specify ascending or descending
order respectively.

Order only takes account of the first 8 characters of a text field and you may not specify
more than four fields to order the file.

Sets the background colour for all following text to the colour specified by the value
of the expression.

Syntax: paper n.exp
The colours are:

0 and 1 black
2 and 3 red

4 and 5 green
6 and 7 white

12/84

If the expression evaluates to more than 7, the value taken is the remainder after division
by 8, ie. paper 11 is equivalent to paper 3, both setting the colour to red.

If paper is used within a print command, it will only change the background colour
for the duration of that command.

Makes the record whose record number is given by the expression the current record.

Syntax: position n.exp

Displays the values of the following list of items — which must be separated by semicolons
— on the screen. If the list has a final semicolon, the cursor will not move to a new
line after the display. See also Iprint.

Syntax: print [exp | ptm | *[; exp | ptm | *] [; |

Closes all files and returns to SuperBASIC.

Syntax: quit

When used within a procedure, it marks the rest of the line as containing a comment.
Any following text on that line is ignored when the procedure is executed.

Syntax: rem

This command restores all the records in the current file which were removed by an
earlier use of select. It destroys any ordering of the file.

Syntax: reset

Used within a procedure to cause an immediate termination of the procedure by returning
to the calling procedure.

Syntax: return

Loads the specified procedure file into memory and starts execution of the procedure
called start.

Syntax: run | object | fnm

If you include the optional object Archive will expect the file to be in binary rather than
ASCI| form, see save.

Saves all procedures currently in memory as a single named file on a Microdrive cartridge.
Syntax: save | object | fom

If you include the optional object, Archive will save the file in binary, rather than ASCII,
format. This means that Archive does not have to convert the program into ASCI
characters before saving it and is therefore much faster. You can load, run or merge
such a program by adding the optional object to the appropriate command. These
operations will also work more rapidly since no conversion is necessary. Such files have
an extension of __pro, rather than the normal prg.

You may also save such an object program in a form that is protected against examination
or modification. Include, instead of object, the optional protect. A program saved in this
way can only be loaded, run or merged — using the optional object with the appropriate
command.

A protected program cannot be listed, edited or saved. If you merge a protected program
with any other program then the combination will be similarly protected. The only way
to clear the protected status is with the new command.

Saving a protected version does not affect the copy of the program in the computer’s
memory. You can still list, edit or save the program in the normal way.

Displays the formatted screen layout previously sloaded. It does nothing if there is no
screen layout present. It does not display any of the variables in the screen.

Syntax: screen

12/84

Reference

POSITION

PRINT

QUIT

REM

RESET

RETURN

RUN

SAVE

SCREEN

47

Reference

48

SEARCH

SEDIT

SELECT

SINPUT

SLOAD

SPOOLOFF

SPOOLON

SPRINT

SSAVE

STOP

Searches the current file from the beginning until a record is found in which the specified
expression is true. This record becomes the current record.

Syntax: search n.exp
Calls the screen editor, to enable you to define a new screen layout. See Chapter 7.

Scans the whole file selecting only those records for which the specified expression is
true. The file then behaves as if only the selected records are present.

Syntax: select n.exp

You can restore all the discarded records with the reset command.

Waits for input to the variables in the following list, using the order specified in the list.
All the variables in the list must be currently displayed in an active screen layout.

Syntax: sinput var *|, var | *

Loads a previously defined and saved display screen layout. It also displays this screen
layout and activates the display of any variables within the screen.

Syntax: sload fnm

The displayed values are then updated automatically whenever control returns from a
procedure to the keyboard interpreter.

Direct all following Iprint and llist output to the printer. This cancels the effect of spoolon.
Syntax: spooloff

Directs all following Iprint, llist and dump output to the specified file — or to the screen
— instead of to the printer.

Syntax: spoolon <fam> [export | dump)
or:
spoolon screen

If you are directing output to a file, it is directed via the currently installed printer driver
so that it contains all the special codes that your printer needs.

If you include the optional export, Archive ensures that the file contains only priﬁtable
ASCII codes, carriage returns and line feeds. The resulting file is suitable for importing
into Quil.

The optional dump allows the text to be transmitted to the file without being processed
by the printer driver. In this case all ASCII codes (including control codes) are passed
straight into the file.

Unless you specify a file name extension, Archive assumes an extension of __lis (—exp
or __dmp if you include the optional export or dump).

The alternative form of the command — spoolon screen — directs the output to the
monitor screen instead of the printer.

Used within a procedure to force a display of the fields of the current record.
Syntax: sprint

There must be an active screen layout (the screen layout is made active by a previous
use of screen, sload or display). If there is no active screen layout, the command will
have no effect. ;

Saves, as a named file on a Microdrive cartridge, the current display area as a defined
screen layout.

Syntax: ssave fnm

It saves the text of the screen and a list of the variables in the display, together with
their positions.

Terminates the execution of all procedures and returns control to the keyboard.
Syntax: stop

12/84

Switches the trace mode on and off.
Syntax: trace
Type:

trace

to turn on the trace. In trace mode each line of the program is displayed in the work
area of the screen, as it is executed. Press the space bar and keep it held down to
pause. The trace will continue when you release the space bar. To turn the trace off
again, type:

trace

Replaces the current record in the specified file (or the current file if no logical file name
is given) with a record containing the current values of the field variables.

Syntax: update | /fn |

Makes the specified file the current file.
Syntax: use Ifn

Repeatedly executes the statements between while and endwhile for as long as the
value of the expression is non-zero (true).

Syntax: while nexp : ... : endwhile

Think of a function as a kind of recipe which converts one or more initial values, known
as the function's arguments, into a different value, which is said to be the value that is
returned by the function.

The functions provided by Archive may take three, two, one or no arguments. The
arguments for a function are placed in brackets after its name. You must not leave a
space between the name and the opening bracket, but spaces are allowed between
items within the brackets. If a function takes more than one argument, the arguments
are separated by commas. All functions must be followed by the brackets, even if they
take no arguments. The presence of the brackets is a useful reminder that you are referring
to a function. They allow you to distinguish between a variable and a function, even
if they have the same name.

The following functions are provided.
ABS(n.exp) Returns the absolute value of the argument, i.e. ignores any minus sign.
ATN(n.exp) Returns the angle, in radians, whose tangent is n.exp.

CHR(n.exp) This function returns the ASCII character whose code is nexp. A
character with an ASCII code less than 32 is only sent to the printer
if preceded by an ASCII null. For example:

Iprint chr(0)+chr(13)

passes the ASCII character for a carriage return to a printer. This is
useful if your printer needs control code sequences to produce special
effects — refer to your printer manual for any special codes that it needs.

You can, for example, send an ‘A" to the screen with:
print chr(65).

CODE(sexp) This returns the ASCII value of the first character found in the specified
text.

COS(n.exp) Returns the cosine of the given (radian) angle.
COUNT([/fn |) Returns the count of the number of records in the current file.
DATE(n.exp) Returns today's date as a text string in one of three forms:

n.exp date string

0 YYYY/MM/DD”
1 ‘DDIMM/YYYY™
2 ‘MM/DD/YYYY”

12/84

Reference

TRACE

UPDATE

USE

WHILE

FUNCTIONS

49

Reference

50

You must first have set the system clock, as described in the
SuperBASIC Keyword Guide.

DAYS(s.exp) Returns a number of days, from the first of January 1583, to a date
given as a text expression of the form “YYYY/MM/DD". The conversion
assumes the Gregorian (modern) calendar is being used. The formula
is therefore only valid for dates after 1582.

DEC(value,dp,widith)
value:=(n.exp)
dp:= (n.exp)

width:= (n.exp)

Converts the given numeric value to the equivalent text string, in decimal
format with dp decimal places. The text is justified right in a field of
width characters. For example:

dec(1.23e1,3,10) returns the text “ 12.300" (with 4 leading spaces).

DEG(n.exp) Takes an angle, measured in radians, and converts it to the same angle
in degrees.
EOF([Ifn |) Returns a value indicating whether you have attempted to read past

the end of the current file, or the specified file if a file identifier is given.
The value returned is 1 if you have attempted to read past the end
of the file, otherwise it is zero.

ERRNUM() Returns the number of the last error which occurred (an error number
of zero indicates no errors). The error number is the same as that
displayed together with the error message when Archive reports a
detected error.

EXP(n.exp) Returns the value of e (approximately 2.718) raised to the power of
(n.exp). The returned value will be in error if n.exp is greater than +88
since the result will then exceed the numeric range of Archive.

FIELDN(n.exp|, /fn])
Returns the name of the specified field in the current record of the
specified file (or the current file if no logical file name is given). Note
that fieldn(0) returns the name of the first field.

FIELDT(n.exp |, Ifn])
Returns the type of the specified field in the current record of the
specified file (or the current file if no logical file name is given). Note
that fieldt(0) returns the type of the first field.

It returns the value O if the field is numeric, otherwise it returns 1.

FIELDV(n.exp|, Ifn |)
Returns the value of the specified field in the current record of the
specified file (or the current file if no logical file name is given). Note
that fieldv(0) returns the value of the first field.

FOUND() Returns one if a record is found by use of search or find, otherwise
returns zero.

GEN(value,widlth)
value:=n.exp
width: =n.exp

Converts the given numeric value to the equivalent text string, in general
format. The text is justified right in a field of width characters. For

example:
gen(1.23e1,10)
returns the text * 123" (with 6 leading spaces).
GETKEY() Waits for a key to be pressed and returns a single text character which

corresponds to the key that was pressed.

INKEY() Returns the single text character corresponding to any key that was
being pressed at the time the function is called. It does not wait for
a keypress, but will return a null string (“”) if no key is pressed.

12/84

INSTR(main,sub)
main:= S.exp
sub:= sexp

This finds the first occurrence of sub within main and returns the position
of the first character of sub in main. It will return a value of zero if no
match is found. The match is case-dependent.

instr("January',"Jan") {returns 1]
instr('"January'",'an'") {returns 2]
instr("January',"AN'") {returns 0O}

INT(n.exp) Returns the integer value of the number, by truncating at the decimal

point. The truncation always operates towards zero. Thus;

int(3.7) {returns 3}
int(-4.8) {returns -4}

LEN(s.exp) Returns the number of characters in the specified text.

LN(n.exp) Returns the natural, or base e, logarithm of n.exp. An error results if

n.exp is negative or zero, since logarithms are not defined in this range.
LOWER(sexp) Converts the specified text to lower case.
MEMORY() Returns the number of unused bytes of memory remaining.
MONTH(n.exp) Returns, as text, the name of a month.

For example month(3) returns the text “March”

If an argument larger than 12 is used, it is replaced by the remainder
after division by 12 so that, for example, month(13) and month(1) will
both give the result January”

NUM(value, width)
value:= n.exp
width:= n.exp

Converts the given numeric value to the equivalent text string, in integer
format. The text is justified right in a field of width characters. For
example:

num(1.23e1,10) returns the text “ 12" (with 8 leading spaces).

NUMFLD([/fn |) Returns the number of fields in the records of the specified file (or the
current file if you do not give a logical file name).

PI() Returns the value of the mathematical constant 7.
RAD(n.exp) Takes an angle, measured in degrees, and converts it to the same angle
in radians.

RECNUM(| /fn]) Returns the number (counting from zero at the first record) of the current
record of the specified file (or the current file if you do not give a logical
file name).

REPT(s.exp,n.exp)
This function returns a string consisting of a number of copies of the
first character of the given text. The resulting text may be up to 255
characters in length. For example,

print rept('*'",k5) {will print five asterisks]
print rept('abc',3) {prints “aaa’]
SGN(n.exp) Returns +1, —1 or O, depending on whether the argument is positive,
negative or zero.
SIN(n.exp) Returns the value of the sine of the specified (radian) angle.
SQR(n.exp) Returns the square root of the argument, which must not be negative.
STR(n,type,dp) n:=n.exp
type:=n.exp
dp:=n.exp

Converts a number, n, to the equivalent text string.

12/84

Reference

51

Reference

52

ERRORS

The second parameter, type, indicates the form of the converted string
as follows;

0 decimal (floating point)

1 exponential, or scientific, notation
2 integer

3 general format

The third parameter, dp, indicates the number of figures after the
decimal point in the converted string. It should always be specified,
although its value is ignored for integer and general formats.

For example:

let a$=str(12.3456,0,2) {gives a$ the value “12.35"]
let a$ str(12.3456,1,4) {gives a$ the value *1.2346e1"]

TAN(n.exp) Returns the tangent of the specified (radian) angle.

TIME() Returns, as text, the time of day in the format “HH:MM:SS" You must
first have set the system clock, as described in the SuperBASIC Keyword
Guide.

UPPER(sexp) Converts the specified string to upper case.

VAL(s.exp) Converts the text to its equivalent numeric value. It will only convert text
composed of valid numeric characters and the conversion will stop at
the first character that can not be interpreted as a digit. For example,
val(*“1.1ABC”) will return the numeric value 1., and val(“ABC") will return
00

VALUE(sexp) Returns the value of the variable whose name is given by sexp — for
example:

let a$=""'len'""
let length=15
print value(a$+''gth'"')

will print the value 15.

Note that value(fieldn(y)) is exactly equivalent to fieldv(y).

When ARCHIVE detects an error in a command typed at the keyboard or in a procedure,
it displays an error number and a short error message. Examples of errors that would
be detected are:

attempting to divide by zero
if not matched with an endif
supplying a procedure with the wrong number of parameters.

If the error comes from keyboard input, the text of the statement remains visible in the
work area. You can press F5 to recall the text so that you can use the line editor to
correct the error. You can then press ENTER to execute the corrected statement.

If the error comes from a program statement, ARCHIVE shows the name of the procedure
and the line in which the error occurred. You can then use the program editor to correct
the error.

When you use the error command in your programs, ARCHIVE will not report any error
that it detects in a procedure marked with error. You are free to deal with any such error
in any way that you want (including ignoring it). You can find which error has occurred
by examining the value returned by errnum(). This number is the same as the one
ARCHIVE gives when it prints an error message.

The following list shows ARCHIVE's error numbers, together with the corresponding
messages. Where possible, the list includes a short example of a statement that would
give the error. The error messages are not designed to pinpoint the precise error, but
are intended to give you an idea of what type of error to look for.

Those error messages for which there is no short example are marked with an asterisk.
They are dealt with in the notes which follow the list.

12/84

Reference

No. Message Example

0 no error

1 command not recognized apend

2 end of statement expected let x=3 let y=4

3 variable name expected let 31=x

4 unrecognized print item print create

5 wrong data type)

6 numeric expression expected let x="fred"

7 string expression expected let x$=4

8 variable not found let x=qq (qq undefined)
9 variable undefined print qq

10 missing separator print at 5

1M1 name too long let thisverylongname=4
12 duplicate name create:n$:n$:endcreate
13 string literal expected * (2

14 missing endproc *(3)

15 bad proc statement *(3)

16 premature end of statement create''test':endcreate
17 program structure fault *(4)

18 too many numbers * (5)

50 missing closing quote let x$="fred

51 missing exponent after "E" let x=1.2E

52 number too big let x=1.2E100

53 unknown symbol let x=%

70 evaluator syntax error let x=3+

71 mismatched parenthesis let x=(3+5)/7)

73 type mismatch let x$=""fred'"+3

74 wrong number of arguments let x$=str(1,2)

75 string too long let x$=rept (""*'",256)
76 divide by zero let a=0: let x=5/a
77 bad function arguments let x$=sqr(-4)

78 string subscript error let x$="fred" (to 97)
80 out of memory * (6)

90 no room to open a file *(7)

91 incomplete file transfer " (8)

93 out of range print at 100,100;37
94 file not open append (without first opening a file)
100 cannot open file Look" xxx' (non-existent)
101 write to read only file look '""names'':insert
103 wrong file type sload''"names" (data file)
104 bad file name save''3test"

105 error reading file *9)

12/84

The most likely cause of error 5 — “wrong data type” — is that you have inputted
text when a number is expected, eg. in response to an input statement such
as:

input x

Error 13 — ‘“string literal expected” — can occur, for example, during the import
of a file that you have constructed yourself (without using any of the export
commands in the QL programs). It means that Archive has found a number, or
a numeric or text expression, where it was expecting to find a literal text value.
In most situations where Archive finds numeric data when expecting text, or vice
versa, it will give error 7 or error 8.

Errors 14 — “missing endproc” — and 15 — “bad proc statement” — should never
occur in normal use. They indicate that Archive has detected a missing endproc
or an error in the structure of a proc statement in a procedure. They are only likely
to occur if you construct a program file with an editor other than the one included
in Archive.

Error 17 — “program structure fault” — usually indicates that an all, if or while
is not paired with a corresponding endall, endif or endwhile in a procedure. You

Notes

53

Reference

can also generate this error by including an endproc inside another program
structure, or by using return directly from the keyboard.

Error 18 — “too many numbers” — indicates that you are trying to input more
numbers than will fit into the memory reserved for input. The error may occur either
in a line of input from the keyboard, or while loading a program that includes a
procedure with many numbers in one of its lines. The exact limit depends on
circumstances — a typical limit would be 15 to 20 numbers, so you are unlikely
to get this error.

Error 80 — ‘out of memory” — should only be given if you use a very large program
The size of an ordinary data file is not limited by the amount of memory in the
computer since only part of a large file is in memory at any one time. If Archive
gives you this error you will have to reduce the size of your program before
continuing. You can, if necessary, break your program into several sections, in
different files, and use merge to load each section as it is needed. This technique
will, however, normally need a considerable amount of programming skil.

Error 90 ~ “no room to open a file" — occurs when the area of memory Archive
reserves to store internal information about the files currently in memory becomes
full. This may happen even if there is still memory available (i.e. if the value returned
by memory() is still not close to zero.)

Error 91 — “incomplete file transfer” — means that the loading or saving of a file
has failed for some reason. This may mean that the data has been corrupted,
or that the cartridge or the Microdrive has been damaged.

Error 105 — ‘error reading file” — means that some of the data in a file is in the
wrong format, the wrong order, or has been corrupted. This is only likely to occur
if you construct your own import file — or your own program file without using
the Archive program editor (advanced uses).

12/84

