

QPC2

Concepts

The Concepts Reference Guide describes concepts relating to SBASIC and QPC2. It is best to think of the Concept Guide as a source of information. If there are any questions about SBASIC

or QPC2 itself which arise out of using the emulator or other sections of the manual then the Concept Guide may have the answer. Concepts are listed in alphabetical order using the most likely term for that concept. If the subject cannot be found then consult the index which should be able to tel you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be entered and run. Examples listed without line numbers are usual y simple commands and it may not always be sensible to enter them into the emulator in isolation.

This guide is a combination of the Sinclair QL manuals Concepts section, the (Super)Gold card manual, the Toolkit 2 manual, the QPAC2 (Extended Environment), the SMSQ/E manual, and the QPC2 manual.

© 1984 SINCLAIR RESEARCH LIMITED

© MIRACLE SYSTEMS

© 1994-2002 TONY TEBBY

© MARCEL KILGUS

QPC2 V5.02 SMSQ/E V3.38

Release V1.03

2

04/23

alpha blending

Aplha-blending al ows text and graphics that is displayed on the screen, to be partial y transparent, al owing the underlying background to show through.

Alpha-blending works with al the normal graphics and text commands, BLOCK, LINE, CIRCLE, PRINT etc.

An ALPHA_BLEND value of 0 wil make the displayed text or graphics ful y transparent. While an ALPHA_BLEND value of 255 wil make it ful y opaque.

Command

Function

ALPHA_BLEND

set amount of alpha-blending

WM_MOVEALPHA

moving managed windows

This program wil show three levels of alpha-blending. Note how line 170 does not appear on the screen, as it’s alpha-blend is set to be ful y transparent.

100 ALPHA_BLEND 255

110 BLOCK 40,50,0,0,1

120 BLOCK 40,50,40,0,2

130 BLOCK 40,50,80,0,3

140 PAPER 0 : INK 7

150 ALPHA_BLEND 0

160 AT 1,3

170 PRINT " 100% Blending "

180 ALPHA_BLEND 128

190 AT 2,3

200 PRINT " 50% Blending "

210 ALPHA_BLEND 255

220 AT 3,3

230 PRINT " 0% Blending "

04/23

3

arrays

Arrays must be DIMensioned before they are used. When an array is dimensioned the value of each of its elements is set to zero or a zero length string if it is a string array. An array dimension runs from zero up to the specified value. There is no limits to the number of dimensions which can be defined other than the total memory capacity of the computer. An array of data is stored such that the last index defined cycles round most rapidly: the array defined by

DIM array(2,4)

wil be stored as

0,0 low address

0,1

0,2

0,3

0,4

1,0

1,1

1,3

1,4

2,0

2,1

2,2

2,3

2,4 high address

Command

Function

DIM

dimension an array

DIMN

find out about the dimensions of an array

4

04/23

AY-3 programmable sound generator system QPC2 has an implementation of the ABC-Electronik, Qsound sound generator. Which contained a AY-3-8910 sound generator chip, The AY-3-891x range of programmable sound generators were used in several 8-bit computers of the 1980's.

QPC2 implements this sound generator with two emulated AY-3-8910 chips that are numbered 0 and 1.

Each AY-3-8910 contains three sound channels. The three channels in chip 0 are defined as channels 1 to 3, and the three channels in chip 1 are defined as channels 4 to 6.

Usual y channels 1 and 4 play in the left speaker, channels 3 and 6 play in the right speaker.

And channels 2 and 5 play in both speakers.

In each chip there is a noise channel, which can be mixed into the three tone channels.

And a set of envelope shapes to provide control of the volume of a generated tone (and/or noise).

playing notes

A sequence of musical notes may be sent to any of the six sound channels with the PLAY

command containing a string of special characters.

Construction of the sound string

Func

tion V

alues

Notes

C D E F G A H (H corresponds to B, HB to B flat)

Sharps

#

Flats

b

Rests

p

(one length unit)

Change in octave

o0 o1 .. o7

(default o2)

Change in volume

v0 v1 .. v15

V16 switches to envelope control

Duration of note in 1/50 sec

10 .. 1255

(default: 15)

Change of noise frequency

n0 n1 .. 31

(default n0)

Determine warp curve

w0 w1 .. w15

(default w0)

Change length of warp

x0 x1 .. x32767 (default is x0)

Synchronisation stop

s

causes a sound channel to wait

Activate a waiting channel

r1 r2 .. r6

To play a sequence of notes, you first need to clear the interrupt driven sound queues with SOUND_AY, then set the notes to play with PLAY, then RELEASE the sound channel queue.

The fol owing program wil play a scale of notes from the left channel, then two seconds later, play another scale in the right channel.

100 sound1$="pv15o4sCDEFGAHo5CDEFGAHp"

110 sound2$="pv15o2r1CDEFGAHo3CDEFGAHp"

120 SOUND_AY

: REMark clear queues

130 PLAY 1,sound1$

: REMark plays in left channel

140 PAUSE 25

150 RELEASE 1

: REMark start playing

160 REMark wait for sound channel 1 to stop

170 REPeat loop

180 IF NOT(PLAYING(1)) THEN EXIT loop

190 END REPeat loop

200 PAUSE 100

: REMark wait 2 seconds

210 PLAY 3,sound2$

: REMark plays in right channel

220 PAUSE 25

220 RELEASE 3

04/23

5

--

Command

Function

--

HOLD

pauses the playing of a sound channel

PLAY

sets a sound channel with a sequence of notes

PLAYING

tests if a sound channel is currently playing

RELEASE

starts, or resumes playing of sound channels

SOUND_AY

clears sound channel queues

--

playing sound effects

Various sound effects can be obtained by writing directly to the registers of the AY-3 chips.

Each of the two emulated AY-3-8910's has a set of 14 read/write registers. The two I/O ports of the AY-3-8910 are not emulated.

The functions of the registers are as fol ows.

Reg Function

7

6

5

4

3

2

1

0

00 channel A tone

LSB 7

6

5

4

3

2

1

0

01 channel A

MSB x

x

x

x

B

A

9

8

02 channel B tone

LSB 7

6

5

4

3

2

1

0

03 channel B

MSB x

x

x

x

B

A

9

8

04 channel C tone

LSB 7

6

5

4

3

2

1

0

05 channel C

MSB x

x

x

x

B

A

9

8

06 noise period

x

x

x

x

3

2

1

0

07 release

nC

nB

nA

sC

sB

sA

08 channel A amplitude

x

x

x

w

3

2

1

0

09 channel B amplitude

x

x

x

w

3

2

1

0

10 channel C amplitude

x

x

x

w

3

2

1

0

11 envelope period

LSB 7

6

5

4

3

2

1

0

12 envelope period

MSB F

E

D

C

B

A

9

8

13 envelope curve

x

x

x

x

w3 w2 w1 w0

Where

X:

bit not used

nA .. nC:

If bit is reset channel is emitting noise.

sA .. sC:

If bit is reset channel is emitting sound.

w0 .. w3:

envelope curve

w:

Bit activates envelope control.

Registers 00 .. 05

Defines the pitch of the channel. Two registers define a note. The main time is divided by 16. By counting down the 12-bit-counter the output frequency is generated. The larger the number in these registers the lower the pitch.

Register 06

Defines the noise frequency. This works like the pitch control but with 5 bits only. The digital noise generator can be switched to any of the three channels.

Register 07

Used to switch the various sound sources. It controls the switching on or off of the tone generators (one for each channel), the switching on or off of the noise generator(single output to any channel).

Each binary bit of the number in this register acts as one switch. A 0 being on, and a 1 being off.

6

04/23

[image: Image 1]

Registers 08 .. 10

Used to control the volume of each channel. values from 0 to 15 gives 16 levels of volume control in logarithmic steps. 0 being low, 15 being ful volume. A value of 16, hands control of the volume for that channel over to the envelope shaper.

Registers 11 and 12

Defines a 16-bit length of time for one envelope period.

Register 13

Used to control the envelope shape and pattern. It gives control of attack (rise to ful volume), and decay (fal to zero). Either may be set to fast or slow in single or repeating patterns as fol ows.

w3 w2 w1 w0

Envelope curve

0 0 x x

0 1 x x

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

| | Envelope period

w3 sets Continue

w2 sets Attack

w1 sets Alternate

w0 sets Hold

04/23

7

The fol owing command wil produce a 'ping' noise LIST_AY 100,0,200,0,50,1,0,248,16,16,16,150,6,1

The command breaks down as

R

 eg Func

tion V

 alue E

 ffect

0/1

channel A tone

100

2/3

channel B tone

200

4/5

channel C tone

306

6

noise period

0

7

release

248

8/9/10 channel A/B/C volume 16

envelope control

11/12 envelope period

1686

13

envelope curve

1

This program turns your keyboard into a musical instrument. Pressing keys produce different tones to be played from the left speaker.

100 REPeat loop

110 a=10*(CODE(INKEY$(-1))-12)

120 SOUND_AY 1,a,16 : FOR b=1 TO 4 : PAUSE 1

130 SOUND_AY 1,800,0

140 END REPeat loop

--

Command

Function

--

ENVELOPE

sets the warp period and curve registers

LIST_AY

set al registers at once

PEEK_AY

reads the value of one of the registers

POKE_AY

set one of the registers

--

8

04/23

Currently in QPC2 V5.02 there are problems in some of the AY-3, SBASIC commands. The fol owing program wil patch some of these problems.

100 REMark Qsound live patch

110 REMark For QPC2 V5.02

120 REMark SMSQ/E v3.38 only

130 :

140 def_block = PEEK_L(!!$164)

150 mc_entry = PEEK_L(def_block+2)

160 PRINT "Definition block at ";HEX$(def_block,32) 170 PRINT " MC_ENTRY at ";HEX$(mc_entry,32) 180 PRINT

190 PRINT

210 :

220 IF 256*PEEK(mc_entry+$4BC)+PEEK(mc_entry+$4BD)<>$B26B THEN PRINT

"error":STOP

230 POKE_W mc_entry+$4BC,$B22B

240 PRINT "RELEASE patch done."

250 :

260 IF 256*PEEK(mc_entry+$9FC)+PEEK(mc_entry+$9FD)<>$3233 THEN PRINT

"error":STOP

270 POKE_W mc_entry+$9FC,$1233

280 PRINT "AY_CHIPS and AY_TYPE patch done."

290 :

300 IF 256*PEEK(mc_entry+$8B6)+PEEK(mc_entry+$8B7)<>$2F13 THEN PRINT

"error":STOP

310 POKE_W mc_entry+$8B6,$2F0B

320 PRINT "SOUND_AY patch done."

330 :

340 PRINT "Live patch applied."

To take effect, this program wil need to run every time that QPC2 is started.

04/23

9

background

The screen background (the area beneath any open windows) can be set to a plain or stippled colour, or an image.

BGCOLOUR_QL sets the background to one of the QL mode colours, or stipple patterns.

Background colours and stipples are defined in the same way as normal QL mode colours as used in INK, PAPER etc.

BGCOLOUR_QL 255

Sets the background colour to a black and white check

BGCOLOUR_QL 1

Sets the background colour to blue

BGCOLOUR_24 sets the background colour to one of the 16 Mil ion (24 Bit) true colours, The background colour is defined in the same way as normal 24 Bit colours as used in INK, PAPER

etc.

BGCOLOUR_24 40

Sets the background colour to deep blue

BGIMAGE al ows the use of a background image instead of a solid colour. The image which is stored in a file, is loaded by.

BGIMAGE win1_wallpaper Load a wal paper

Background images must be in the form of a screen snapshot at the screen resolution you are using. To create a background image.

100 WINDOW SCR_XLIM,SCR_YLIM,0,0 : REMark Full screen

.

. Draw the wal paper on the screen

.

900 SBYTES_O win1_wallpaper,SCR_BASE,SCR_LLEN * SCR_YSIZE

Generating a screen image in this way as a program, prevents the cursor and the save command spoiling the generated image.

--

Command

Function

--

BGCOLOUR_QL

set background to a solid colour or stipple

BGCOLOUR_24

set background to a solid colour

BGIMAGE

load a background image

--

10

04/23

BASIC

SBASIC includes most of the functions, procedures and constructs found in other dialects of BASIC. Many of these functions are superfluous in SBASIC but are included for compatibility reasons:

GOTO

use IF, REPEAT, etc

GOSUB

use DEFine PROCedure

ON...GOTO

use SELect

ON...GOSUB

use SELect

Some commands appear not to be present. They can always be obtained by using a more general function. For example, there are no LPRINT or LLIST statements in SBASIC but output can be directed to a printer by opening the relevant channel and using PRINT or LIST.

LPRINT

use PRINT #

LLIST

use LIST #

VAL

not required in SBASIC

STR$

not required in SBASIC

IN

not applicable to 68000 processor

OUT

not applicable to 68000 processor

--

comment: Almost al forms of BASIC require the VAL(x$) and STR$(x) functions in order to be able to convert the internal codified form of the value of a string expression to, or from the internal codified form of the value of a numeric expression.

These functions are redundant in SBASIC because of the provision of a unique facility referred to as "coercion". The VAL and STR$ functions are therefore not provided.

break

If at any time the computer fails to respond or you wish to stop a SBASIC program or command then press

[CTRL] [SPACE]

A program broken into in this way can be restarted by using the CONTINUE command.

Screen output may be paused by pressing either CTRL F5, or the ScrLock key.

To switch between a ful screen display and a window, press SHIFT CTRL F12

To perform a soft reset, (restart SMSQ)

[CTRL] [SHIFT] [ALT] [TAB]

To terminate QPC2

[CTRL] [SHIFT] [ScrLock]

QPC2 can also be ended with the QPC_EXIT command from SBASIC, or the " X"

(close) button on the Windows title bar.

04/23

11

channels

A channel is a means by which data can be output to or input from a QPC2 device. Before a channel can be used it must first be activated (or opened) with the OPEN command. Certain channels should always be kept open: these are the default channels and al ow simple communication with QPC2 via the keyboard and screen. When a channel is no longer in use it can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel number. A channel number is a numeric expression preceded by a #. When the channel is opened a device is linked to a channel number and the channel is initialised. Thereafter the channel is identified only by its channel number. For example:

OPEN #5,SER1

Wil link serial port 1 to the channel number 5. When a channel is closed only the channel number need be specified. For example:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usual y there is more than one way in which the device driver can be activated. This extra information is appended to the device name and passed to the OPEN command as a parameter. See concepts device.

Data can be output to a channel by PRINTing to that channel; this is the same mechanism by which output appears on the QPC2 screen. PRINT without a parameter outputs to the default channel #1. For example:

10 OPEN #5,flp1_test_file

20 PRINT #5,"this text is in file test_file"

30 CLOSE #5

wil output the text "this text is in file test_file" to the file test_file. It is important to close the file after al the accesses have been completed to ensure that al the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input from a channel a character at a time using INKEY$

GET, PUT, and their variations can also be used to output and input from a channel. GET and PUT al ows data to be sent and read from a channel with more control than simply PRINTing and INPUTing.

A channel can be opened as a console channel; output is directed to a specified window on the QPC2 screen and input is taken from the QPC2 keyboard. When a console channel is opened the size and shape of the initial window is specified. If more than one console channel is active then it is possible for more than one channel to be requesting input at the same time. In this case, the required channel can be selected by pressing CTRL C to cycle round the waiting channels. The cursor in the window of the selected channel wil flash.

12

04/23

QPC2 has three default channels which are opened automatical y. Each of these channels is linked to a window on the QPC2 screen.

channel 0 - command and error channel

channel 1 - output and graphics channel

channel 2 - program listing channel

2

1

0

--

Command Function

OPEN

open a channel for I/O

CLOSE

close a previously opened channel

PRINT

output to a channel

INPUT

input from a channel

INKEY$

input a character from a channel

GET

unformatted input from a channel

PUT

unformatted output to a channel

04/23

13

character set

and keys

The cursor controls are not built in to the operating system: however, if these functions are to be provided by applications software, they should use the keys specified; also the specified keys should not normal y be used for any other purpose.

--

Decimal

Hex

Keying

Display/Function

--

0

00

CTRL £

NULL

1

01

CTRL A

2

02

CTRL B

3

03

CTRL C

Change input channel (see note)

4

04

CTRL D

5

05

CTRL E

6

06

CTRL F

7

07

CTRL G

8

08

CTRL H

9

09

TAB (CTRL I)

Next field

10

0A

ENTER (CTRL J)

New line / Command entry

11

0B

CTRL K

12

0C

CTRL L

13

0D

CTRL M

Enter

14

0E

CTRL N

15

0F

CTRL O

16

10

CTRL P

17

11

CTRL Q

18

12

CTRL R

19

13

CTRL S

20

14

CTRL T

21

15

CTRL U

22

16

CTRL V

23

17

CTRL W

24

18

CTRL X

25

19

CTRL Y

26

1A

CTRL Z

27

1B

ESC (CTRL SHIFT |)

Abort current level of command

28

1C

29

1D

CTRL SHIFT]

30

1E

31

1F

32

20

SPACE

33

21

SHIFT 1

!

34

22

SHIFT 2

"

35

23

#

#

36

24

SHIFT 4

$

37

25

SHIFT 5

%

38

26

SHIFT 7

&

39

27

'

'

40

28

SHIFT 9

(

41

29

SHIFT 0

)

42

2A

SHIFT 8 / Prt Screen

*

43

2B

SHIFT =

+

44

2C

,

,

45

2D

-

-

46

2E

.

.

47

2F

/

/

14

04/23

--

Decimal

Hex

Keying

Display/Function

--

48

30

0

0

49

31

1

1

50

32

2

2

51

33

3

3

52

34

4

4

53

35

5

5

54

36

6

6

55

37

7

7

56

38

8

8

57

39

9

9

58

3A

SHIFT ;

:

59

3B

;

;

60

3C

SHIFT .

<

61

3D

=

=

62

3E

SHIFT .

>

63

3F

SHIFT /

?

64

40

SHIFT '

@

65

41

SHIFT A

A

66

42

SHIFT B

B

67

43

SHIFT C

C

68

44

SHIFT D

D

69

45

SHIFT E

E

70

46

SHIFT F

F

71

47

SHIFT G

G

72

48

SHIFT H

H

73

49

SHIFT I

I

74

4A

SHIFT J

J

75

4B

SHIFT K

K

76

4C

SHIFT L

L

77

4D

SHIFT M

M

78

4E

SHIFT N

N

79

4F

SHIFT O

O

80

50

SHIFT P

P

81

51

SHIFT Q

Q

82

52

SHIFT R

R

83

53

SHIFT S

S

84

54

SHIFT T

T

85

55

SHIFT U

U

86

56

SHIFT V

V

87

57

SHIFT W

W

88

58

SHIFT X

X

89

59

SHIFT Y

Y

90

5A

SHIFT Z

Z

91

5B

[

[

92

5C

\

\

93

5D

]

]

94

5E

SHIFT 6

^

95

5F

SHIFT -

_

04/23

15

--

Decimal

Hex

Keying

Display/Function

--

96

60

SHIFT 3

£

97

61

A

a

98

62

B

b

99

63

C

c

100

64

D

d

101

65

E

e

102

66

F

f

103

67

G

g

104

68

H

h

105

69

I

i

106

6A

J

j

107

6B

K

k

108

6C

L

l

109

6D

M

m

110

6E

N

n

111

6F

O

o

112

70

P

p

113

71

Q

q

114

72

R

r

115

73

S

s

116

74

T

t

117

75

U

u

118

76

V

v

119

77

W

w

120

78

X

x

121

79

Y

y

122

7A

Z

z

123

7B

SHIFT [

{

124

7C

SHIFT \

|

125

7D

SHIFT]

}

126

7E

SHIFT #

~

127

7F

SHIFT ESC

©

128

80

CTRL ESC

ä

129

81

CTRL SHIFT 1

ã

130

82

CTRL SHIFT '

å

131

83

CTRL SHIFT 3

é

132

84

CTRL SHIFT 4

ö

133

85

CTRL SHIFT 5

õ

134

86

CTRL SHIFT 7

ø

135

87

CTRL '

ü

136

88

CTRL SHIFT 9

ç

137

89

CTRL SHIFT 0

ñ

138

8A

CTRL SHIFT 8

z

139

8B

CTRL SHIFT =

œ

140

8C

CTRL ,

á

141

8D

CTRL -

à

142

8E

CTRL .

â

143

8F

CTRL /

ë

16

04/23

--

Decimal

Hex

Keying

Display/Function

--

144

90

CTRL 0

è

145

91

CTRL 1

ê

146

92

CTRL 2

ï

147

93

CTRL 3

í

148

94

CTRL 4

ì

149

95

CTRL 5

î

150

96

CTRL 6

ó

151

97

CTRL 7

ò

152

98

CTRL 8

ô

153

99

CTRL 9

ú

154

9A

CTRL SHIFT ;

ù

155

9B

CTRL ;

û

156

9C

CTRL SHIFT ,

ß

157

9D

CTRL =

¢

158

9E

CTRL SHIFT .

¥

159

9F

CTRL SHIFT /

`

160

A0

CTRL SHIFT 2

Ä

161

A1

CTRL SHIFT A

Ã

162

A2

CTRL SHIFT B

Å

163

A3

CTRL SHIFT C

É

164

A4

CTRL SHIFT D

Ö

165

A5

CTRL SHIFT E

Õ

166

A6

CTRL SHIFT F

Ø

167

A7

CTRL SHIFT G

Ü

168

A8

CTRL SHIFT H

Ç¨

169

A9

CTRL SHIFT I

Ñ

170

AA

CTRL SHIFT J

Æ

171

AB

CTRL SHIFT K

Œ

172

AC

CTRL SHIFT L



alpha

173

AD

CTRL SHIFT M



delta

174

AE

CTRL SHIFT N



theta

175

AF

CTRL SHIFT O



lambda

176

B0

CTRL SHIFT P



mu

177

B1

CTRL SHIFT Q



pi

178

B2

CTRL SHIFT R



phi

179

B3

CTRL SHIFT S

¡

180

B4

CTRL SHIFT T

¿

181

B5

CTRL SHIFT U

€

182

B6

CTRL SHIFT V

§

183

B7

CTRL SHIFT W

¤

184

B8

CTRL SHIFT X

«

185

B9

CTRL SHIFT Y

»

186

BA

CTRL SHIFT Z

º

187

BB

CTRL [

÷

188

BC

CTRL \



189

BD

CTRL]



190

BE

CTRL SHIFT 6



191

BF

CTRL SHIFT -



04/23

17

--

Decimal

Hex

Keying

Display/Function

--

192

C0

Left

Cursor left one character

193

C1

ALT Left

Cursor to start of line

194

C2

CTRL Left / Backspace Delete left one character

195

C3

CTRL ALT Left

Delete line

196

C4

SHIFT Left

Cursor left one word

197

C5

SHIFT ALT Left

Pan left

198

C6

SHIFT CTRL Left

Delete left one word

199

C7

SHIFT CTRL ALT Left

200

C8

Right

Cursor right one character

201

C9

ALT Right

Cursor to end of line

202

CA

CTRL Right / Delete

Delete character under cursor

203

CB

CTRL ALT Right

Delete to end of line

204

CC

SHIFT Right

Cursor right one word

205

CD

SHIFT ALT Right

Pan right

206

CE

SHIFT CTRL Right

Delete word under & right of cursor

207

CF

SHIFT CTRL ALT Right

208

D0

Up

Cursor up

209

D1

ALT Up

Scrol up

210

D2

CTRL Up

Search backward

211

D3

ALT CTRL Up

212

D4

SHIFT Up / Page Up

Top of screen

213

D5

SHIFT ALT Up / Home

214

D6

SHIFT CTRL Up

215

D7

SHIFT CTRL ALT Up

216

D8

Down

Cursor down

217

D9

ALT Down

Scrol down

218

DA

CTRL Down

Search forwards

219

DB

ALT CTRL Down

220

DC

SHIFT Down / Page Down Bottom of screen

221

DD

SHIFT ALT Down / End

222

DE

SHIFT CTRL Down

223

DF

SHIFT CTRL ALT Down

224

E0

CAPS LOCK

Toggle CAPS LOCK function

225

E1

ALT CAPS LOCK

226

E2

CTRL CAPS LOCK

227

E3

ALT CTRL CAPS LOCK

228

E4

SHIFT CAPS LOCK

229

E5

SHIFT ALT CAPS LOCK

230

E6

SHIFT CTRL CAPS LOCK

231

E7

SHIFT CTRL ALT CAPS LOCK

232

E8

F1

233

E9

CTRL F1

234

EA

SHIFT F1 / F6

235

EB

CTRL SHIFT F1

236

EC

F2

237

ED

CTRL F2

238

EE

SHIFT F2 /F7

239

EF

CTRL SHIFT F2

18

04/23

--

Decimal

Hex

Keying

Display/Function

--

240

F0

F3

241

F1

CTRL F3

242

F2

SHIFT F3 / F8

243

F3

CTRL SHIFT F3

244

F4

F4

245

F5

CTRL F4

246

F6

SHIFT F4 / F9

247

F7

CTRL SHIFT F4

248

F8

F5

249

F9

CTRL F5

250

FA

SHIFT F5 / F10

251

FB

CTRL SHIFT F5

252

FC

SHIFT space / Insert

"Special" space

253

FD

SHIFT TAB

Back tab (CTRL ignored)

254

FE

SHIFT ENTER

"Special" newline (CTRL ignored)

255

FF

See below

--

Codes up to 20 hex are either control characters or non-printing characters. Alternative keyings are shown in brackets after the main keying.

Note that CTRL-C is trapped by SMSQ and cannot be detected without changes to the system variables.

Note that codes C0-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPS LOCK

generates the code FF, fol owed by a byte indicating what the keycode would have been if ALT

had not been depressed.

Note that CAPS LOCK and CTRL-F5 are trapped by SMSQ and cannot be detected without special software.

04/23

19

clock

SMSQ/E contains a real time clock, which runs when QPC2 is started. It obtains the current date and time from the Windows operating system on the PC. The SMSQ/E clock is then updated once per minute. So that the SMSQ/E clock, should never be more than one minute different from the Windows clock.

The format used for the date and time is standard ISO format.

2001 JAN 01 12:09:10

Individual year, month, day and time can al be obtained by assigning the string returned by DATE to a string variable and slicing it. The clock wil run from 1961 JAN 01 00:00:00

Comment: For a description of the format, see BS5249: Part 1: 1976 and as modified in Appendix D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

--

Command

Function

--

SDATE

set the clock

ADATE

adjust the clock

DATE

return the date as a number

DATE$

return the date as a string

DAY$

return the day of the week as a string

ALARM

set an alarm

YEAR%

return the year as a number

MONTH%

return the month as a number

DAY%

return the day of the month as a number

WEEKDAY%

return the day number of the week

(0…6 Sunday…Saturday)

--

20

04/23

coercion

If necessary SBASIC wil convert the type of unsuitable data to a type which wil al ow the specified operation to proceed.

The operators used determine the conversion required. For example, if an operation requires a string parameter and a numeric parameter is supplied then SBASIC wil first convert the parameter to type string. It is not always possible to convert data to the required form and if the data cannot be converted an error is reported.

The type of a function or procedure parameter can also be converted to the correct type. For example, the SBASIC LOAD command requires a parameter of type name but can accept a parameter of type string and which wil be converted to the correct type by the procedure itself.

Coercion of this form is always dependent on the way the function or procedure was implemented.

There is a natural ordering of data types in SMSQ/E, see figure below. String is the most general type since it can represent integer data (almost exactly). The figure below shows the ordering diagrammatical y. Data can always be converted moving up the diagram but it is not always possible moving down.

not always

string

possible

name

floating point

integer

always possible

example: a = b + c

(no conversion is necessary before performing the

addition. Conversion is not necessary before assigning

the result to a.)

a% = b + c

(no conversion is necessary before performing the

addition but the result is converted to integer before

assigning.)

a$ = b$ + c$

(b$ and c$ are converted to floating point, if possible, before being added together. The result is converted

to string before assigning.)

LOAD "flp1_data"

(the string "flp1_data" is converted to type name by the load procedure before it is used.)

comment: Statements can be written in SBASIC which would generate errors in most other computer languages. In general, it is possible to mix data types in a very flexible manner:

i. PRINT "1" + 2 + "3"

i . LET a$ = 1 + 2 + a$ + "4"

04/23

21

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

[image: Image 10]

[image: Image 11]

[image: Image 12]

[image: Image 13]

[image: Image 14]

[image: Image 15]

[image: Image 16]

[image: Image 17]

[image: Image 18]

[image: Image 19]

[image: Image 20]

[image: Image 21]

[image: Image 22]

[image: Image 23]

[image: Image 24]

[image: Image 25]

[image: Image 26]

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

[image: Image 34]

[image: Image 35]

[image: Image 36]

[image: Image 37]

[image: Image 38]

colour

QPC2 can operate in 4 different colour modes. Each executing job or SBASIC job may have it's own colour mode.

COLOUR_QL

This is an 8 colour mode which can display either a solid colour or a stipple - a mixture of two colours to some predefined pattern. Colour specification in the COLOUR_QL mode, can be up to three items: a colour, a contrast colour and a stipple pattern.

When an SBASIC program starts executing, it is set to QL colour definition.

single

 colour := composite_colour

The single argument specifies the three parts of the colour specification. The main colour is contained in the bottom three bits of the colour byte. The next three bits contain the exclusive or (XOR) of the main colour and the contrast colour. The top two bits indicate the stipple pattern.

stipple

contrast XOR main (mix)

colour

bit

7 6 5 4 3 2 1 0

By specifying only the bottom three bits (i.e. the required colour) no stipple wil be requested and a single solid colour wil be used for display.

double

 colour := background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple is assumed (stipple 3)

triple

 colour := background, contrast, stipple Background and contrast colours and stipple are each defined separately.

colours

The codes for standard palette colours:

bit

24 bit value

code

colour

pattern composition

R

G

B

0

Black

0 0 0

00

00

00

1

Blue

0 0 1 blue

00

00

FF

2

Red

0 1 0 red

FF

00

00

3

Magenta

0 1 1 red + blue

FF

00

FF

4

Green

1 0 0 green

00

FF

00

5

Cyan

1 0 1 green + blue

00

FF

FF

6

Yel ow

1 1 0 green + red

FF

FF

00

7

White

1 1 1 green + red + blue

FF

FF

FF

Colour Composition and Codes

22

04/23

stipples

Stipples mix a background and a contrast colour in a fine stipple pattern. Stipples can be used in SMSQ/E in the same manner as ordinary solid colours. There are four stipple patterns:

Stipple 0

Stipple 1

Stipple 2

Stipple 3

Stipple 3 is the default.

example: i. PAPER 255 : CLS

i . PAPER 2,4 : CLS

i i. PAPER 0,2,0 : CLS

This program wil display al of the colours and stipple patterns available in the COLOUR_QL

mode.

100 REMark COLOUR_QL colours

110 WINDOW 750,550,25,25

120 COLOUR_QL

130 PAPER 0:INK 7

140 CLS

150 FOR x=0 TO 7

160 FOR y= 0 TO 31

170 PAPER 0:INK 7

180 AT y,15*x : PRINT_USING "#####",32*x+y; : PRINT " "; : STRIP

 32*x+y:PRINT " "

190 NEXT y

200 NEXT x

210 PAUSE

comment: This program requires QPC2 to be operating in at least an 800x600 pixel screen mode.

COLOUR_PAL

This is a 256 colour mode, which al ows you to display any 256 colours from a palette of 16

Mil ion. Colour specification in the COLOUR_PAL mode, is defined as a number between 0 and 255

example: i. PAPER 63 : CLS

Deep purple

i . PAPER 35 : CLS

Pastel Yel ow

This table lists al the standard 256 colours available in COLOUR_PAL, along with their 24 Bit values.

Colour

Colour

24 Bit value

Colour

Colour

24 Bit value

Number

Name

R

G B

Number

Name

R

G B

0

00

Black

00

00 00

13

0D Ash grey

DB DB DB

1

01

White

FF

FF FF

14

0E

Dark red

92

00 00

2

02

Red

FF

00 00

15

0F

Light green

B6

FF B6

3

03

Green

00

FF 00

16

10

Mustard

92

92 00

4

04

Blue

00

00 FF

17

11

Dark green

00

92 00

5

05

Magenta

FF

00 FF

18

12

Sea blue

00

92 92

6

06

Yellow

FF

FF 00

19

13

Dark blue

00

00 92

7

07

Cyan

00

FF FF

20

14

Purple

92

00 92

8

08

Dark slate

24

24 24

21

15

Shocking pink

FF

00 92

9

09

Slate grey

49

49 49

22

16

Orange

FF

92 00

10

0A

Dark grey

6D 6D 6D

23

17

Lime green

92

FF 00

11

0B

Grey

92

92 92

24

18

Apple green

00

FF 92

12

0C Light grey

B6

B6 B6

25

19

Bright blue

00

92 FF

04/23

23

Colour

Colour

24 Bit value

Colour

Colour

24 Bit value

Number

Name

R

G B

Number

Name

R

G B

26

1A

Mauve

92

00 FF

95

5F

6D 24 B6

27

1B

Peach

FF

B6 B6

96

60

6D 24 FF

28

1C Light yellow

FF

FF B6

97

61

92

24 00

29

1D Light blue

B6

FF FF

98

62

92

24 49

30

1E

Sky blue

B6

B6 FF

99

63

92

24 92

31

1F

Rose pink

FF

B6 FF

100

64

92

24 DB

32

20

Pink

FF

B6 DB

101

65

B6

24 24

33

21

Beige

FF

DB B6

102

66

B6

24 6D

34

22

Pastel pink

FF

DB DB

103

67

B6

24 B6

35

23

Pastel yellow

FF

FF DB

104

68

B6

24 FF

36

24

Pastel green

DB FF DB

105

69

DB 24 00

37

25

Pastel cyan

DB FF FF

106

6A

DB 24 49

38

26

Pastel blue

DB DB FF

107

6B

DB 24 92

39

27

Pastel rose

FF

DB FF

108

6C

DB 24 DB

40

28

Brick

B6

6D 6D

109

6D

FF

24 24

41

29

Light khaki

B6

B6 6D

110

6E

FF

24 6D

42

2A

Dull green

6D B6 6D

111

6F

FF

24 B6

43

2B

Dull cyan

6D B6 B6

112

70

FF

24 FF

44

2C Steel blue

6D 6D B6

113

71

00

49 00

45

2D Dull pink

B6

6D B6

114

72

00

49 49

46

2E

Brown

6D 24 24

115

73

00

49 DB

47

2F

Khaki

6D 6D 24

116

74

24

49 24

48

30

Dusky green

24

6D 24

117

75

24

49 6D

49

31

Dusky blue

24

6D 6D

118

76

24

49 B6

50

32

Midnight blue

24

24 6D

119

77

24

49 FF

51

33

Plum

6D 24 6D

120

78

49

49 00

52

34

Dusky pink

B6

49 92

121

79

49

49 92

53

35

Buff

B6

92 49

122

7A

49

49 DB

54

36

Avocado

92

B6 49

123

7B

6D 49 24

55

37

Dull turquoise

49

B6 92

124

7C

6D 49 6D

56

38

Dull blue

49

92 B6

125

7D

6D 49 B6

57

39

Faded purple

92

49 B6

126

7E

6D 49 FF

58

3A

Cerise

92

00 49

127

7F

92

49 49

59

3B

Tan

92

49 00

128

80

92

49 DB

60

3C Grass green

49

92 00

129

81

B6

49 24

61

3D Sea green

00

92 49

130

82

B6

49 6D

62

3E

Ultramarine

00

49 92

131

83

B6

49 FF

63

3F

Deep purple

49

00 92

132

84

DB 49 00

64

40

00

00 49

133

85

DB 49 49

65

41

24

00 24

134

86

DB 49 92

66

42

24

00 6D

135

87

DB 49 DB

67

43

24

00 B6

136

88

FF

49 24

68

44

24

00 FF

137

89

FF

49 6D

69

45

49

00 00

138

8A

FF

49 B6

70

46

49

00 49

139

8B

FF

49 FF

71

47

49

00 DB

140

8C

00

6D 00

72

48

6D 00 24

141

8D

00

6D 49

73

49

6D 00 6D

142

8E

00

6D 92

74

4A

6D 00 B6

143

8F

00

6D DB

75

4B

6D 00 FF

144

90

24

6D B6

76

4C

B6

00 24

145

91

24

6D FF

77

4D

B6

00 6D

146

92

49

6D 00

78

4E

B6

00 B6

147

93

49

6D 49

79

4F

B6

00 FF

148

94

49

6D 92

80

50

DB 00 00

149

95

49

6D DB

81

51

DB 00 49

150

96

6D 6D FF

82

52

DB 00 92

151

97

92

6D 00

83

53

DB 00 DB

152

98

92

6D 49

84

54

FF

00 6D

153

99

92

6D 92

85

55

00

24 00

154

9A

92

6D DB

86

56

00

24 49

155

9B

B6

6D 24

87

57

00

24 92

156

9C

B6

6D FF

88

58

00

24 DB

157

9D

DB 6D 00

89

59

24

24 B6

158

9E

DB 6D 49

90

5A

24

24 FF

159

9F

DB 6D 92

91

5B

49

24 00

160

A0

DB 6D DB

92

5C

49

24 49

161

A1

FF

6D 24

93

5D

49

24 92

162

A2

FF

6D 6D

94

5E

49

24 DB

163

A3

FF

6D B6

24

04/23

Colour

Colour

24 Bit value

Colour

Colour

24 Bit value

Number

Name

R

G B

Number

Name

R

G B

164

A4

FF

6D FF

210

D2

00

DB 00

165

A5

24

92 24

211

D3

00

DB 49

166

A6

24

92 6D

212

D4

00

DB 92

167

A7

24

92 B6

213

D5

00

DB DB

168

A8

24

92 FF

214

D6

24

DB 24

169

A9

49

92 49

215

D7

24

DB 6D

170

AA

49

92 DB

216

D8

24

DB B6

171

AB

6D 92 24

217

D9

24

DB FF

172

AC

6D 92 6D

218

DA

49

DB 00

173

AD

6D 92 B6

219

DB

49

DB 49

174

AE

6D 92 FF

220

DC

49

DB 92

175

AF

92

92 49

221

DD

49

DB DB

176

B0

92

92 DB

222

DE

6D DB 24

177

B1

B6

92 24

223

DF

6D DB 6D

178

B2

B6

92 B6

224

E0

6D DB B6

179

B3

B6

92 FF

225

E1

6D DB FF

180

B4

DB 92 00

226

E2

92

DB 00

181

B5

DB 92 49

227

E3

92

DB 49

182

B6

DB 92 92

228

E4

92

DB 92

183

B7

DB 92 DB

229

E5

92

DB DB

184

B8

FF

92 6D

230

E6

B6

DB 24

185

B9

FF

92 B6

231

E7

B6

DB 6D

186

BA

FF

92 FF

232

E8

B6

DB B6

187

BB

00

B6 00

233

E9

B6

DB FF

188

BC

00

B6 49

234

EA

DB DB 49

189

BD

00

B6 92

235

EB

DB DB 92

190

BE

00

B6 DB

236

EC

FF

DB 6D

191

BF

24

B6 24

237

ED

00

FF 49

192

C0

24

B6 6D

238

EE

24

FF 6D

193

C1

24

B6 B6

239

EF

24

FF B6

194

C2

24

B6 FF

240

F0

49

FF 00

195

C3

49

B6 00

241

F1

49

FF 49

196

C4

49

B6 49

242

F2

49

FF 92

197

C5

49

B6 DB

243

F3

49

FF DB

198

C6

6D B6 24

244

F4

6D FF 24

199

C7

6D B6 FF

245

F5

6D FF 6D

200

C8

92

B6 00

246

F6

6D FF B6

201

C9

92

B6 92

247

F7

6D FF FF

202

CA

92

B6 DB

248

F8

92

FF 49

203

CB

B6

B6 24

249

F9

92

FF 92

204

CC

DB B6 00

250

FA

92

FF DB

205

CD

DB B6 49

251

FB

B6

FF 24

206

CE

DB B6 92

252

FC

B6

FF 6D

207

CF

DB B6 DB

253

FD

DB FF 49

208

D0

FF

B6 24

254

FE

DB FF 92

209

D1

FF

B6 6D

255

FF

FF

FF 6D

This program wil display al of the colours available in the COLOUR_PAL mode.

100 REMark COLOUR_PAL colours

110 WINDOW 750,550,25,25

120 COLOUR_PAL

130 PAPER 0:INK 1

140 CLS

150 FOR x=0 TO 7

160 FOR y= 0 TO 31

170 PAPER 0:INK 1

180 AT y,15*x : PRINT_USING "#####",32*x+y; : PRINT " "; : STRIP

 (32*x+y):PRINT " "

190 NEXT y

200 NEXT x

210 PAUSE

comment: This program requires QPC2 to be operating in at least an 800x600 pixel screen mode.

04/23

25

COLOUR_24

This is a 16 Mil ion (24 Bit) colour mode, al owing you to display any of the available 16 Mil ion colours.

Colour specification in the COLOUR_24 mode, is defined as a number between 0 and 16,777,215

Red

Green

Blue

bit

23

16 15

8 7

0

The 24 Bit value used in INK, PAPER, STRIP etc is calculated as (Red * 65536) + (Green *

256) + Blue. Where each of the colours Red, Green, and Blue have values between 0 and 255.

example: i. PAPER 219 * 65536 + 219 * 256 + 255 : CLS

Pastel Blue

i . PAPER 14408703 : CLS

as above in decimal

i . PAPER $DBDBFF : CLS

as above in hexadecimal

COLOUR_NATIVE

The format accepted by COLOUR_NATIVE depends on the colour mode QPC2 is currently running in. It uses the same values as the pixels on the screen.

Palettes

The actual colours used in COLOUR_QL and COLOUR_PAL mode are stored in tables which may be redefined, al owing you to change the colours that are displayed to any of the available 16 Mil ion (24 Bit) colours.

PALETTE_QL enables you to redefine the 8 colours used in the COLOUR_QL mode, to any of the 16 Mil ion (24 Bit) colours. The replacement colours must be specified as 24 Bit true colours.

PALETTE_QL start, colour [, colour [, colour [, colour [, colour [, colour

[, colour [, colour]]]]]]]

 start := first colour in table to change

 colour := true colour value

This program wil change only the two colours cyan and yel ow, into khaki and orange, leaving the others unchanged.

600 khaki = 109*65536+109*256+36

610 orange = 255*65536+146*256

620 PALETTE_QL 5,khaki,orange : REMark change only 2 colours Many QL programs define some of the colours displayed as "white minus a colour", on a 4

colour QL display, "white minus red" appears as green on a QL . "white minus red" however is real y cyan, not green. As a result, many QL mode 4 programs take on rainbow hues when displayed on a QPC2 screen.

This can be "fixed" by redefining the colours so that colour 2 (Red) is a bright crimson, and colour 4 (Green) is a bright sea green. This wil ensure that using true colours (24 Bit), colour 2

plus colour 4 is equal to colour 7.

We also need to ensure that colour 1 is equal to colour 0, colour 3 is equal to colour 2, colour 5

is equal to colour 4, and colour 6 is equal to colour 7. This is to simulate the QL mode 4 colours.

600 crimson = 255*65536+100 : REMark crimson is red + a bit of blue 610 sea = 255*256+155 : REMark sea green is green + the rest of blue 620 white = crimson + sea

630 PALETTE_QL 0,0,0,crimson,crimson,sea,sea,white,white : REMark set 8 colours

26

04/23

PALETTE_8 enables you to redefine any or al of the 256 colours used in the COLOUR_PAL

mode to any of the 16 Mil ion (24 Bit) colours. The replacement colours must be specified as a 24 Bit true colour.

PALETTE_8 start, colour * [, colour] *

 start := first colour in table to change

 colour := true colour value

If new colours are required, they should replace colours towards the top of the table so that the low colours remain unchanged.

This example wil set colours 248 to 255 of PALETTE_8 to black, blue, red, magenta, green, cyan, yel ow, and white

100 black = 0 : red = 255 * 65536 : green = 255 * 256 : blue = 255

110 magenta = red + blue : cyan = blue + green : yellow = green + red 120 white = red + green + blue

130 PALETTE_8 248, black, blue, red, magenta, green, cyan, yellow, white warning: Once a palette has been changed it can only be reset manual y or by resetting SMSQ/E.

Command

Function

COLOUR_QL

set 8 colour mode

COLOUR_PAL

set 256 colour mode

COLOUR_24

set 16 Mil ion (24 Bit) mode

PALETTE_QL

change 8 colour palette

PALETTE_8

change 256 colour palette

04/23

27

window manager colour palettes

The Windows Manager maintains a set of standard colour schemes that can be used to provide a consistent appearance of Windows on the screen.

The commands WM_PAPER, WM_STRIP, WM_INK, WM_BORDER, and WM_BLOCK

perform much the same functions as PAPER, STRIP, INK, BORDER, and BLOCK. But use one of the seven Window Manager colour schemes, defined as a 16 Bit word (a number in the range 0 to 65535).

Simple colour palette scheme

This colour scheme corresponds to the COLOUR_QL colour mode. The first byte of the colour word has a value of zero, and the second byte, a value in the range 0 to 255 to represent the solid, or stipple colour required.

example: i. WM_PAPER $0002 : CLS

{red}

i . WM_PAPER $009F : CLS

{green and white vertical stripes}

The colour palette scheme

This colour scheme corresponds to the COLOUR_PAL colour mode. The first byte of the colour word has a value of one, and the second byte, a value in the range 0 to 255 to represent the colour required.

example: i. WM_PAPER $0112 : CLS

{sea blue}

i . WM_PAPER $013A : CLS

{cerise}

The system palette schemes

This colour scheme corresponds to the colour modes used in Pointer Environment programs.

The first byte of the colour word has a value of two, and the second byte, a value in the range 0

to the value of SP_GETCOUNT minus 1, to represent the colour required.

The system palette colour scheme is further divided into four sub colour schemes, which are selected by using the SP_JOBPAL command. They default to the fol owing colour schemes but can be changed at runtime:

0 White paper, with black ink. With a green and white striped title bar.

1 Black paper, with white ink. With a red and black striped title bar.

2 White paper, with black ink. With a red and white striped title bar.

3 Black paper, with white ink. With a green and black striped title bar.

Each element of a Pointer Environment window has a colour, (or stipple pattern) which is associated with it as defined in the table below.

To provide consistency in Pointer Environment programs, you should use the appropriate colours in the table below (although you do not have to).

Number

Window element

$0200

Window border

$0201

Window background

$0202

Window foreground

$0203

Window middleground

$0204

Title background

$0205

Title text background

$0206

Title foreground

28

04/23

Number

Window element

$0207

Loose item highlight

$0208

Loose item available background

$0209

Loose item available foreground

$020a

Loose item selected background

$020b

Loose item selected foreground

$020c

Loose item unavailable background

$020d

Loose item unavailable foreground

$020e

Information window border

$020f

Information window background

$0210

Information window foreground

$0211

Information window middleground

$0212

Subsidiary information window border

$0213

Subsidiary information window background

$0214

Subsidiary information window foreground

$0215

Subsidiary information window middleground

$0216

Application window border

$0217

Application window background

$0218

Application window foreground

$0219

Application window middleground

$021a

Application window item highlight

$021b

Application window item available background

$021c

Application window item available foreground

$021d

Application window item selected background

$021e

Application window item selected foreground

$021f

Application window item unavailable background

$0220

Application window item unavailable foreground

$0221

Pan/scrol bar

$0222

Pan/scrol bar section

$0223

Pan/scrol bar arrow

$0224

Button highlight

$0225

Button border

$0226

Button background

$0227

Button foreground

$0228

Hint border

$0229

Hint background

$022a

Hint foreground

$022b

Hint middleground

$022c

Error message background

$022d

Error message foreground

$022e

Error message middleground

$022f

Shaded area

$0230

Dark 3D border shade

$0231

Light 3D border shade

$0232

Vertical area fil

$0233

Subtitle background

$0234

Subtitle text background

$0235

Subtitle foreground

$0236

Menu index background

$0237

Menu index foreground

$0238

Separator lines etc.

04/23

29

example: The fol owing program wil display a message on the screen, in the title colours of the System palette scheme number 2. That is black text with a red and white striped title bar.

10 SP_JOBPAL –1,2

{select system palette scheme 2 for this job}

20 WM_PAPER $0204 : CLS 3

{set title background colour}

30 WM_STRIP $0205

{set title text background colour}

40 WM_INK $0206

{set title text colour}

50 AT 0,10 : PRINT ;” Title bar colours “

Grey scale palette scheme

This colour scheme provides a series of shades of grey. The first byte of the colour word has a value of three, and the second byte, a value in the range 0 to 255 to represent the shade of grey required.

example: i. WM_PAPER $0300 : CLS

{black}

i . WM_PAPER $0380 : CLS

{mid grey}

i . WM_PAPER $03FF : CLS

{white}

Border colours palette scheme

This colour scheme, provides a combination of border styles and colours. The actual colours used in this palette scheme, depend on which system palette colour scheme has been selected by the SP_JOBPAL command. The first byte of the colour word has a value of four, and the second byte, a value in the range 0 to 15 to represent one of the eight border styles.

Number

Border style

$0400

3D Chisel ed Border (Button Raised)

$0401

As above with colours swapped

$0402

3D Chisel ed Border (Button Depressed)

$0403

As above with colours swapped

$0404

3D Raised Border

$0405

As above with colours swapped

$0406

3D Chisel ed Border with shadow on south east side

$0407

3D Chisel ed Border with shadow on north west side

$0408

Border on left hand side only

$0409

As above with colours swapped

$040A

Border on right hand side only

$040B

As above with colours swapped

$040C

Border on top side only

$040D

As above with colours swapped

$040E

Border on bottom side only

$040F

As above with colours swapped

example: The fol owing program wil display al of the border styles.

100 PAPER 4 : CLS

110 JOB_PAL –1, 0

120 WINDOW 200, 100, 100, 100

130 FOR x = 0 TO 15

140 WM_BORDER 4, $400 + x

150 AT 0, 0 : Print “Border Style “ ; x

160 PAUSE

170 WINDOW 200, 100, 100, 100

180 END FOR x

30

04/23

Some of those borders styles have widths that are not compatible with the traditional QL

borders which can cause compatibility problems with applications not prepared for this.

Therefore so cal ed “compatibility modes” are available, too. When a compatibility mode is selected the border has the same width as a traditional QL border with the additional space fil ed differently depending on the mode. There are 3 different compatibility modes available, which can be specified in the upper half of the low byte, i.e. $04x0.

Number

Border style

$040x

No compatibility mode

$041x

Additional space is outside of border and left untouched $042x

Additional space is inside of border and fil ed with the paper colour $043x

Additional space is outside of border and fil ed with the paper colour Palette stipples scheme

This colour scheme is produced as a combination of two colours combined in a stipple pattern.

The most significant two bits of the first byte have a binary value of %01. The next two binary bits contain the stipple type. The next 4 binary bits, and the top two binary bits of the second byte contain the stipple colour, and the last six binary bits contain the main colour.

The values used for the main and the stipple colours are taken from the first 64 colours of the COLOUR_PAL, 256 colour mode.

example: The fol owing program wil produce a white background with a khaki stipple pattern 0

100 kahaki = $2F

110 white = $01

120 WM_PAPER $4000 + (64 * khaki) + white

130 CLS

15 Bit RGB scheme

This colour scheme provides 32 thousand colour combinations. The first binary bit of the colour word has a binary value of 1. The next five binary bits represent the red component of the colour. The next five binary bits represent the green component of the colour, and the last five binary bits represent the blue component of the colour.

example: The fol owing program wil create a Magenta background 100 red = 31

{range 0..31}

110 green = 0

120 blue = 31

130 WM_PAPER $8000 + (1024 * red) + (32 * green) + blue 140 CLS

04/23

31

communications

parallel

QPC2 can access up to 8 paral el ports (cal ed PAR1, PAR2, etc) for connecting it to equipment which use paral el output communications.

The PC on which you are running QPC2 wil usual y have one paral el port fitted, known as LPT1. The QPC2 Configurator can determine which PAR port is connected to which LPT port.

(usual y PAR1 = LPT1 and PAR2 = LPT2). A paral el port can also be connected to the spool job of a printer (by configuring the name of the desired printer), thus enabling the access to USB

and network printers.

The PC paral el port connectors wil usual y be 25 pin connectors Translate, determines whether the data sent should be translated into other characters. This is general y used when sending text to printers, to convert the ASCII codes which are different between the QPC2 character set, and the printers characters set. See the TRA command.

Paral el communications on QPC2 are 'simplex', that is the paral el port is transmit only.

communications

serial RS-232-C

QPC2 can access up to 8 serial ports (cal ed SER1, SER2, etc) for connecting it to equipment which use serial communications obeying EIA standard RS-232-C or a compatible standard.

The RS-232-C 'standard' was original y designed to enable computers to send and receive data via telephone lines using a modem. However, it is now frequently used to connect computers directly with each other and to various items of peripheral equipment, e.g. printers, modems, etc.

As the RS-232-C 'standard' manifests itself in many different forms on different pieces of equipment, it can be an extremely difficult job, even for an expert to connect together for the first time two pieces of supposedly standard RS-232-C equipment. This section wil attempt to cover most of the basic problems that you may encounter.

The PC on which you are running QPC2 wil usual y have one or two serial ports fitted, known as COM1 and COM2. The QPC2 Configurator can determine which SER port is connected to which COM port. (usual y SER1 = COM1 and SER2 = COM2)

The PC serial port connectors wil be either 9, or 25 pin connectors

9 pin 25 pin

Name Function

Direction

1

8

DCD

Data Carrier Detect

In

2

3

RXD

Receive Data

In

3

2

TXD

Transmit Data

Out

4

20

DTR

Data Terminal Ready

Out

5

7

GND

Signal Ground

-

6

6

DSR

Data Set Ready

In

7

4

RTS

Ready to Send

Out

8

5

CTS

Clear To Send

In

9

22

RI

Ring Indicator

In

32

04/23

Once the equipment has been connected, the baud rate (the speed of transmission of data) must be set so that the baud rates for both QPC2 and the connected equipment are the same.

The serial ports on QPC2 can be set to operate at:

300

600

1200

2400

4800

9600

19200

38400

57600

115200

baud

The QPC2 baud rate for each serial port is set by the BAUD command.

The parity to be used by QPC2 must also be set to match that expected by the peripheral equipment. Parity is usual y used to detect simple transmission errors and may be set to be even, odd, mark, space or no parity, i.e. al 8 bits of the byte are used for data.

Flow control determines how QPC2 and the peripheral device know when to communicate with each other. Flow control can be either:

Hardware

Where a signal line is used by one end of the connection to the other end, to say, don't talk now I'm busy.

Software

Where a signal is sent down the Transmit data line to the receiver, to say, don't talk now I'm busy (XOFF), or I am now ready to listen (XON).

The receiver can be either the peripheral device, or QPC2 itself None

There is no flow control. Data wil be lost, or corrupted if the receiver is busy doing other things when data arrives, or cannot process the data it is receiving fast enough.

Translate, determines whether the data sent should be translated into other characters. This is general y used when sending text to printers, to convert the ASCII codes which are different between the QPC2 character set, and the printers characters set. See the TRA command.

Serial communications on QPC2 are 'ful duplex', that is both receive and transmit can operate concurrently.

The parity and handshaking are selected when the serial channel is opened.

comment: There is also the serial receive only device (SRX), and serial transmit only device (STX). They are the same as the SER device, except that one wil only transmit data, and the other wil only receive data.

command

function

BAUD

set transmission speed

OPEN

open serial channels *

CLOSE

close serial channels

* see concept device for a ful specification

04/23

33

cursor sprites

The CURSPRLOAD command may be used to replace the standard red block cursor with a user-defined replacement. This replacement cursor must be the same size (6 by 10 pixels) as the standard cursor, but may be any colour or pattern the user requires.

These replacement cursors may only be used in windows that have a standard character size of 6 by 10 pixels (CSIZE 0,0).

A cursor sprite definition comprises of two parts, The sprite header and the sprite data.

The sprite header is defined as fol ows:

--

Offset

Size

Description

--

$00

byte

sprite mode

$01

byte

colour mode/system sprite number

$02

byte

dynamic sprite version number

$03

byte

sprite control

$04

word

X size

$06

word

Y size

$08

word

X offset

$0A

word

Y offset

$0C

long

relative pointer to colour pattern

$10

long

relative pointer to mask/alpha channel

$14

long

relative pointer to next object

$18

long

relative pointer to options

$1C

long

relative pointer to sprite block

--

This section is just an introduction to creating sprites and further information on the construction of sprites may be found elsewhere.

The fol owing two example programs wil create 256 colour, COLOUR_PAL mode, sprite definition files that may be used with the CURSPRLOAD command.

34

04/23

The fol owing example program wil produce a cursor sprite of a white arrow in a red block.

100 OPEN_OVER#3,flp1_arrow_spr

{create a file for our sprite definition}

110 RESTORE

120 REPeat loop

130 IF EOF() THEN EXIT loop

140 READ x:BPUT#3,x

{read data and store in file}

150 END REPeat loop

160 CLOSE#3

170 CURSPRLOAD flp1_arrow_spr

{load our new cursor sprite}

180 CURSPRON –1

{activate it for this job}

1000 DATA 2

{start of header, GD2 sprite mode}

1010 DATA 31

{8 bit palette mapped colour mode}

1020 DATA 0

{leave version number as 0}

1030 DATA 32

{alpha channel is present}

1040 DATA 0,6

{cursor sprite size is always 6 x 10}

1050 DATA 0,10

1060 DATA 0,3

{cursor sprit offset}

1070 DATA 0,4

1080 DATA 0,0,0,20

{pointer to pattern}

1090 DATA 0,0,0,96

{pointer to alpha channel}

1100 DATA 0,0,0,0

{leave as 0}

1110 DATA 0,0,0,0

{leave as 0}

1120 DATA 0,0,0,0

{leave as 0}

1130 REMark Sprite

1140 DATA 2,2,2,2,2,2,0,0

{pattern data for sprite}

1150 DATA 2,2,2,2,1,2,0,0

{in palette mode 2 is red, & 1 is white}

1160 DATA 2,2,2,2,1,2,0,0

{note the 0’s padding the line out}

1170 DATA 2,2,2,2,1,2,0,0

{to 8 bytes}

1180 DATA 2,2,2,2,1,2,0,0

1190 DATA 2,2,1,2,1,2,0,0

1200 DATA 2,1,2,2,1,2,0,0

1210 DATA 1,1,1,1,1,2,0,0

1220 DATA 2,1,2,2,2,2,0,0

1230 DATA 2,2,1,2,2,2,0,0

1240 REMark alpha channel

1250 DATA 255,255,255,255,255,255

{alpha channel data}

1260 DATA 255,255,255,255,255,255

{note no padding of the line}

1270 DATA 255,255,255,255,255,255

1280 DATA 255,255,255,255,255,255

1290 DATA 255,255,255,255,255,255

1300 DATA 255,255,255,255,255,255

1310 DATA 255,255,255,255,255,255

1320 DATA 255,255,255,255,255,255

1330 DATA 255,255,255,255,255,255

1340 DATA 255,255,255,255,255,255

The alpha channel al ows a gradual mix between the background and the sprite pattern. Every pixel of the sprite is represented by one byte of the alpha channel. 0 means that the pixel of the sprite is completely transparent, and 255 means that the pixel of the sprite is completely opaque. Values in between determine the amount of mixing of the background and foreground.

04/23

35

This second example wil create a green underscore cursor sprite.

100 OPEN_OVER#3,flp1_under_spr

110 RESTORE

120 REPeat loop

130 IF EOF() THEN EXIT loop

140 READ x:BPUT#3,x

150 END REPeat loop

160 CLOSE#3

170 CURSPRLOAD flp1_under_spr

180 CURSPRON -1

1000 DATA 2

{header information as before}

1010 DATA 31

1020 DATA 0

1030 DATA 32

1040 DATA 0,6

1050 DATA 0,10

1060 DATA 0,3

1070 DATA 0,4

1080 DATA 0,0,0,20

1090 DATA 0,0,0,96

1100 DATA 0,0,0,0

1110 DATA 0,0,0,0

1120 DATA 0,0,0,0

1130 REMark Sprite

1140 DATA 4,4,4,4,4,4,0,0

{pattern data for sprite}

1150 DATA 4,4,4,4,4,4,0,0

{3 is green, & 4 is blue}

1160 DATA 4,4,4,4,4,4,0,0

{the blue could be any colour}

1170 DATA 4,4,4,4,4,4,0,0

{as it is never seen due to the}

1180 DATA 4,4,4,4,4,4,0,0

{alpha channel}

1190 DATA 4,4,4,4,4,4,0,0

1200 DATA 4,4,4,4,4,4,0,0

1210 DATA 4,4,4,4,4,4,0,0

1220 DATA 4,4,4,4,4,4,0,0

1230 DATA 3,3,3,3,3,3,0,0

1240 REMark alpha channel

1250 DATA 0,0,0,0,0,0

{al pixels of the sprite are}

1260 DATA 0,0,0,0,0,0

{transparent except the last line}

1270 DATA 0,0,0,0,0,0

1280 DATA 0,0,0,0,0,0

1290 DATA 0,0,0,0,0,0

1300 DATA 0,0,0,0,0,0

1310 DATA 0,0,0,0,0,0

1320 DATA 0,0,0,0,0,0

1330 DATA 0,0,0,0,0,0

1340 DATA 255,255,255,255,255,255

36

04/23

data types

variables

integer

Integers are whole numbers in the range -32768 to +32767. Variables are assumed to be integer if the variable identifier is suffixed with a percent %. There are no integer constants in SBASIC, so al constants are stored as floating point numbers.

syntax:

 identifier%

example:

i.

counter%

i .

size_limit%

i i.

this_is_an_integer_variable%

floating point

Floating point numbers are in the range +/- (10^-615 to 10^615), with 8 significant digits. Floating point is the default data type in SBASIC. Al constants are held in floating point form and can be entered using exponent notation.

syntax:

 identifier | constant

example:

i.

current _accumulation

i .

76.2356

i i.

354E25

string

A string is a sequence of characters up to 32766 characters long. Variables are assumed to be type string if the variable name is suffixed by a $. String data is represented by enclosing the required characters in either single or double quotation marks.

syntax:

 identifier$ | " text"

example:

i.

string_variables$

i .

"this is string data"

i i.

"this is another string"

name

Type name has the same form as a standard SBASIC identifier and is used by the system to name Floppy disk files etc.

syntax:

 identifier

example:

i.

flp1_data_file

i .

ser1e

binary

Binary values are represented as a sequence of zeros and ones, preceded by a percentage sign.

syntax:

% constant

example: i.

%1001

i .

%11001010

hexadecimal

Hexadecimal values are represented by a sequence of the numbers 0 – 9 and the letters A – F (to represent the values 0 – 15), preceded by a dol ar sign.

syntax:

$ constant

example:

i.

Ten = $A

i .

one_hundred = $64

i i.

PRINT PEEK($28000)

04/23

37

dev

virtual device

DEV is a defaulting device that provides up to 8 default search paths to be used when opening files. As it was designed to be dumped on top of QDOS it is not very clean, but, equal y, it is reasonably efficient.

Each DEV (DEV1 to DEV8) device is attached to a particular real device or a particular default directory on a real device.

Files on a DEV device can be OPENed, used and DELETEd in the same way as they can on the real device. Note that the DEV definitions are global.

Default directories for the DEV device may be set with the DEV_USE command.

The DEV device may be redirected with the DEV_USEN command.

Command

Function

DEV_USE

attach DEV device to a real directory

DEV_LIST

list DEV device al ocations

DEV_USE$

get DEV usage

DEV_NEXT

get the next DEV in a chain

DEV_USEN

rename DEV device

devices

A device is a piece of equipment on QPC2 (or the underlying PC) from which data can be received (input) and to which data can be sent (output).

Since the system makes no assumptions about the ultimate I/O (input/output) device which wil be used, the I/O device can be easily changed and the data diverted between devices. For example, a program may have to output to a printer at some point during its run. If the printer is not available then the output can be diverted to a Floppy disk file and stored. The file can then be printed at a later date. I/O on QPC2 can be thought of as being written to and read from a logical file which is in a standard device-independent form.

Al device specific operations are performed by individual device drivers special y written for each device on QPC2. The system can automatical y find and include drivers for peripheral devices which are fitted.

When a device is activated a channel is opened and linked to the device. To correctly open a channel device basic information must sometimes be supplied. This extra information is appended to the device name.

The file name should conform to the rules for a SBASIC type name though it is also possible to build up the file name (device name) as a SBASIC string expression.

In summary the general form of a file name is:

 identifier [information]

where the complete file name (including the extra information) conforms to the rules for a SBASIC identifier.

Each logical device on the system requires its own particular 'extra information' although default parameters wil be assumed in each case where possible.

define

 device := name

where the form of the device name is outlined below.

38

04/23

example for console device

Select Console Device

Underscore

Window Width

Separator

Height

Separator - read as AT

Window X co-ordinate

Separator

Window Y co-ordinate

Separator

length of keyboard type ahead buffer

con_ wX ha xX y _ k CON_ wX ha xX y _ k Console I/O

| wX h |

- window, width, height

| A xX y |

- window X,Y co-ordinate of upper left-hand corner

| k |

- keyboard type ahead buffer length (bytes)

default:

con_448x180a32x16_128

example:

OPEN #4,con_20x50a0x0_32

OPEN #8,con_20x50

OPEN #7,con_20x50a10x10

SCR_ wX ha xX y Screen Output

[wX h]

- window, width, height

[A xX y]

- window X, Y co-ordinate

default:

scr_448x180a32x16

example:

OPEN #4, scr_0x10a20x50

OPEN #5, scr_10x10

SER npftce

Serial (RS-232-C) Receive and Transmit

 n port number (1, 2, 3 or 4)

[p] parity

[f] handshaking

[t] translate

e – 7 bit + even

i - ignore flow control

d - direct output

o – 7 bit + odd

h – handshake CTS/DTR

t - translate

m – 7 bit + mark (1)

x - XON/XOFF

s – 7 bit + space (0)

[c] carriage return

[e] end of file

r - raw data

f - <FF> at end of file

c - <CR> is end of line

z – CTRL Z at end of file

a - <CR><LF> is end of line

<CR><FF> is end of page

default:

ser1htr (8 bit no parity with handshake, translate) example:

OPEN #3, ser1e

OPEN #4, serxdc

COPY flp1_test_file TO ser1c

04/23

39

SRX npftce

Serial (RS-232-C) Receive only

 n port number (1, 2, 3 or 4)

[p] parity

[f] handshaking

[t] translate

e – 7 bit + even

i - ignore flow control

d - direct output

o – 7 bit + odd

h – handshake CTS/DTR

t - translate

m – 7 bit + mark (1)

x - XON/XOFF

s – 7 bit + space (0)

[c] carriage return

[e] end of file

r - raw data

f - <FF> at end of file

c - <CR> is end of line

z – CTRL Z at end of file

a - <CR><LF> is end of line

<CR><FF> is end of page

default:

srx1htr (8 bit no parity with handshake, translate) example:

OPEN_IN #3, srx1e

OPEN #4, srxxdc

COPY srx1c TO flp1_test_file

STX npftce

Serial (RS-232-C) Transmit only

 n port number (1, 2, 3 or 4)

[p] parity

[f] handshaking

[t] translate

e – 7 bit + even

i - ignore flow control

d - direct output

o – 7 bit + odd

h – handshake CTS/DTR

t - translate

m – 7 bit + mark (1)

x - XON/XOFF

s – 7 bit + space (0)

[c] carriage return

[e] end of file

r - raw data

f - <FF> at end of file

c - <CR> is end of line

z – CTRL Z at end of file

a - <CR><LF> is end of line

<CR><FF> is end of page

default:

stx1htr (8 bit no parity with handshake, translate) example:

OPEN_NEW #3, stx1e

OPEN #4, stxxdc

COPY flp1_test_file TO stx1c

PAR ntce

Paral el Port (transmit only)

 n port number (1, 2, 3 or 4)

[t] translate

[c] carriage return

[e] end of file

d - direct output

r - raw data

f - <FF> at end of file

t – translate

c - <CR> is end of line

z – CTRL Z at end of file

a - <CR><LF> is end of line

<CR><FF> is end of page

default:

par1tr (translate, raw data)

example:

OPEN_NEW #3, par1da

OPEN #4, ser

COPY flp1_test_file TO par1

PRT

Printer port (either SER or PAR)

default:

none

example:

OPEN_NEW #3, prt

COPY flp1_test_file TO prt

40

04/23

NUL t

Nul device, throw away output, provide dummy input

[t] type

p – waits (forever or until the specified timeout) on any input or output operation f - emulate a nul file. Any attempt to read data return an End of File Error as wil any file positioning operation. Reading the file header wil return 14 bytes of zero (no length, no type).

z - emulate a file fil ed with zeros. The file position can be set to anywhere. Reading the file header wil return 14 bytes of zero (no length, no type).

l - emulate a file fil ed with nul lines. The file appears to be ful of the newline character (10). The file position may be set to anywhere. Reading the file header wil return 14 bytes of zero (no length, no type).

default:

nul

example:

OPEN #7, nulz

OPEN #4, nuli

COPY ser1 TO nul

PIPE _name _ l

Two ended Pipe device (first in, first out)

 name

pipe name

[l]

indicates pipe length in bytes (default 1024 bytes)

default:

no default

example:

OPEN_NEW #7, pipe_alpha

OPEN_NEW #4, pipe_beta_2048

OPEN_IN #5, pipe_beta

HISTORY _name_l

Single ended Pipe device (last in, first out)

[name]

public history name

[l]

indicates pipe length in bytes (default 1024 bytes)

default:

no default

example:

OPEN #7, history

OPEN #4, history_messages_2048

OPEN #5, history_512

TCP_ host: port

Internet Protocol device, Stream socket

[host]

IP address

[port]

port number to use

host and port are optional, and can be given by numeric value, or name default:

no default

example:

OPEN_IN #4, “tcp_www.google.co.uk:http”

OPEN #5, tcp_

OPEN_NEW #6,“tcp_192.168.0.5:49000”

comment:

The type of OPEN used is important in determining the type of connection that is made. See other documentation on the use of the IP device driver.

04/23

41

UDP_ host: port

Internet Protocol device, Datagram socket

[host]

IP address

[port]

port number to use

host and port are optional, and can be given by numeric value, or name default:

no default

example:

OPEN_IN #4, “udp_news.uni-stuttgart.de:nntp”

OPEN #5, udp_

OPEN_NEW #6,“udp_129.69.1.59:119”

comment:

The type of OPEN used is important in determining the type of connection that is made. See other documentation on the use of the IP device driver.

SCK_

Internet Protocol device, Generic socket

default:

no default

example:

OPEN #5, sck_

comment:

SCK_ does not open a socket on the PC, just a SMSQ/E channel.

See other documentation on the use of the IP device driver.

DEV n _ name

Defaulting file accessing device

 n

Dev drive number

 name

Dev drive file name

default:

no default

example:

OPEN #9, dev1_data_file

OPEN #9, dev5_test_program

COPY dev2_test_file TO scr_

FLP n _ name

Floppy drive File Access

 n

Floppy drive number

 name

Floppy drive file name

default:

no default

example:

OPEN #9, flp1_data_file

OPEN #9, flp1_test_program

COPY flp1_test_file TO scr_

42

04/23

RAM n _ name

RAM (virtual) drive File Access

 n

RAM drive number

 name

RAM drive file name

default:

no default

example:

OPEN #9, ram1_data_file

OPEN #9, ram1_test_program

COPY ram1_test_file TO scr_

WIN n _ name

Winchester hard disk drive File Access

 n

WIN drive number

 name

WIN drive file name

default:

no default

example:

OPEN #9, win1_data_file

OPEN #9, win1_test_program

COPY win1_test_file TO scr_

QSOUND cT tF fP pV v_buffer AY-3 sound generator Transmit only

 c

chip number (1 or 2)

[t]

chip type (0 or 1)

default 0

[f]

chip clock frequency (0 to 32767)

default 17744

[p]

speaker configuration (0 to 6)

default 1

[v]

master volume (0 to 255)

default 255

buffer size

default 10

default:

qsound1T0F17744P1V255_10

(chip 1, type 0, frequency 1.7744MHz, speaker configuration 1, master volume maximum, 10 byte buffer)

example:

OPEN#3,qsound

OPEN#4,qsound2F20000V128

OPEN#4,qsound1F1500V250_50

Keyword

Function

OPEN

initialise a device and activate it for use

CLOSE

deactivate a device

COPY

copy data between devices

COPY_N

copy data between devices, but do not

copy a file's header information

EOF

test for end of file

WIDTH

set width

04/23

43

direct

command

SBASIC makes a distinction between a statement typed in preceded by a line number and a statement typed in without a line number. Without a line number the statement is a direct command and is processed immediately by the SBASIC command interpreter. For example, RUN is typed in on the command line and is processed, the effect being that the program starts to run. If a statement is typed in with a line number then the syntax of the line is checked and any detectable syntax errors reported. A correct line is entered into the SBASIC program and stored. These statements constitute a SBASIC program and wil only be executed when the program is started with the RUN or GOTO command.

Not al SBASIC statements make sense when entered as a direct command, for example, END

FOR, END DEFine, etc

directories

In SMSQ terminology, a 'directory' is where the system expects to find a file. This can be as simple as the name of a device (e.g. FLP2_ the name of floppy disk drive number 2) or be much more complex forming part of a 'directory tree'.

For example: the directory FLP2_ could include directories JOHN_ and OLD_ (note: al directory names end with an '_'), and JOHN_ could include files DATA1 and TEST).

FLP2_

JOHN_

OLD_

DATA1

TEST

This shows another characteristic of the 'directory tree': it grows downwards. The complete SMSQ filename for DATA1 in this example is FLP2_JOHN_DATA1. (You may have come across the terms 'pathname' or 'treename': these refer to the same thing as a SMSQ filename.) One unusual characteristic of the SMSQ directory structure is the absence of a formal file name

'extension'. This is not strictly necessary as 'extensions' (e.g. _aba for ABACUS files, _asm for assembler source files etc.) are treated as files within a directory.

This can be il ustrated with the case of an assembler program TEST, processed using the GST

macro assembler and linkage editor. The assembler source file (TEST_ASM), the listing output from the assembler (TEST_LIST), the relocatable output from the assembler (TEST_REL), the linker control file (TEST_LINK), the linker listing output (TEST_MAP) and the executable program produced by the linker (TEST_BIN) are al treated as files within the directory TEST_.

FLP2_

JOHN_

TEST_

ASM

LIST

REL

LINK

MAP

BIN

44

04/23

SMSQ/E provides facilities to set default directories. The defaults are available for al filing system operations. A default may be set to any level of complexity and gives a starting point for finding a file in the tree structure. Thus, in this example, if the default is FLP2_, then JOHN_TEST_ASM wil find the assembler source. If the default is FLP2_JOHN_, then TEST_ASM wil find it, while the ful filename FLP2_JOHN_TEST_ASM wil find the file regardless of the default.

Command

Function

DATA_USE

set data default used by LOAD, OPEN etc

PROG_USE

set program default used by EX/EXEC etc

DEST_USE

set destination default used by COPY, RENAME etc

directory

devices

Directory devices handle individual files, organised in directories (with at least one root directory). The drive RAM is used to access the RAM-disk, FLP is used to access the floppy disk, and WIN is used to access the hard disk. More details can be found in the hardware-dependent sections of this manual. SMSQ/E wil read and write from and to QL floppy disk (DD

and HD, if your hardware permits).

In addition, SMSQ/E comes with in built drivers to recognise, (PC) DOS floppy disks, and (Atari) TOS floppy disks (DD and HD).

The SBASIC command DIR has been extended to show density and format of a medium. There are now new functions, which al ow you to fetch this information, see the DMEDIUM_xxx range of functions.

If you insert a QDOS 720k floppy disk into flp1_ and type: DIR flp1_

Then you wil see the fol owing (or similar) output on the screen: diskname QDOS DD

720/1440 sectors

...directory ...

If you insert a DOS high-density disk and ask for the directory again, you should see: DISKNAME MSDOS HD

720/2880 sectors

...directory ...

04/23

45

DOS

device

The DOS device has been created to transfer data between the Windows and the SMSQ/E

environment. Using the device you can directly browse your PC hard disks (or network drives or CD-ROMs or whatever), read and write files.

Please note that the DOS device is NO replacement for the WIN device (it never was intended to be), al SMSQ header information gets lost on DOS drives, therefore you cannot store executable code on them.

You can use this device in the same way as any other QPC2 directory device to access and exchange files between Windows and SMSQ/E as easy as never before. The usual restrictions imposed by the general QDOS file naming convention apply, i.e. the length of the directory +

filename is limited to 36 characters. Names longer than that won’t show up in the directory lists!

Therefore, it is a good idea to place files, which you want to access from both SMSQ/E, and Windows only one or two directory levels deep or change the base of one DOS drive directly below the desired directories.

Many filenames that are valid under SMSQ/E are not valid on Windows. The offending characters (e.g. *, /, ? etc. or filenames with spaces at their end) are translated into other, valid ANSI characters. This conversion works quite wel , but you are advised to use valid filenames wherever possible.

One problem with the SMSQ/E way of accessing files is that the “_” separator can be a valid part of a name or a directory separator. Therefore the relation SMSQ/E filename -> Windows filename is ambiguous. This can cause some problems:

Let’s say you have two directories named C:\QL\STUFF\ and C:\QL\STUFF_NEW\ and you want to create a file cal ed DOS1_QL_STUFF_NEW_BRANDNEW.TXT. Where does that file belong? It could mean any of the fol owing choices:

C:\QL_STUFF_NEW_BRANDNEW.TXT

C:\QL\STUFF_NEW_BRANDNEW.TXT

C:\QL\STUFF\NEW_BRANDNEW.TXT

C:\QL\STUFF_NEW\BRANDNEW.TXT

Probably the last one is the one you intended it to be, but how should QPC2 now? The easy solution is not to use underscores in directory names. But if you can’t help it, it gets essential to know how the DOS device works.

Since v3.02 there is a new algorithm which is based on the simple assumption that if you have a directory cal ed “QL_STUFF” you won’t also create “QL\STUFF”.

The basic principle is that the algorithm always searches for the longest consecutive parts of the name. In the above example QPC2 would begin with searching for any directory starting with

“C:\QL”. If there is none the process is complete and the result is simply “C:\ QL_STUFF_NEW_BRANDNEW.TXT”. Otherwise it wil look for any directory starting with “C:\ QL_STUFF” next. Again, if there is one, QPC2 wil try “C:\QL_STUFF_NEW” and so on.

If not found, however, it wil test whether the last successful part (“C:\QL_STUFF”) is itself a directory. If it is, it is considered as a part of the filename and al future searches use it as their base (i.e. next step being “C:\QL_STUFF\NEW”). If not the search terminates with the result again being “C:\QL_STUFF_NEW_BRANDNEW.TXT”.

If this sound too confusing or too badly explained (probably both) just remember one thing: never use “_” within directory names.

Final y please note that you cannot use RENAME to rename files on a DOS drive. SMSQ/E

al ows you to rename files from one directory to another one, which is not compatible with the DOS way of renaming files. If you want to rename a file, you need to COPY it to a new location and DELETE the old file.

46

04/23

DOS disks

You can load files from (PC) DOS disks as if they were QPC2 disks. You can save files to DOS

disks, but you have to make sure that the filename does match the DOS naming convention, i.e.

up to eight characters, ful stop, up to three characters for the extension.

Al the fil ing system cal s wil work on DOS disks, you can create subdirectories, delete files.

You cannot, however, use the FORMAT command to format a floppy disk to DOS format. It wil always be the preferred (QDOS) format.

The DOS fil ing system does not have the concept of different file types. Different file types are distinguished by their filename extension. Therefore, QDOS "executable" programs (file type 1) cannot be handled the way they are handled on a QDOS disk. From SMSQ/E version 2.87 on, you can copy executable files onto DOS disks, which can later be executed from this disk. They wil get a special extension '.EXn' where n is the number which specifies the dataspace (which is usual y held invisible to the user in the file header): it is 512*2^n. This extension wil be invisible in SMSQ/E, but wil be seen in DOS. Example (assuming flp1_ contains a DOS disk): COPY win1_CLOCK TO flp1_CLOCK

Wil create a file flp1_CLOCK.EX1 on the DOS disk. You can stil refer to it as flp1_CLOCK, it wil be shown in the directory as flp1_CLOCK only, but if you look at this disk on a DOS

computer, then you wil see the real name. Extensions of executable files wil be removed automatical y, e.g.

COPY win1_PROGRAM_bin TO flp1_PROGRAM.bin

Wil not create a file flp1_PROGRAM.bin, it wil create a file flp1_PROGRAM.EX3, but you have to refer to it as flp1_PROGRAM only, e.g.

EX flp1_PROGRAM

As the filename extension is lost anyway even if you copy the file back, we suggest that you do not specify an extension. This wil also make sure that you do not end up with files having the same filename.

04/23

47

error

handling

Errors are reported by SBASIC in a standard form:

At line line_number : statement_number error_text Where the line number is the number of the line where the error was detected, statement number is the number of the statement in the line, and the error text is listed below.

(1) incomplete

An operation has been prematurely terminated (or break has been pressed).

(2) invalid job ID

An error return from SMSQ/E relating to system cal s control ing multitasking or I/O.

(3) insufficient memory

SMSQ/E and/or SBASIC has insufficient free memory.

(4) value out of range

Usual y results from attempts to write outside a window or an incorrect array index.

(5) buffer full

An I/O operation to fetch a buffer ful of characters fil ed the buffer before a record terminator was found.

(6) invalid channel ID

Attempt to read, write or close a channel which has not been opened.

Can also occur if an attempt to open a channel fails.

(7) not found

File system, device, medium or file cannot be found.

SBASIC cannot find an identifier. This can result from incorrectly nested structures.

(8) already exists

The file system has found an already existing file with the same name as a new file to be opened for writing.

(9) is in use

The file system has found that a file or device is already exclusively used.

(10) end of file

End of file detected during input.

(11) medium is full

A device has been fil ed (usual y Floppy disk).

(12) invalid name

The file system has recognised the name but there is a syntax or parameter value error.

In SBASIC it means a name has been used out of context. For example, a variable has been used as a procedure.

(13) transmission error

RS-232-C parity error. The IP Device driver could not find the requested IP Address on the host systems network.

(14) format failed

Attempted format operation has failed, the medium is possibly faulty (usual y a Floppy disk).

48

04/23

(15) invalid parameter

There is an error in the parameter list of a system or SBASIC procedure or function cal .

An attempt was made to read data from a write only device.

(16) medium check failed

The medium (usual y a Floppy disk) is possibly faulty

(17) error in expression

An error was detected while evaluating an expression.

(18) arithmetic overflow

Arithmetic overflow division by zero, square root of a negative number, etc.

(19) not Implemented

(20) write protected

There has been an attempt to write data to a shared, or write protected file.

(21) invalid syntax

A SBASIC syntax error has occurred.

(22) PROC/FN cleared

This is a message which is for information only and is not reporting an error. It is reporting that the program has been stopped and subsequently changed forcing SBASIC to reset its internal state to the outer program level and so losing any procedure environment which may have been in effect.

(23) access denied

A system resource was not available. The IP Device driver could not make a connection to the requested Port, on a computer, on the host systems network.

error reporting

The line number where an error occurred, is returned by ERLIN. And the error number by ERNUM.

REPORT wil report the description of the last error encountered.

ERT can be used with functions which return an error code, in order to al ow the program to stop, or continue.

error recovery

After an error has occurred the program can be restarted at the next statement by typing CONTINUE

If the error condition can be corrected, without changing the program, the program can be restarted at the statement, which triggered the error. Type RETRY

error handling

Error handling is invoked by a WHEN ERROR clause. When an error is encountered, processing is passed to the commands in the WHEN ERROR clause. Within the WHEN

ERROR clause the type of error can be tested for, and appropriate actions can be taken.

04/23

49

expressions

SBASIC expressions can be string, numeric, logical or a mixture: unsuitable data types are automatical y converted to a suitable form by the system wherever this is possible.

define

 monop := | +

| -

| NOT

 expression := | [monop] expression operator expression

| (expression)

| atom

 atom := | variable

| constant

| function [(expression *|, expression *)]

| array_element

 variable := | identifier

| identifier%

| identifier$

 function := | identifier

| identifier%

| identifier$

 constant := | digit * [digit] *

| *[digit] *, *[digit]*

| *[digit] * [.] *[digit]* E *[digit]*

The final value returned by the evaluation of the expression can be integer giving an integer_expression, string giving a string_expression or floating point giving a floating expression. Often floating point and integer expressions are equivalent and the term numeric_expression is then used.

Logical operators can be included in an expression. If the specified operation is true then a one is returned as the value of the operation. If the operation is false then a zero is returned. Though logical operators can be used in any expression they are usual y used in the expression part of an IF statement.

example: i. test_data + 23.3 + 5

i . "abcdefghijklmnopqrstuvwxyz"(2 TO 4)

i i. 32.1 * (colour = 1)

iv. count = -limit

50

04/23

Extended Environment

The Parts of the Extended Environment

The Extended Environment comes as four loosely connected parts. The Pointer Interface, the Thing System, the Window Manager, and the HOTKEY System 2.

The Pointer Interface is an extended version of the QDOS CONsole driver which accepts user input from a "pointing device", usual y a "mouse" as wel as from the keyboard. The user's input is directed to the program that he wishes to use by pointing to that program with a "pointer" (an arrow or other pointing symbol which appears on the screen). The Pointer Interface also keeps the display tidy when there is more than one Job trying to write to the display.

Programs do not have to be written special y for the Pointer Interface; al the window save and restore operations are done automatical y.

The Window Manager is a set of utility routines that provides menu handling facilities to programs which have been written special y for the Extended Environment. These facilities create a user interface, which is reasonably uniform and consistent from program to program, even where these programs come from completely different suppliers.

The HOTKEY System 2, in contrast, is entirely under the user's control. A Hotkey can be used to Execute a program, to pick a one of the Jobs executing so that you can work with it, to stuff predefined strings into the keyboard queue, to recal the last line typed or to transfer strings from one program to another.

The standard system incorporates SBASIC functions to add and remove Hotkeys, but, as al the operations required to control the HOTKEY System 2 are built into the Hotkey Thing (Thing!! of al the parts of the Extended Environment, Things are the simplest and most confusing to the uninitiated), there is no problem in providing the same control through other programs. QPAC 2, for example, provides some facilities for users to access the HOTKEY System 2.

The Thing System is something, which most users do not need to bother themselves with. The Thing System exists to make it much easier for software developers to write programs which communicate cleanly with programs from other suppliers. There is no direct user control over the Thing System, but for those who might be interested, here is some background information.

 SMSQ/E al ows Jobs to communicate directly with each other without the need to pass the information through "pipes". They can do this by sharing some area of the computer's memory.

 To maintain the self-cleaning aspects of the SMSQ operating system, the shared memory and the communicating Jobs wil normal y need to be owned by the same Job. If this owner Job, is removed, the communicating Jobs wil be removed as wel as the shared memory. Thus the system is kept clean.

 The Thing System is a means of defining and control ing areas of shared memory. A Thing can be used to transfer data between Jobs, which are completely independent, and these Jobs do not need to be executing at the same time. A Thing can be permanent until removed, or it can be owned by a Job. When a Job owning a Thing is removed from the computer, then the Thing is also removed by SMSQ/E at the same time. If there are any Jobs using a Thing, which is removed from the computer, then the Jobs wil be removed.

They are cal ed Things because they can be almost anything. The Window Manager should be a Thing, but it was written before Things were implemented. HOTKEY System 2 is a Thing. The programs, which form QPAC 2 are Executable Things. Things can be used to control access to sound synthesizers, to control the layout of the display (e.g. the Button Frame of QPAC 2), to provide functions which can be accessed from any programming language (e.g.

FILE_SELECT$ from Jochen Merz's MENU extensions) or almost anything else.

04/23

51

The Pointer Interface

The main purpose of the Pointer Interface is to al ow the user to organise the display in such a way as to make it easier to see and control a large number of Jobs running in the computer at any time.

The Pointer Interface is an extended QDOS CONsole driver, which accepts user input from a

"pointing device", usual y a "mouse", as wel as from the keyboard. And the user's input is directed to the Job that he wishes to use by pointing to that Job's windows with a "pointer" (an arrow or other pointing symbol, which appears on the screen).

This would not be very useful if there were many Jobs with windows which overlapped in the usual confused way, as it would be impossible to tel which of these Jobs was the intended recipient of the user's instructions. To avoid this problem, the Pointer Interface ensures that, when you have two or more Jobs with overlapping windows, the windows belonging to one of these Jobs wil appear to be on top of the other Jobs' windows. It is the top Job that wil get the user's keystrokes and mouse button presses.

If the top Job wil not accept Pointer input, but is waiting for the user to type on the keyboard.

Then the pointing symbol wil change to a letter K. If, for any reason, the top Job wil not accept any entry from the keyboard or mouse, the pointing symbol wil change to a "No Entry" sign.

The Cursor Keys and the Mouse

The cursor keys can usual y be used to move the pointer around the display in place of using the mouse. You may find that it is easier to work with some programs if this facility is suppressed. There are two commands, which can be used to turn the cursor key control off and on again.

CKEYOFF Turn cursor key control off

CKEYON and back on again.

The mouse can also be used to generate cursor key strokes, for programs which accept cursor key input, by pressing the left hand button and moving the mouse while holding it down.

Locked Windows

To keep the screen tidy, if a Job's windows are partly or completely covered by another Job's windows, then the lower Job's windows are "locked". If a Job tries to write to a locked window, or to read keystrokes through a locked window, then it wil be suspended by SMSQ/E (not by the Pointer Interface). If the pointer is over a locked window, the pointing symbol changes to a picture of a padlock. The padlock wil also appear if the display is frozen (e.g. by pressing CTRL

F5).

Picking

There are various ways in which a Job can be "Picked", either to unlock its windows so that the Job can write to them, or to direct the keyboard queue to that Job.

If part of a Job is visible, then you can point to the Job and Pick it by pressing the left hand mouse button or space bar. You can also use the right hand button or ENTER key, but this also generates a "Wake Event" (see under "Events").

It is possible to bring the Job at the bottom of the pile of windows to the top by pressing CTRL

and C (the standard SMSQ/E keyboard switching keystroke).

Final y, a specific Job can be Picked to the top by any Job written to use the Pointer Interface extended operating system entry point IOP.PICK. In particular, Jobs can be Picked using the Pick program in QPAC 2 or using a Hotkey through the HOTKEY SYSTEM 2.

52

04/23

Unlockable Windows

It is possible to define a Job's windows to be "unlockable". These windows are kept outside the control of the Pointer Interface and thus are every bit as badly behaved as the standard QDOS

CONsole driver windows. This means that, for example, it is possible to create a clock program which writes the time and date into a spare hole in the Quil display. Unfortunately, it is unlikely that other programs wil have a spare hole in exactly the same place and such a clock program is of limited use as it wil make rather a mess of any other programs which are used at the same time as Quil .

The HOTKEY System 2 includes facilities for executing programs with unlockable windows.

 There is a clean solution to this problem. If you wish to have two Jobs writing to the same set of windows, so that both Jobs are locked and unlocked together, the window used by the clock (or other similar program) should be owned by the other Job. This is the solution used by the Calendar program in QPAC 1. If you are writing a program in SBASIC, and you wish to have a clock linked to the program, then you can do this by opening a window where you wish the clock to be, and executing the clock in that window.

Primary and Guardian Windows

It is common for Jobs to have more than one window open at a time. To keep things simple, the Pointer Interface defines a "Primary Window" area. The Primary Window area of each Job is used to determine which Jobs overlap on the display.

For true Pointer Environment Jobs, the Primary Window is defined by a special operating system cal , and, although the Primary Window can be moved or re-sized, other windows owned by the Job must be within the Primary Window area. For other programs it is just the smal est rectangular area which encloses al of the Job's windows. If these windows change in size or position, then the primary window may change as wel . In turn, this may cause parts of other Job's windows to be restored or even unlocked. This may be desirable (e.g. where a modest Job is being moved around the display) or it can have some unpleasant effects.

To prevent a Job's Primary Window changing size, it is possible to define a "Guardian Window"

which is opened for the Job, before the Job itself starts executing. The HOTKEY System 2 can be used to execute programs with Guardian Windows. A Guardian Window wil be the Primary Window for the Job, and must be defined to cover the whole of the area of the display that wil be used by the Job. In most cases this Guardian Window wil cover the whole of the Display.

Restoring Windows

When a Primary Window is locked because another Primary Window is opened, expanded or moved on top of it, the whole Primary Window area is saved.

When part or al of a Job's Primary Window becomes visible as a result of other Primary Windows being moved, Primary Windows being closed or the Job itself being Picked, the Pointer Interface wil restore those parts of the Primary window that have become visible. Unlike most window environments, where it is the responsibility of each Job to maintain its own windows, this is done by the Pointer Interface without any co-operation from the Job. This method, therefore, works as wel with Jobs that are written in ignorance of the Pointer Interface as it does with Jobs that are written to take advantage of it Events

To improve the efficiency of the system, the Pointer Interface provides an "Event Vector" for programs using the Pointer. These programs do not need to keep on checking the position of the Pointer or the state of the mouse buttons. Instead, these programs wil suspend themselves until an Event occurs, such as the Pointer moving into the window or a key or mouse button being pressed. It is up to each program to interpret these Events. The Window Manager provides a uniform response to these Events.

04/23

53

The Pointer Interface and Badly Behaved Software In principle, any wel written software can be "multitasked" under SMSQ/E without any additional software and without any real problems. Al you need to do is to EXEC the programs you wish to use (EXECing new programs and quitting the ones already executing whenever you wish).

When you wish to direct the keyboard input to another Job, just press CTRL and C until you get to it. The screen can get a little untidy, but using the Pointer Interface can cure that.

In practice, there are several problems, one of which can occur in both wel written and badly written software.

The SMSQ/E CONsole driver assumes that al Jobs requiring input from the user wil have an active keyboard cursor. This is not necessarily so in keyboard based graphics programs which bypass the CONsole driver and read the keyboard directly. (This enables them to detect cursor key presses at the same time as other keystrokes, a facility not available through the CONsole driver.) As these direct keyboard reads bypass the CONsole driver, it is not possible to stop such Jobs reacting to keystrokes intended for other Jobs. It is possible to give this type of job a Guardian Window with a "Freeze" option. When the Job is buried by another Job, the program is suspended, thus preventing it from stealing the input intended for another program.

There is a similar, but less serious, problem with menu based programs which read the keystrokes through a CONsole which does not have a cursor. Although the Psion programs have a visible cursor, they use the trick of reading though a special CONsole which does not have a cursor. Thus, without the Pointer Interface you cannot use CTRL C to switch the keyboard input to one of these menu based programs or one of the Psion programs. With the Pointer Interface you can use CTRL C to switch the keyboard input to any Job which reads the keyboard through the CONsole driver.

 So much for the type of problems for which there is sometimes some justification, now we come to the nasty bits.

In addition to their suppression of CTRL C, the Psion programs have a number of other nasty tricks to play on unsuspecting users. The first has nothing to do with the display: when Quil , or one of the other Psion programs starts executing, it grabs most of the available memory. It may not need al this memory, but doing this ensures that there is not enough memory left for any other program to be executed. It also means that there is not enough memory for a window save area to be al ocated by the Pointer Interface. The HOTKEY System 2 includes facilities to execute the Psion programs in such a way that the amount of memory they use is limited.

The next nasty trick is that the Psion programs make a large number of unnecessary operating system cal s to set the display MODE. The Pointer Interface can survive this, but it can be rather annoying for the user.

Their worst trick is writing directly to the display. In the case of the Psion programs, this trick performs no useful function and the harmful side effects can be minimised by the use of a Guardian window. There are programs which are much worse, but even so, some of these wil work if they are executed within a Guardian window with the Freeze option which wil stop them writing to the display (or doing anything else!) while they are buried.

There are two types of program which are sure to give problems. The first is the type of program which is so badly behaved that it is unable to share the machine with another copy of itself. The second is the type of program which pokes values directly into the operating system data structures.

54

04/23

The Window Manager

The Window Manager provides a set of utility routines, which simplify the handling of menus and pul -down windows. There is no reason why any particular program should use the window manager, but using it provides a reasonably uniform user interface to applications programs.

The fol owing description applies to standard menu windows. Other types of windows should be similar, but there may be some subtle differences.

A window set up by the window manager has a number of different parts. The first is general information: this could be lines or borders dividing the window to improve the clarity, or explanatory text or icons. Then there are the "loose menu items": so cal ed because they are not tied down to any fixed organization and can be put anywhere in the window. Final y, there are the "sub-windows" (These are cal ed "application sub-windows" within the Window Manager to distinguish them from the "information sub-windows" which just contain the general information). Simple pul -down menus may not have any sub-windows, whereas in menus that include lists of items to select (e.g. lists of files) the sub-window may wel be the most important part.

Selecting Menu Items

A menu comprises a number of "items". Items can be selected by pointing to the item using the cursor keys or mouse, and then pressing the space bar, ENTER or one of the mouse buttons.

The space bar is equivalent to the left button: pressing this is termed a "HIT". The ENTER key is equivalent to the right button: pressing this is cal ed a "DO".

Items have one of three states: "unavailable", "available" or "selected". Most items wil be available, selected items are shown using a highlight colour combination, while unavailable items are shown in a reduced visibility colour combination.

When you point to an item, a border wil appear around it: this indicates that it is the "current item". This is the item which wil be HIT or DONE. If the item is unavailable, then there wil be no effect. If the item is available, then the item wil be set to the selected state, and the action associated with the item wil be carried out. If the item is selected, then a HIT wil make the item available again, while a DO wil keep the item selected and then carry out the associated action.

The distinction between a HIT and a DO depends on the operation. Very often a HIT wil merely change the state of the item, while a DO wil do the action. For other items HIT and DO are similar but DO is more forceful. For some items there is no distinction between them.

You can select several items in a sub-window menu by holding the mouse button down and moving (slowly) through the menu. As the pointer moves into each item, it wil be selected.

Single Keystroke Selection

It is also possible to select items using a single keystroke. This key wil often be the first letter of the item name (if it has a name), it may be shown in the menu as a symbol close to the item, or you may need to memorize it from the manual.

The effect of single keystroke selection also depends on the operation. For an item within a sub-window, it may just move the pointer to the item, making it the current item, or it may move it to the item and HIT or DO it. For Loose menu items, it wil HIT or DO the item without moving the pointer: this stops the pointer being moved out of the current sub-window.

Current sub-window? Yes, the Window Manager al ows there to be several sub-windows in one window. Usual y, items in a sub-window can only be selected by single keystroke if the pointer is in that sub-window. So that keystroke selection of sub-window menu items can be used from anywhere in the window, each sub-window has a selection keystroke. To move the pointer into the sub-window, press the sub-window selection keystroke: you can then select items within the sub-window by single keystroke.

04/23

55

Pan and Scroll

Items in a menu sub-window are arranged in rows and columns. There may be more items in a menu sub-window than can be displayed in the available space. If this happens, the window wil be marked as pannable (you can move the contents sideways), or scrol able (you can move the contents up and down). The window can be both pannable and scrol able, but this is usual y very inconvenient.

A window is marked as pannable or scrol able by including rows of arrows within the window, or by putting a pan or scrol bar to the right of or below the window. The pan or scrol bar includes a block which indicates the (size and) position of the visible section of the menu within the complete menu. If the block in a scrol bar starts halfway down the scrol bar, then the first visible row in the menu is about half way down the list or rows in the complete menu.

To pan or scrol by one column or row, you can press ALT and a cursor key. HITting an arrow row wil have the same effect. To pan or scrol by the width (less one column) or height (less one row) of the window, you can press ALT, SHIFT and a cursor key. DOing an arrow row wil have the same effect.

To pan or scrol directly to a position in the menu, move the pointer to the pan or scrol bar and HIT the bar at the position required. If you keep your finger on the left button or the space bar, you can "drag" through the menu using the mouse or cursor keys. To make this simpler for keyboard users, the sub-window selection keystroke wil also move the pointer from inside the sub-window to the pan or scrol bar.

Split and Join

Some menu sub-windows can be split into two or more sections. Each section can then be panned or scrol ed independently. To split a window, point to the pan or scrol bar where you wish to split to be made and DO it. The window may be re-joined by DOing on the split.

Standard Loose Items

There are a number of standard loose menu items and keystrokes. The most common are the F1 (Help), F3 (Command) and ESC (Escape - leave the menu). As these are the most common, they also tend to be the most variable. Help may be available using F1, even if there is no Help item visible. F3 or the command item wil usual y give access to a further (pul -down) menu.

ESC can mean leave the menu, leave the menu without saving any changes made or leave the program altogether. If in doubt, try it.

There is a set of window control items which are al selected by CTRL and a function key (F1 to F4). These keystrokes are denoted CF1, CF2, CF3 and CF4. The operations wil only be available if the appropriate item is available.

CF4 Move

CF3 Resize

CF2 Sleep

CF1 Wake

To move the window, HIT or DO the Move item or press CTRL and F4. The window can then be moved using the mouse or cursor keys. The pointing symbol changes to the Move symbol, and it may happen that the only thing that moves while you are positioning the window is this symbol. When you have moved far enough, HIT or DO wil complete the operation.

Resize is similar to move: HIT or DO the Resize item, or press CTRL and F3, and you can then change the window size.

The purpose of the Sleep item is to tuck the Job away to bed to free some of the display. This is especial y useful for Jobs with large windows. The Job wil shrink its window to a smal "button", and wait until it is woken up.

56

04/23

The Wake item is used to create a "wake event" to the Job. If the item is a button, the wake event wil make it re-create its windows. If the windows are already set up, the wake event wil make the Job refresh the menus. This is useful for Jobs, which display information about the system. The Files menu of QPAC 2, for example, wil re-read the directory of the appropriate disk when it receives a wake event.

A wake event is also created when a Job is picked by a DO rather than a HIT, and it is possible to send a Job a wake event using the HOTKEY System 2.

The HOTKEY System 2

The HOTKEY System 2 provides Hotkey facilities. A Hotkey is a key, which is pressed to cause an action, which is independent of the program with which you are working at the time. For example, if you have a Hotkey, which pops up a telephone directory, then it does not matter whether you are in the middle of using a word processor, or doing your accounts, you press the Hotkey and up pops the directory. The keystroke is stolen by the HOTKEY System 2, and so the program you are working with, remains blissful y unaware that anything has happened.

Using HOTKEY System 2, the ALT key is used to indicate that a keystroke may be a Hotkey.

This operates in the same way as the CTRL and SHIFT keys and may be used in combination with either (or both) to define up to 128 Hotkeys.

Hotkey Operations

There are many different operations which may be carried out using Hotkeys. To make it even more flexible, there is one operation that al ows any code to be added to HOTKEY System 2. In this manual, however, we wil describe only those operations which can be set up using the SBASIC extensions which are incorporated into HOTKEY System 2.

Three Hotkeys are set up with the HOTKEY System 2. These are intended to save you time and effort by doing some typing for you.

ALT ENTER

recal s the last line you typed into the current keyboard queue (and the line before that, and so on).

ALT SPACE

copies the current " Stuffer Buffer" into the current keyboard queue.

ALT SHIFT SPACE copies the previous " Stuffer Buffer" into the current keyboard queue.

(The file name is put into the Stuffer Buffer by QPAC 2 when a file is Viewed or by QD when a file is saved. Other programs put whatever they wish into the Stuffer Buffer, and you can set the Stuffer Buffer within your own SBASIC programs with the HOT_STUFF command. You can read it programatical y using the HOT_STUFF$ function) You can also set up Hotkeys to copy predefined strings into the current keyboard queue. This can be useful for common phrases such as "Yours sincerely" or long command sequences such as " F3 P D ENTER N P" which prints a spreadsheet from Abacus.

The second group of Hotkeys is concerned with executing and Picking programs. Hotkeys can be set up execute programs either from file, or from Executable Things. You can define Hotkeys which wil Pick programs which are already executing, and Hotkeys which wil Wake programs or Executable Things.

Using one of this second group, you can use a Hotkey to pop up a program you want to use, on top of the program you are using at the time.

04/23

57

How Hotkey System 2 works

 Al the Hotkey operations are performed by a Job cal ed HOTKEY. There is a smal task which examines the keyboard queue after a keystroke has been put into it. When you press an ALT

 key combination which has been set up as a Hotkey, this task wil pass a special Event to the HOTKEY Job which wil leap into action and do whatever has been specified. If the attempt fails (possibly because there is not enough memory) the HOTKEY Job wil burp and retire into the background again. If there is no room in the current keyboard queue, then Hotkeys, like any other keystroke, wil get lost.

Setting Hotkeys Using SBASIC

Using Hotkeys is very simple, but unfortunately, you do have to set them up first. HOTKEY

System 2 includes a number of SBASIC functions to enable Hotkeys to be set up, changed and removed by SBASIC programs. Using functions, instead of procedures, enables error checking to be carried out simply, and any corrective action taken. The HOTKEY System 2 functions (and procedures) start with " HOT_" so you should have no problem identifying them. Most Hotkeys wil be set up in a BOOT file, but you can add, remove or change any Hotkeys at any time, either by typing the appropriate commands into the SBASIC command console, or by RUNning an SBASIC program.

Case Dependent Hotkeys

You can define Hotkeys in two ways. If you define a lower case Hotkey, then the Hotkey action can usual y be invoked by pressing ALT and the appropriate letter, regardless of whether the SHIFT key is pressed or CAPSLOCK is set. If, however, you define an upper case Hotkey, then this action, wil only be invoked by ALT, and the upper case character.

For example, if these Hotkeys are set:

Hotkey

Action

a

Execute Alarm

Q

Execute Quil

q

Execute QRAM

" ALT Q" (ALT SHIFT Q) wil execute Quil , while " ALT q" wil execute QRAM. Both " ALT A" and

" ALT a" wil execute the alarm clock.

Summary of Functions to set up Hotkeys

Function

Sets Hotkey to

HOT_KEY (key, list of strings) copy strings to keyboard queue

HOT_CMD (key, list of commands) send commands to SBASIC

HOT_RES (key, filename)

execute resident program

HOT_RES1 (key, filename)

... one copy only

HOT_CHP (key, filename)

execute resident program

HOT_CHP1 (key, filename)

... one copy only

HOT_LOAD (key, filename)

load and execute program

HOT_LOAD1 (key, filename)

... one copy only

HOT_THING (key, Thing name)

execute Thing

HOT_PICK (key, Job name)

Pick Job

HOT_WAKE (key, Job name)

Wake Job

58

04/23

Errors when Setting Hotkeys

The functions used to set up, change and remove Hotkeys have two distinct error handling methods. If the function is used incorrectly, (e.g. missing parameters), then execution of the program wil stop in the usual way. If, however, the parameters are correct, but you are trying to do an operation which is not al owed, or proves to be impossible (e.g. redefining a Hotkey without removing it, or trying to load a file, which does not exist), then the function wil return an error code. This error code can be used to ask the user (probably yourself) to do some corrective action (e.g. put a particular disk in the drive) before the Hotkey function is cal ed again.

One error code, which can be returned from any of the functions, is ERR.IU (-9, in use). This can occur if another Job has tied up the Hotkey system for more than 2 seconds. If there is a long pause before an "in use" error return, this is the most likely reason.

Error Reporting

If you do not wish to do any error processing, it would be more convenient to cal these functions as procedures. A BOOT (or other program) would then stop automatical y with the usual cryptic error messages. Unfortunately this cannot be done directly with the standard SBASIC interpreter, but the Hotkey system includes a simple procedure which wil report the error and stop if its parameter value is negative. This procedure, ERT, can be used with any function which returns an error code (e.g. many of the Qtyp SPELL functions) as wel as with the Hotkey functions. Thus there are three main ways of cal ing the Hotkey functions: hkerr = HOT_RES (' t', Qtyp)

get error code from HOT_RES

PRINT HOT_RES (' t' , Qtyp)

print error code from HOT_RES

ERT HOT_RES ('t', Qtyp)

stop and report if error

Hotkey Filenames and Other Names

Some of the functions to set Hotkeys need to be supplied with a file name. You wil not usual y need to specify a drive name as HOTKEY System 2 wil use the Program Default (set up by PROG_USE).

In general, the textual parameters of a Hotkey function can be given as either "strings" or

"names". A name must start with a letter, and contain only letters, digits and underscores. A string can have any characters between apostrophes or quotes. If in doubt put the parameter between quotes or apostrophes: particularly if you wil be compiling your program.

Furthermore, when defining the Hotkey itself, the key is best placed between apostrophes of quotes to avoid problems with the SBASIC name handling which does not distinguish between upper and lower case.

Boot Programs for the Extended Environment

When the QPC2 starts up, or after being reset. The SBASIC interpreter wil load and run a SBASIC program cal ed "BOOT". This program should be used to set up QPC2 to match the way you wish to use it. This BOOT program wil usual y be stored on WIN1_ as WIN1_BOOT, alough a floppy disk can also be used if you configure QPC2 to boot from a floppy first.

The majority of QL/QPC2 software fal s into one of two main groups, "resident extensions" and

"executable programs". The other important group, SBASIC programs. SBASIC programs compiled with QLiberator or Turbo are true "transient programs".

"Resident extensions" are provided to expand the capabilities of QPC2. Some are supplied on disk and need to be loaded in at the start of a session and remain resident in QPC2 for the whole of that session. The Extended Environment comes built into SMSQ/E and does not need to be loaded. Other typical examples are the Pointer Toolkit and the Spel extensions. Al of these are intended to be of use for many different programs throughout an entire session.

"Executable programs" are designed to come and go as required. These are executed as required, and when you have finished with them, they go away, leaving QPC2's memory free for other executable programs. Typical examples are Quil , Abacus and the other Psion programs.

04/23

59

Some executable programs require specific resident extensions to be present. The reasons vary. Most Qjump programs require the Extended Environment because it makes it simple to provide the type of pop-up menus and non-destructive windows that we prefer to use. Qtyp requires the Spel extensions, because we thought that it was necessary to separate out the actual spel ing checking so that it could be used in other programs as wel (such as real word processors). The Editor requires the Turbo Toolkit because it is Turbo compiled SBASIC and uses some facilities not available in SMSQ/E.

As a general rule, a BOOT file should load al the resident extensions you require, before any programs are started. This wil avoid 'not complete' error messages when you try to load further extensions. The BOOT file is used in much commercial software to give users instant access to their new program. Many users never progress beyond this point, but re-boot their system every time they wish to change programs.

The boundary between a supplier providing a very complex BOOT file to make it very easy to use their software, and a supplier providing so complex a BOOT file that it becomes almost impossible to use any other supplier's software is a very fine one.

There is one simple test that you can do to find out whether a particular program is likely to give problems. Can you execute two copies of the program at the same time as the SBASIC

interpreter? In the case of programs written for the Pointer Interface, the answer wil usual y be an unqualified yes. For other software you may have to do some detective work.

The manual for a software product should tel which of the files are resident extensions, and which are executable program files. If it does not, then you must first look at the BOOT file for the program. You need to find the command which EXECs the program itself. Before this you may find some RESPR, LBYTES, CALL or LRESPR commands. If you find any POKEs, you can probably give up. Next, reset QPC2 and LOAD the BOOT file, delete al of the SBASIC

commands except the RESPR, LBYTES, CALL, LRESPR and EXEC commands you have found and add a second EXEC for the program. Now RUN this skeleton SBASIC BOOT

program - you should now be able to press CTRL and C to switch the keyboard from one copy of the program, to the next and then to the SBASIC interpreter. If it turns out that the program is so badly behaved that you cannot have two copies executing at the same time, then it is unlikely that the program wil tolerate any other software.

If you cannot execute the second copy of the program because there is not enough memory left, then you wil need to use the Psion option of the HOTKEY System 2.

If, while using a particular program, you find that bits of its windows tend to disappear, or get eaten up by other programs, then you wil need to execute the program with a Guardian window using the HOTKEY System 2. If the program keeps on modifying the display while it is buried, then you wil need a Guardian window with the Freeze option.

To set up your own BOOT file, you wil have to determine which resident extensions are needed for each of the programs you wish to use. This should be stated in the manual. Alternatively, you can examine the supplier's own BOOT file. Resident procedures wil be any code loaded by statements of the form:

a=RESPR(size): LBYTES flpl_filename,a: CALL a or LRESPR (filename)

or

base=RESPR (size)

loading several files into one space

LBYTES flpl_filenamel, base: CALL base LBYTES flpl_filename2, base + a_bit: CALL base + a_bit

. . . etc.

These statements can be copied into your own BOOT file at the appropriate point, and the files themselves copied onto your own BOOT disk. The statements may be scattered over several lines to confuse you.

60

04/23

Sorting out BOOT files varies from the easy (e.g. The Editor) to the impossible (too many to mention). Very easy BOOT files would consist of " EXEC flp1_filename", in which case you need to add nothing to your own BOOT file unless you wish to HOTKEY the program with HOT_RES, HOT_CHP or HOT_LOAD. Difficult conversions are where the BOOT file indulges in copyright messages, pretty borders, playing tunes or other methods of obscuring the useful bits of code. Impossible BOOT files are those which include POKEs, or start an application with a CALL statement. These can, sometimes be used, but require the attention of an expert machine code hacker to convert them to a sanitary form.

Some resident extensions interact with others. If this happens, then some care is required with the ordering of the resident extensions. The HOTKEY System 2 interacts with the ALTKEY

facility. The Pointer Interface interacts with Lightning.

Load any program specific resident extensions and other Toolkits. When al your resident extensions have been loaded, you should set up the Hotkeys you require, and include a HOT_GO command to get the HOTKEY Job going.

Examples

These example BOOT files are intended to start you off. We specify the drive explicitly, and the file names are between apostrophes. The first is for clarity only, the second is a personal preference.

BOOT_PSION Program

This boot file sets up a Psion plus Qtyp environment. Al four Psion programs are permanently resident, although only Quil is started.

100 REMark - Load all our extensions

110 :

160 LRESPR ' f lp1_qtyp_spell'

spel ing checker extensions

170 :

180 REMark - Extensions loaded, stuff our QPC2 full of the 190 REMark - Psion programs

200 :

210 ERT HOT_RES ('t', 'f lp1_qtyp')

Qtyp in case we use Quil

220 ERT HOT_RES ('q', 'f lp1_quill', p)

ALT Q for a new Quil

230 ERT HOT_RES ('a', 'f lp1_abacus', p)

ALT A for Abacus

240 ERT HOT_RES ('r', 'f lpl1_archive', p)

ALT R for Archive

250 ERT HOT_RES ('e', 'f lp1_easel', p)

ALT E for a new Easel

260 :

270 HOT_GO

get HOTKEY going

280 :

290 : REMark - now we set some HOTKEYS for picking Jobs 300 : REMark - to pretend that we are using Taskmaster 310 :

320 ERT HOT_PICK ('0' , ")

SBASIC and other no-name Jobs

330 ERT HOT_PICK ('1', 'Quill')

340 ERT HOT_PICK ('2', 'Abacus')

350 ERT HOT_PICK ('3', 'Archive')

360 ERT HOT_PICK ('4', 'Easel')

370 HOT_LIST

tel us what we have, please

380 PAUSE 300: HOT_DO q

start with Quil only

04/23

61

BOOT_ANOTHER Program

100 REMark - First shrink SBASIC' s windows a bit

110 WINDOW #0;512, 42, 0,214:BORDER #0;1,4,0

120 WINDOW #1;256,172,256,36:BORDER #1;1,255

130 WINDOW #2; 256,172, 0,36:BORDER #2;1,255

150 :

210 LRESPR 'flp1_qtyp_spell'

spel ing checker extensions

220 LRESPR 'flp1_Qpac2'

230 :

240 ERT HOT_WAKE ('x', 'Exec')

Exec menu of QPAC 2

250 ERT HOT_WAKE ('p', 'Pick')

Pick menu of QPAC 2

260 ERT HOT_RES ('t', 'flp1_qtyp')

Qtyp

270 ERT HOT_RES ('c', ' flp1_calc')

Pop up calculator

280 ERT HOT_RES ('k', ' flp1_calendar') ... our calendar 290 ERT HOT_RES ('w', ' flp1_alarm')

... and the alarm

300 ERT HOT_LOAD ('d', ' flp1_QD')

load QD on demand

310 ERT HOT_LOAD ('8', ' flp1_Text87') ...orText87

330 HOT_GO

get HOTKEY going as wel

340 EXEC ' f lp1_Clock'

clock around the clock

350 EXEC ' f lp1_Sysmon'

we need this to know what is going on

360 :

370 ERT HOT_PICK ('b', ")

pick SBASIC

380 HOT_LIST

390 PAUSE 300: HOT_DO e

start off with the Editor

400 PAUSE 100: HOT_DO b

but with SBASIC on top

BOOT_HI_RES

BOOT program for a high resolution system

100 REMark Hi Res BOOT program

110 :

120 REMark For 800x600 display in 65536 colours

130 :

140 DISP_COLOUR 3,800,600

150 COLOUR_QL

160 BGCOLOUR_24 1.679652E7

170 WINDOW#0,800,120,0,330 : BORDER#0,1,1

180 WINDOW#1,400,300,400,30 : BORDER#1,1,255

190 WINDOW#2,400,300,0,30 : BORDER#2,1,255

200 INK#0,7 : PAPER#0,0 : CSIZE#0,1,1

210 INK#1,0 : PAPER#1,7

220 INK#2,7 : PAPER#2,1

230 CLS#0 : CLS#1 : CLS#2

240 :

250 REMark Load some resident extensions

260 LRESPR win1_system_qlib_run336mod

Qliberator runtimes

270 LRESPR win1_system_menu_rext

Menu extensions

320 :

330 REMark Set up the pointer system

340 LRESPR win1_pe_qpac_qpac2

350 :

390 REMark Set up Hot keys

400 ERT HOT_PICK('b','')

Pick Basic

410 ERT HOT_THING('1','Files';'\dWIN1_')

Files thing for WIN1_

420 ERT HOT_THING(CHR$(232),'Button_sleep') Sleep thing 430 ERT HOT_THING('.','Button_Pick')

Button frame

440 ERT HOT_LOAD1('x','win1_xchange_xchange')

450 :

470 ERT HOT_WAKE('P','Pick')

Cal the Pick menu

480 ERT HOT_WAKE('R','Rjob')

Cal the Rjob menu

490 :

62

04/23

500 REMark Set up now go

510 :

520 REMark Create the buttons for the screen

530 :

550 BT_SLEEP 'Pick'

560 BT_SLEEP 'Exec'

570 BT_SLEEP 'Rjob'

580 BT_HOTKEY 'x','Xch'

Put Xchange on a button

590 BT_HOTKEY '1','WIN1'

Put Win1_ on a button

600 :

610 HOT_DO 'b'

Pick the button frame

620 HOT_DO CHR$(232)

Put system(SBASIC) to sleep

630 :

640 HOT_GO

Start the hotkey system

650 :

660 REMark SBASIC setups

670 PROG_USE win1_

680 DATA_USE win1_

04/23

63

file types

files

Al I/O on QPC2 is to or from a 'logical file'. Various file types exist.

data

SBASIC programs, text files. Created using PRINT, SAVE, accessed using INPUT, INKEY$, LOAD etc.

exec

An executable transient program. Saved using SEXEC, loaded using EXEC, EXEC_W etc.

code

Raw memory data, screen images, etc. Saved using SBYTES, loaded using LBYTES.

flp

floppy disk drive

device

QPC2 can access 2 floppy disk drives (cal ed FLP1_ and FLP2_) which correspond to the A: and B: drives of the host PC.

QPC2 wil support double density (DD) and high density (HD) QDOS and MSDOS formatted disks.

Double density disks wil store up to 720K bytes (1440 sectors) of data, and high density disks wil store up to 1.4M bytes (2880 sectors) of data.

floppy disk images

QPC2 can mount, up to 2 floppy disk image files at any one time. Replacing the physical FLP1_

and FLP2_ drives, whether they exist or not.

Floppy disk image files up to HD(High Density) are supported. But ED(Extra Density) images are not supported.

Command

Function

FLP_DRIVE

assign a floppy disk image

FLP_DRIVE$

read the current connection

64

04/23

functions and

procedures

SBASIC functions and procedures are defined with the DEFine FuNction and DEFine PROCedure statements. A function is activated (or cal ed) by typing its name at the appropriate point in a SBASIC expression. The function must be included in an expression because it is returning a value and the value must be used. A procedure is activated (or cal ed) by typing its name as the first item in a SBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters after the function or procedure name. This list is compared to a similar list appended after the name of the function or procedure when it was defined. This second list is cal ed the formal parameters of the function or procedure. The formal parameters must be SBASIC variables.

The actual parameters must be an array, an array slice or a SBASIC expression of which a single variable or constant is the simplest form.

Since the actual parameters are actual expressions, they must have an actual type associated with them. The formal parameters are merely used to indicate how the actual parameters must be processed and so have no type associated with them. The items in each list of parameters are paired off in order when the function or procedure is cal ed and the formal parameters become equivalent to the actual parameters. There are three distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the formal parameter in the function or procedure then the data is also assigned to the corresponding actual parameter.

If the actual parameter is an expression then assigning data to the corresponding formal parameter wil have no effect outside the procedure. Note that a variable can be turned into an expression by enclosing it within brackets.

If the actual parameter is a variable but has not previously been set then assigning data to the corresponding formal parameter wil set the variable specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal statement. Local variables have no effect on similarly named variables outside the function or procedure in which they are defined and so al ow greater freedom in choosing sensible variable names without the risk of corrupting external variables. A local variable is available to any inside function or procedure cal ed from the procedure function in which it is declared to be local unless the function or procedure cal ed contains a further local declaration of the same variable name.

Functions and procedures in SBASIC can be used recursively. That is a function or procedure can cal itself either directly or indirectly.

Command

Function

DEFine FuNction

define a function

DEFine PROCedure

define a procedure

RETurn

leave a function or procedure

(return data from a function)

LOCal

define local data in a function or

procedure

04/23

65

graphics

It is important to realise that the QPC2 screen has non-square pixels and that changing screen mode wil change the shape of the pixels. Thus if the graphics procedures were simply pixel based they would draw different shapes in the two modes. For example, in one mode we would have a circle while the same figure in the other mode would be an el ipse.

The graphics procedures ensure that whatever screen mode is in use, consistent figures are produced. It is not possible to use a simple pixel count to indicate sizes of figures, so instead the graphics procedures use an arbitrary scale and co-ordinate system to specify sizes and positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the graphics origin which is in the bottom left hand corner of the specified or default window. Note that this is not the same as the Pixel Origin used to define the position of Windows and Blocks etc. The graphics origin al ows a standard Cartesian co-ordinate system to be used. A graphics cursor is updated after each graphics operation: subsequent operations can either be relative to this cursor or can be absolute, i.e. relative to the graphics origin.

100

y

(0,0)

x

The Graphics Coordinate System

The scaling factor is such that the ful distance in the vertical direction in the specified or default window has length 100 by default and can be changed with the SCALE command. The scale in the x direction is equal to the scale in the y direction. However, the length of line which can be drawn in the x direction is dependent on the shape of the window. Increasing the scale factor increases the maximum size of the figure which can be drawn before the window size is exceeded. If the graphics output is switched to a different size of window then the subsequent size of the output is adjusted to fit the new window. If the figure exceeds its output window then the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space in which the figures are drawn. The SCALE command al ows the graphics origin to be set so al owing the window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or default channel and the output is drawn in the INK colour for that channel.

66

04/23

--

Command

Function

--

CIRCLE

draw an el ipse or a circle

}

LINE

draw a line

} absolute

ARC

draw an arc of a circle

}

POINT

plot a point

}

--

CIRCLE_R

draw an el ipse or a circle

}

LINE_R

draw a line

} relative

ARC_R

draw an arc of a circle

}

POINT_R

plot a point

}

--

SCALE

set scale and move origin

FILL

fil in a shape

CURSOR

position text

--

graphics fill

Figures drawn with the graphics and turtle graphics procedures can be optional y 'fil ed' with a specified stipple or colour. If FILL is selected then the figure is fil ed as it is drawn.

The FILL algorithm stores a list of points to plot rather than actual y plotting them. When the figure closes there are two points on the same horizontal line. These two points are connected by a line in the current ink colour and the process repeats. Fil must always be reselected before drawing a new figure to ensure that the buffer used to store the list of points is reset.

The fol owing diagram il ustrates FILL:

(75,50)

(50,80)

(10,20)

FILL 1:LINE 10,20 TO 75,50 TO 50,80

warning: There is an implementation restriction on FILL. FILL must not be used for re-entrant shapes (i.e. a shape which is concave). Re-entrant shapes must be split into smal er shapes which are not re-entrant and each sub-shape fil ed independently.

04/23

67

history virtual

device

The HISTORY virtual device is not associated with any physical hardware. HISTORY devices are buffers for storing information or passing it from one task to another. The HISTORY device is single ended, what goes in one end, comes out the same end in the reverse order (LIFO - last in first out).

A HISTORY device is much simpler than a PIPE device as it only has one end. It is used to store a number of messages which may then be retrieved in reverse order: if it becomes ful , the oldest messages are thrown away. The messages are separated by newline characters.

There are two types of history devices: private and public. Private HISTORY devices are for use within a particular application and may only have one channel open to them. Public HISTORY

devices are named and so may be accessed by many applications at the same time, or at different times. A public HISTORY device may even be used as a "mailbox".

A HISTORY device is opened by name, just like any other device. The name starts with

"HISTORY" which is, for a public HISTORY device, fol owed by public name and then, optional y, the HISTORY device size. If no size is given, 1 kilobyte of message space is assumed. If a public HISTORY device already exists, then the size is ignored!

HISTORY

A private HISTORY; 1024 bytes total space

HISTORY _512

A private HISTORY, 512 bytes total space

HISTORY _thoughts A public HISTORY for thoughts HISTORY _box_80

An 80 byte smal mailbox cal ed BOX

Single character names should not be used: these are reserved as keys for special variations which may be made available in the future.

HISTORY _U_FILES

A public HISTORY with al entries unique???

Messages may be put into a HISTORY device by either using PUT or PRINT. If the HISTORY

device becomes ful , the oldest message(s) are thrown away.

Messages may be taken out using GET or INPUT. But which message?

For a private HISTORY it is fairly simple. The first GET or INPUT after a message has been put into the HISTORY wil get the most recent message. The next GET or INPUT wil get the previous message until there are either no messages left (in which case GET or INPUT return nul strings) or another message is put in. Note that GETting or INPUTing messages does not take them out of the HISTORY.

OPEN_NEW #4, HISTORY _512

Open a private HISTORY device to hold 512 bytes

PRINT #4, msg1$

For a private HISTORY, the message need not

be atomic

PUT #4, msg2$

...but this also puts a message in.

INPUT #4, a$

Inputs msg2$ into a$

GET #4,b$

Gets msg1$ into b$

68

04/23

For a public HISTORY, the channels are fairly independent. A channel being used to read messages would continue to fetch messages in reverse order even if new messages are being added through other channels. In order to get the most recent message, a channel being used for read operations only needs to be able to reset its internal pointer. This is possible using the file positioning facility. Usual y the position wil be set to 0 (the most recent message) but it may be set to any (smal ish) number.

GET #4\0, a$, b$

Get the most recent and next most recent messages

GET #4\4, x$

Get the fifth most recent message.

HISTORY has some characteristics of a filing system device. You can get a directory of public HISTORY devices, you can VIEW a public HISTORY and you can delete a public HISTORY.

DIR HISTORY

Get a list of public HISTORY devices

VIEW HISTORY _thoughts

Have a look at my thoughts

DELETE HISTORY _thoughts ...and get rid of them HOME Thing

The HOME Thing implements a ‘home’ directory and a ‘home’ filename, on a per job basis.

That is, each job running in SMSQ/E, may remember the directory it was executed from, and the complete filename including the directory of the executable file itself.

For both the home directory, and the home filename. Once they have been set up, they cannot be changed. And are only removed when the job they are associated with is removed from the system.

There is also a ‘current directory’ which is similar to the home directory, but may be changed at wil . However it must be a valid directory.

Using the HOME Thing in SBASIC al ows programs to know where they were loaded from.

Al owing them to find configuration, or data files without having to be told where to find them.

Making them easily moveable and more portable.

You may also preset the home directory, home filename, and current directory for a SBASIC

daughter job before it’s started.

If you start QPC2, and it boots from WIN1_, then the home directory (HOME_DIR$) wil be set to “win1_”, the home filename (HOME_FILE$) wil be set to “win1_boot”, and the current directory (HOME_CURR$) wil be set to “win1_”.

In the fol owing examples it is assumed you are starting in the main parent SBASIC.

example: i. SBASIC

CTRL-C into the daughter SBASIC

LOAD win1_source_compare2_bas

Load a program

This sets...

HOME_DIR$ to “win1_source_”

HOME_FILE$ to “win1_source_compare2_bas”

HOME_CURR$ to “win1_source_”

DIR HOME_DIR$

Gives a directory of win1_source_

SAVE HOME_FILE$

The programs tries to save over itself

04/23

69

i . HOME_DEF “sbasic”,”dos3_myprog” This sets...

HOME_DIR$ to “dos3_”

HOME_FILE$ to “dos3_myprog”

HOME_CURR$ to “dos3_”

for the SBASIC daughter job which does not yet exist

SBASIC

CTRL-C into the daughter SBASIC

LOAD HOME_FILE$

Loads dos3_myprog

HOME_CSET “win1_”

Change HOME_CURR$ to “win1_”

DIR HOME_CURR$

Gives a directory of win1_

i i. SBASIC

CTRL-C into the daughter SBASIC

HOME_SET -1,”win1_source_compare2_bas”

This sets...

HOME_DIR$ to “win1_source_”

HOME_FILE$ to “win1_source_compare2_bas”

HOME_CURR$ to “win1_source_”

VIEW HOME_DIR$ & “config”

View the file ‘win1_source_config’

identifier

An SBASIC identifier is a sequence of letters, numbers and underscores.

define:

 letter := | a.. z

| A.. Z

 number := | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

 identifier := letter * |[letter | number | _ |] *

example: i. a

i . limit_1

i i. current_guess

iv. counter

An identifier must begin with a letter fol owed by a sequence of letters, numbers and underscores and can be up to 255 characters long. Upper and lower case characters are equivalent.

Identifiers are used in the SBASIC system to identify variables, procedures, functions, repetition loops, etc.

warning: NO meaning can be attributed to an identifier other than its ability to identify constructs to SBASIC. SBASIC cannot infer the intended use of an identifier from the identifier's name!

keyword

SBASIC keywords are identifiers which are defined in the SBASIC Keyword Reference Guide.

Keywords have the same form as a SBASIC standard identifier. The case of the keyword is not significant. Keywords are echoed as a mixture of upper and lower case letters and are always reproduced in ful . The upper case portion indicates the minimum required to be typed in for SBASIC to recognise the keyword.

The set of SBASIC keywords may be extended by adding procedures to QPC2. It is a good idea to define these with their names in upper case and this wil indicate their special function in the SBASIC system. Conversely, ordinary procedures should be defined with their names in lower case.

warning: Existing keywords cannot be used as ordinary identifiers within a SBASIC program.

SBASIC keywords may be found by typing EXTRAS at the command prompt.

70

04/23

maths

functions

SBASIC has the standard trigonometrical and mathematical functions.

Function

Name

COS

cosine

SIN

sin

TAN

tangent

ATAN

arctangent

ACOT

arcotangent

ACOS

arcosine

ASIN

arcsine

COT

cotangent

EXP

exponential

LN

natural logarithm

LOG10

common logarithm

INT

integer

ABS

absolute value

RAD

convert to radians

DEG

convert to degrees

PI

return the value of 

RND

generate a random number

RANDOMISE

reseed the random number generator

04/23

71

mdv

microdrive directory device

Microdrives provided the main permanent storage on the Sinclair QL. Each Microdrive cartridge had a capacity of at least 100Kbytes.

Microdrives are not supported in QPC2.

nul

virtual device

The NUL virtual device is not associated with any physical hardware. NUL devices are completely dummy.

The NUL device may be used in place of a real device. The NUL device is usual y used to throwaway unwanted output. It may, however, be used to provide dummy input or to force a job to wait forever. There are five variations.

NULP waits (forever or until the specified timeout) on any input or output operation.

NUL, NULF, NULZ and NULL ignore al operations (the output is thrown away).

NUL, NULF, NULZ and NULL return a zero size window in response to window information requests. Pointer Information cal s (lOP.PINF , lOP.RPTR) return an invalid parameter error.

NUL is an output only device, al input operations return an invalid parameter error.

NULF emulates a nul file. Any attempt to read data from NULF wil return an End of File Error as wil any file positioning operation. Reading the file header wil return 14 bytes of zero (no length, no type).

NULZ emulates a file fil ed with zeros. The file position can be set to anywhere. Reading the file header wil return 14 bytes of zero (no length, no type).

NULL emulates a file fil ed with nul lines. The file appears to be ful of the newline character (10). The file position may be set to anywhere. Reading the file header wil return 14 bytes of zero (no length, no type).

72

04/23

operators

--

Operator Type

Function

--

=

floating string

logical type 2 comparison

==

numeric string

almost equal ** (type 3 comparison)

+

numeric

addition

-

numeric

subtraction

/

numeric

division

*

numeric

multiplication

<

numeric string

less than (type 2 comparison)

>

numeric string

greater than (type 2 comparison)

<=

numeric string

less than or equal to (type 2 comparison)

>=

numeric string

greater than or equal (type 2 comparison)

<>

numeric string

not equal to (type 3 comparison)

&

string

concatenation

&&

bitwise

AND

||

bitwise

OR

^^

bitwise

XOR

~~

bitwise

NOT

OR

logical

OR

AND

logical

AND

XOR

logical

XOR

NOT

logical

NOT

MOD

integer

modulus

DIV

integer

divide

INSTR

string

type 1 string comparison

^

floating

raise to the power

-

floating

unary minus

+

floating

unary plus

--

**almost equal - equal to 1 part in 107

If the specified logical operation is true then a value not equal to zero wil be returned. If the operation is false then a value of zero wil be returned.

precedence The precedence of SBASIC operators is defined in the table above. If the order of evaluation in an expression cannot be deduced from this table then the relevant operations are performed from left to right. The inbuilt precedence of SBASIC

operators can be overriden by enclosing the relevant sections of the expression in parentheses.

 highest

unary plus and minus

string concatenation

INSTR

exponentiation

multiply, divide, modulus and integer divide

add and subtract

logical comparison

NOT (bitwise or logical)

AND (bitwise or logical)

 lowest

OR and XOR (bitwise or logical)

04/23

73

pipe

virtual device

The PIPE virtual device is not associated with any physical hardware. PIPE devices are buffers for storing information or passing it from one task to another. The PIPE is double ended: what goes in one end, comes out the other in the same order (FIFO - first in first out).

There are two variations on the PIPE driver: named and unnamed pipes. Both of these are used to pass data from one program to another. Unnamed pipes cannot be opened with the SBASIC

OPEN commands but are opened automatical y by the EX and EW commands when these are required to set up a "production line" of Jobs. Whereas, if a pipe is identified by a name, any number of Jobs (including SBASIC) can open channels to it as either inputs or outputs.

If, using named pipes, matters become confused, then that is a problem to be solved by the Jobs themselves. This is not as bad as it sounds. Unlike other devices, named pipes transfer multiple byte strings atomical y unless the pipe al ocated is too short to hold the messages. This means that provided the messages are shorter than the pipe, many jobs can put messages into a named pipe and many jobs can take messages out of a named pipe without the messages themselves becoming scrambled.

If a PIPE is shared in this way, there are two simple ways of ensuring that the messages are atomic. The first, using fixed length messages, if not available to SBASIC programs. The second, using "lines" terminated by the newline character, works perfectly. N.B. the standard PRINT command wil not necessarily send a line as a single string for each item output.

PRINT #3,a$ \ b$

Bad, sends 4 strings: the newline characters are

separate

PRINT #3,a$ & CHR$ {10); Good, sends 1 string, including the newline INPUT #4,b$

Good, reads a single line from the pipe

Named pipes should be opened with OPEN_NEW (FOP _NEW) for output and OPEN_IN (FOP

_IN) for input. A named pipe is created when there is an open cal for a named pipe, which does not exist. It goes away when there are no longer any channels open to it and it is has been emptied. As wel as the name, it is possible to specify a length for a named pipe. If the pipe already exists, the length requested is ignored.

OPEN_NEW #4, PIPE_xp1

Open named output pipe of default length

(1024 bytes)

OPEN_NEW #5, PIPE_frd_2048

Open named output pipe of length 2048 bytes

OPEN_IN #6, PIPE_xfr

Open named input pipe

SAVE #5

Save the current program to the frd pipe

LOAD #6

Load a program from the xfr pipe

74

04/23

pixel

coordinate

system

The pixel coordinate system is used to define the positions and sizes of windows, blocks and cursor positions on the QPC2 screen. The coordinate system has its origin in the top left hand corner of the default window (or screen). The system wil use the nearest pixel available for the particular mode set making the coordinate system independent of the screen mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW, while some are always relative to the current window origin, e.g. BLOCK

(0,0)

x

(0,XLIM)

y

(YLIM,0)

The Pixel Coordinate System

04/23

75

program

An SBASIC program consists of a sequence of SBASIC statements, where each statement is preceded by a line number. Line numbers are in the range of 1 to 32767.

--

Command

Function

--

RUN

start a loaded program

LRUN

load a program from a device and start it

[CTRL] [SPACE]

force a program to stop

--

syntax:

 line_number := *[digit]* {range 1..32767}

*[line_number statement *[: statement]*]*

example: i. 100 PRINT "This is a valid line number"

RUN

i . 100 REMark a small program

110 COLOUR_QL

120 FOR foreground = 0 TO 7

130 FOR contrast = 0 TO 7

140 FOR stipple = 0 TO 3

150 PAPER foreground, contrast, stipple

160 CURSOR 0,70

170 FOR n = 0 TO 2

180 SCROLL 2,1

190 SCROLL -2,2

200 END FOR n

210 END FOR stipple

220 END FOR contrast

230 END FOR foreground

RUN

QDOS

QL

The QDOS operating system is a predecessor of the SMSQ/E operating system. QDOS was original y used in the Sinclair QL computer. Circa 1983

The Sinclair QL used a version of BASIC known as SuperBASIC. SBASIC and SMSQ/E used in QPC2 are direct descendants of SuperBASIC, and QDOS.

SMSQ/E includes al the QL SuperBASIC commands, the Toolkit 2 commands, Pointer interface, Window manager, and the commands which have been provided to support the various add-on drivers. SMSQ/E supports 99.9% of SuperBASIC. SMSQ/E supports al the devices, which were supported by the drivers supplied with the Atari QL Emulator, the GOLD

card and the QXL. The (Super) Gold card is a hardware add-on to the Sinclair QL, and the QXL

is a PC add-on card containing a QL compatible computer.

76

04/23

qsound

programmable sound device

The QSOUND device can be used to directly set the emulated AY-3 sound generators registers, and manage some of the default settings of the emulated AY-3 chips.

The QSOUND device is output only, you cannot read anything from it. The fol owing wil open

#3 to the second emulated AY-3 chip (chip 1), and set it's registers 0 to 13 with the values 1 to 14.

OPEN#3,qsound2

BPUT#3;1,2,3,4,5,6,7,8,9,10,11,12,13,14

This does the same as the command LIST_AY 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

QSOUND can be supplied some modifiers to change some of the settings of the AY-3

emulation.

QSOUND cT tF fP pV v_buffer where-T defines the type of emulation {default 0}

0 = AY

1 = YM

F defines the clock frequency of the AY-3 chips divided by 100 {default 17744}

0 to 32767

P defines the configuration of the speakers {default 1}

0 = mono

1 = ABC

2 = ACB

3 = BAC

4 = BCA

5 = CAB

6 = CBA

where the letters signify the Left, Both, and Right speakers so ABC means that sound channel A wil be in the left speaker, sound channel B wil be in both speakers, and sound channel C wil be in the right speaker.

V defines the master volume {default 255}

0 to 255

Note that changing any of the above modifiers wil effect both emulated AY-3 chips.

warning:

Currently the V modifier does not work

04/23

77

ram

virtual directory device

The RAM device behaves like a very fast disk drive. It is so fast because being virtual, there is virtual y nothing to move to get information in and out. It is, in fact, no more than a reserved area of SMSQ/E's main memory (its RAM - Random Access Memory). This means, of course, that any space taken by a RAM disk is not available to programs executing in QPC2. Furthermore, any data stored in a RAM disk wil be lost when QPC2 is exited or reset!

RAM disks in the QPC2 may be of any size, subject to there being enough memory. The normal usage of a RAM disk would be to use it as a temporary storage area, or to speed up the operation of programs with very disk intensive operations.

A dynamic RAM Disk is created just by accessing it with any normal operation (e.g. DIR). This type of RAM Disk takes memory as required, and releases any memory as files are deleted or truncated.

A fixed RAM disk is created by formatting it: the size, in sectors, is given in place of the usual medium name. This pre-al ocates al the space that wil be available in the RAM disk.

FORMAT ram2_80

This removes the old RAM disk number 2, and sets up a new RAM disk of 80 sectors. A RAM

disk may be removed by giving either a nul name or zero sectors FORMAT ram1_

or

FORMAT ram1_0

The RAM disk number should be between 1 and eight, inclusive, while the number of sectors (512 bytes) is only limited by the memory available.

78

04/23

repetition

Repetition in SBASIC is control ed by two basic program constructs. Only the FOR construct must be identified to SBASIC:

REPeat [identifier]

FOR identifier = range

 statements

 statements

END REPeat [identifier]

END FOR [identifier]

These two constructs are used in conjunction with two other SBASIC statements: NEXT [identifier]

EXIT [identifier]

Processing a NEXT statement wil either pass control to the statement fol owing the appropriate FOR or REPeat statement, or if a FOR range has been exhausted, to the statement fol owing the NEXT.

Processing an EXIT wil pass control to the statement after the END FOR or END REPeat selected by the EXIT statement. EXIT can be used to exit through many levels of nested repeat structures. EXIT should always be used in REPeat loops to terminate the loop on some condition.

A combination of NEXT, EXIT and END statements al ows FOR and REPeat loops to have a loop epilogue added. A loop epilogue is a series of SBASIC statements which are executed on some special condition arising within the loop:

FOR identifier = for_list

 statements

exit

NEXT [identifier]

next

epilogue

END FOR [identifier]

The loop epilogue is only processed if the FOR loop terminates normal y. If the loop terminates via an EXIT statement then processing wil continue at the END FOR and the epilogue wil not be processed.

It is possible to have a similar construction in a REPeat loop: REPeat [identifier]

 statements

IF condition THEN NEXT [identifier]

epilogue

END REPeat [identifier]

This time entry into the loop epilogue is control ed by the IF statement. The epilogue wil or wil not be processed depending on the condition in the IF statement. A SELect statement can also be used to control entry into the epilogue.

04/23

79

sck, tcp, udp

Internet Protocol device

The SCK, TCP and UDP devices al ow access to the host PC’s networking facilities.

A ful description of the IP device driver is beyond the scope of this guide, but a brief description is included.

TCP and UDP are protocols for transferring data between computers over a network.

The IP device driver can be used to connect QPC2 to another computer on the PC’s network, or another copy of QPC2 (or another emulator) running on the same PC.

When opening a TCP or a UDP device, a host and port may or may not be required. Also the type of the OPEN command used affects how the device wil work.

Once a channel has been opened, the usual channel commands INPUT#, PRINT# etc. may be used.

You can use the TCP device to access e-mail, and web servers. But without using machine code, or SBASIC extensions like IPBasic, you cannot create your own servers.

screen

Some QL programs write directly to the display memory. This can cause display problems with QPC2, as the display memory is not in the same place as in the QL.

The QPC_QLSCREMU command enables or disables the original QL screen emulation. When emulating the original screen, al memory write accesses to the area $20000-$207FFF are intercepted and translated into writes to the first 512x256 pixels of the big screen area. If the screen is in high colour mode, additional colour conversion is done.

Possible values are:

-1: automatic mode

0: disabled (default)

4: force to 4 colour mode

8: force to 8 colour mode

When in QL colour mode the emulation just transfers the written bytes to the larger screen memory, i.e. when the big mode is in 4 colour mode, the original screen area is also treated as 4 colour mode. In high colour mode however the colour conversion can do both modes. In this case you can pre-select the emulated mode (4, 8 as parameter) or let the last issued MODE cal decide (automatic mode). Please note that that the automatic mode does not work on a per-job basis, so any job which issues a MODE command changes the behaviour global y.

Please also note that this transition is one-way only, i.e. bytes written legal y to the first 512x256

pixels are not transferred back to the original QL screen (in case of a high colours screen this would hardly be possible anyway). Unfortunately this also means that not al old programs run perfectly with this type of emulation. If you experience problems start the misbehaving application in 512x256 mode.

80

04/23

slicing

Under certain circumstances it is possible to refer to more than one element in an array i.e. slice the array The array slice can be thought of as defining a subarray or a series of subarrays to SBASIC. Each slice can define a continuous sequence of elements belonging to a particular dimension of the original array. The term array in this context can include a numeric array, a string array or a simple string.

It is not necessary to specify an index for the ful number of dimensions of an array. If a dimension is omitted then slices are added which wil select the ful range of elements for that particular dimension, i.e. the slice (0 TO). SBASIC can only add slices to the end of a list of array indices.

syntax:

 index := | numeric_exp

{single element}

| numeric_exp TO numeric_exp

{range of elements}

| numeric_exp TO

{range to end}

| TO numeric_expression

{range from beginning}

 array_reference := | variable

| variable ([index * [, index] *]) An array slice can be used to specify a source or a destination subarray for an assignment statement.

example: i. PRINT data_array

i . PRINT letters$(1 TO 15)

i i. PRINT two_d_array (3 , 2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays.

Thus

a$(n)

wil select the nth character.

a$(n TO m)

wil select al characters from the nth to the mth, inclusively a$(n TO)

wil select from a the nth character to the end, inclusively a$(1 TO m)

wil select from the beginning to the mth character inclusively a$

wil select the entire contents of a$

Some forms of BASIC have functions cal ed LEFT$, MID$, RIGHT$. These are not necessary in SBASIC. Their equivalents are specified below:

--

SBASIC

Other BASIC

--

a$(n)

MID$(a$,n,1)

a$(n TO m)

MID$ (a$,n,m+1-n)

a$(1 TO n)

LEFT$ (a$,n)

a$(n TO)

RIGHT$ (a$,LEN(a$)+1-n)

--

warning: Assigning data to a sliced string array or string variable may not have the desired effect. Assignments made in this way wil not update the length of the string. The length of a string array or string variable is only updated when an assignment is made to the whole string.

04/23

81

SMSQ/E

SMSQ/E is the QPC2 Operating System used by QPC2, and supervises: Task Scheduling and resource al ocation

Screen I/O (including windowing)

Disk drive I/O

Paral el and serial channel communication

Keyboard input

Memory management

A ful description of SMSQ is beyond the scope of this guide but a brief description is included.

system calls

System cal s are processed by SMSQ in supervisor mode. When in supervisor mode, SMSQ

wil not al ow any other job to take over the processor. System cal s processed in this way are said to be atomic, i.e. the system cal wil process to completion before relinquishing the processor. Some system cal s are only partially atomic, i.e. once they have completed their primary function they wil relinquish the processor if necessary. Unless specifical y requested al the system cal s are partial y atomic.

The standard mechanism for making a system cal is by making a trap to one of the SMSQ

system vectors with appropriate parameters in the processor registers. The action taken by SMSQ fol owing a system cal is dependent on the particular cal and the overal state of the system at the time the cal was made.

input/output

SMSQ supports a multitasking environment and therefore a file can be accessed by more than one process at a time. The SMSQ filing sub-system can handle files which have been opened as exclusive files or as shared files. A shared file cannot be written to. QPC2 devices are processed by the serial I/O sun-system. The filing sub-system and the serial I/O sub-system together make up the redirectable I/O system. As its name suggests any data output by this system can be redirected to any other device also supported by the redirectable I/O system.

The device names required by SMSQ are the same as the device names required by SBASIC

and are discussed in the concept section devices. The col ection of standard devices supplied with QPC2 can be expanded.

devices

The standard devices included in the system are discussed in this guide in the section devices.

Further devices may be added to the system, given a name (e.g. SER1, PRT) and then accessed in the same way as any other QPC2 device.

multitasking

Jobs wil be al owed a share of the CPU in line with their priority and competition with other jobs in the system. Jobs running under the control of SMSQ can be in one of three states: active:

Capable of running and sharing system resources. A job in this state may not be running continuously but wil obtain a share of the CPU in line with its priority.

suspended: The job is capable of running but is waiting for another job or I/O. A job may be suspended indefinitely or for a specific period of time.

inactive:

The job is incapable of running, its priority is 0 and so it can never obtain a share of the CPU

SMSQ wil reschedule the system automatical y at a rate related to the 50 Hz frame rate. The system wil also be rescheduled after certain system cal s.

82

04/23

example: This program generates an on-screen readout of the real-time clock, running as an independent job.

First RUN this program with a formatted disk in floppy drive 1. This generates a machine code title cal ed 'clock'. Wait for the drive to stop.

Then type:

EXEC flp1_clock

and a continuous time display wil appear at the top right of the command window.

100 c=RESPR(100)

110 FOR i = 0 TO 68 STEP 2

120 READ x:POKE_W i+c,x

130 END FOR i

140 SEXEC flp1_clock,c,100,256

1000 DATA 29439,29697,28683,20033,17402

1010 DATA 48,13944,200,20115,12040

1020 DATA 28691,20033,17402,74,-27698

1030 DATA 13944,236,20115,8279,-11314

1040 DATA 13944,208,20115,16961,16962

1050 DATA 30463,28688,20035,24794

1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data terms are, in order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in monitor mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white paper, red ink is 256*7 + 2 = 1794

04/23

83

sound

QPC2 can emit sound by playing sampled data using the SMSQ/E Samples Sound System (not explained here) or by an emulation of the QL's second processor (an 8049). The latter is control ed by specifying:

up to two pitches

the rate at which the sound must move between the pitches, the ramp how the sound is to behave after it has reached one of the specified pitches, the wrap if any randomness should be built into the sound, i.e. deviations from the ramp if any fuzziness should be built into the sound. i.e. deviations on every cycle of the sound Fuzziness tends to result in buzzy sounds while randomness, depending on the other parameters, wil result in 'melodic' sounds or noise.

The complexity of the sound can be built up stage by stage gradual y building more complex sounds. This is, in fact, the best way to master sound on QPC2.

Specify a duration and a single pitch. The specified pitch wil be beeped for the specified time.

LEVEL 1

pitch

time

This is the simplest sound command, other than the command to stop the sound, on QPC2.

LEVEL 2

A second pitch and a gradient can be added to the command. The sound wil then

'bounce' between the two pitches at the rate specified by the gradient.

The sounds produced at this level can vary between: semi musical beeps, growls, zaps and moans. It is best to experiment.

pitch 2

pitch

pitch 1

time

84

04/23

LEVEL3

A parameter can be added which controls how the sound behaves when it becomes equal to one of the specified pitches. The sound can be made to 'bounce' or 'wrap'.

The number of wraps can be specified, including wrap forever. It is even more important to experiment.

pitch 2

pitch

pitch 1

time

pitch 2

pitch

pitch 1

time

LEVEL4

Randomness can be added to the sound. This is a deviation from the specified step or gradient.

Depending on the amount of randomness added in relation to the pitches and the gradient, it wil generate a very wide and unexpected range of sounds.

pitch 2

pitch

pitch 1

time

04/23

85

LEVEL 5

More variation can be added by specifying 'fuzziness'. Fuzziness adds a random factor to the pitch continuously Fuzziness tends to make the sound buzz.

Combining al of the above effects can make a very wide range of sounds, many of them unexpected. QPC2 sound is best explored through experiment. By specifying a time interval of zero the sound can be made to repeat forever and so a sequence of BEEP commands can be used until the sound generated is the sound which is required. A word of warning: slight changes in the value of a single parameter can have alarming results on the sound generated.

start up

Immediately after starting or resetting QPC2 the screen wil be cleared and the default screen is displayed.

QPC2 has the ability to 'boot' itself up from programs contained in either the Hard disk or in Floppy drive 1. If a disk is found and if it contains a file cal ed BOOT it is loaded and run.

default screen

The QL has three default channels which are linked to three default windows.

2

1

0

Channel 0 is used for listing commands and error messages, channel 1 for program and graphics output and channel 2 for program listings. The default channel can be modified using the optional channel specifier in the relevant command.

86

04/23

statement

An SBASIC statement is an instruction to QPC2 to perform a specific operation, for example: LET a = 2

wil assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual statements from each other by a colon (:), for example:

LET a = a + 2 : PRINT a

wil add 2 to the value identified by the variable a and wil store the result back in a. The answer wil then be printed out

If a line is not preceded by a line number then the line is a direct command and SBASIC

processes the statement immediately. If the statement is preceded by a line number then the statement becomes part of a SBASIC program and is added into the SBASIC program area for later execution.

Certain SBASIC statements can have an effect on the other statements over the rest of the logical line in which they appear i.e. IF, FOR, REPeat, REM, etc. It is meaningless to use certain SBASIC statements as direct commands.

string arrays

string variables

String arrays and numeric arrays are essential y the same, however there are slight differences in treatment by SBASIC. The last dimension of a string array defines the maximum length of the strings within the array. String variables can be any length up to 32766. Both string arrays and string variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are not the same then either the right hand string is truncated to fit or the length of the left hand string is reduced to match. If an assignment is made to a sliced string then if necessary the 'hole' defined by the slice wil be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the dimension selects the whole string while specifying a single element wil pick out a single character and specifying a slice wil define a sub string.

comment: Unlike many BASICs SBASIC does not treat string arrays as fixed length strings. If the data stored in a string array is less than the maximum size of the string array then the length of the string is reduced.

warning: Assigning data to a sliced string array Or string variable may not have the desired effect. Assignments made in this way wil not update the length of the string and so it is possible that the system wil not recognise the assignment. The length of a string array or a string variable is only updated when an assignment is made to the whole string.

--

Command

Function

--

FILL$

generate a string

LEN

find the length of a string

--

04/23

87

string

comparison

order

. (decimal point/ful stop)

digits or numbers in numerical order

AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz space ! " # $ % & ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ ©

other non printing characters

The relationship of one string to another may be:

equal:

Al characters or numbers are the same or equivalent

lesser:

The first part of the string, which is different from the corresponding character in the second string, is before it in the defined order.

greater:

The first part of the first string which is different from the corresponding character in the second string, is after it in the defined order.

Note that a '.' may be treated as a decimal point in the case of string comparison which sorts numbers (such as SBASIC comparisons). Note also that comparison of strings containing non-printable characters may give unexpected results.

types of comparison

type 0 case dependent - character by character comparison type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order type 3 case independent - numbers are sorted in numerical order type 0 not normal y used by the SBASIC system.

Usage

type 1 File and variable comparison

type 2 SBASIC <, <=, =, >= ,>, INSTR and <> type 3 SBASIC == (equivalence)

88

04/23

syntax

definitions

SBASlC syntax is defined using a non-rigorous 'meta language' type notation. Four types of construction are used :

| | Select one of

[] Enclosed item(s) are optional

* * Enclosed items are repeated

.. Range

{ } Comment

e.g.

| A | B |

A or B

[A]

A is optional

* A *

A is repeated

A..Z

A, B, C, etc

{this is a comment}

Consider a SBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and finishing with an optional

% or $

 letter :=

| A.. Z

| a.. z

{a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}

or abcdefghijklmnopqrstuvwxyz

 digit :=

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

{a digit is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9}

 underscore := _

{an underscore is _ }

 identifier :=

 letter * [letter | digit | underscore] * | % | $ |

------- --------------------------------------

must start

a sequence of letters

with a letter

digits and underscores

i.e. repeat something

which is optional

04/23

89

turtle

graphics

SBASIC has a set of turtle graphics commands:

Command

Function

PENUP

stop drawing

PENDOWN

start drawing

MOVE

move the turtle

TURN

turn the turtle

TURNTO

turn to a specific heading

The set of commands is the minimum and normal y would be used within another procedure to expand on the commands. For example:

100 DEFine PROCedure forward(distance)

110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards(distance)

140 MOVE -distance

150 END DEFine

160 DEFine PROCedure left(angle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right(angle)

200 TURN -angle

210 END DEFine

These wil define some of the more famous turtle graphic commands.

Initial y the turtle's pen is up and the turtle is pointing at 00, which is to the right hand side of the window.

The FILL command wil also work with figures drawn with turtle graphics. Also ordinary graphics and turtle graphics can be mixed, although the direction of the turtle is not modified by the ordinary graphics commands.

win

hard disk

directory device

Hard disk drives on QPC2 are large files stored on the host PC. The files usual y have the suffix

“.WIN” but anything else is fine, too. The name and directory can be configured separately for up to 8 win devices in the QPC2 program configurator.

90

04/23

windows

Windows are areas of the screen which behave, in most respects, as though each individual window was a screen in its own right, i.e. the window wil scrol when it has become fil ed by text, it can be cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened. The current window shape can be changed with the WINDOW command and a border added to a window with the BORDER command. Output can be directed to a window by printing to the relevant channel. Input can be directed to have come from a particular window by inputting from the relevant channel If more than one channel is ready for input then input can be switched between the ready channels by pressing

[CTRL] C

The cursor wil flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The non graphic output is relative to the current cursor position which can be positioned anywhere within the specified window with the CURSOR command and at any line-column boundary with the AT

command. The graphics output is relative to a graphics cursor which can be positioned and manipulated with the graphics procedures.

parts

Certain commands (CLS, PAN etc.) wil accept an optional parameter to define part of the current window for their operation. This parameter is as defined below:

part

description

0

whole screen

1

above and excluding cursor line

2

bottom of screen excluding cursor line

3

whole of cursor line

4

line right of and including cursor

Command

Function

WINDOW

re-define a window

BORDER

take a border from a window

PAPER

define the paper colour for a window

INK

define the ink colour for a window

STRIP

define a strip colour for a window

PAN

pan a window's contents

SCROLL

scrol a window's contents

AT

position the print position

CLS

clear a window

CSIZE

set character size

FLASH

character flash

RECOL

recolour a window

04/23

91

92

04/23

A

pixel...75

CTS..32

Alpha blending..3

Cursor..52, 67

ARC...67

Cursor sprites...34

Arrays..4

slicing...81

D

storage..4

strings...87

Data...

AY-3..5

structures..4

QSOUND...43, 77

types...37

Data storage...

B

arrays...4

Microdrives..72

Background...10

Date...20

colour...10

DCD..32

image...10

DEFine FuNction..65

BASIC...11

DEFine PROCedure..65

Baud rates..33

Devices..38

BEEP...84

console (con)..39

Binary..37

dev...38, 42

Booting..59, 86

dos..46

Borders..30

floppy disk (flp).....................................42, 64

Break...11

hard disk (win).......................................43, 90

history..41, 68

C

nul..41, 72

parallel (par)..32

Cartridges..

pipe..41, 74

Microdrive...72

QSOUND...43

Channels..12

SCK...42

Character set..14

serial (ser)..32

Circles..67

TCP..41

Clock...20

UDP...42

Close channels...12

virtual disk (ram)...................................43, 78

Codes...

Dimension...4

16 million colour mode................................26

Direct command..44

256 colour mode..23

Directories...44

8 colour mode..22

Directory devices...45

characters...14

DOS disks..47

colour...22

DSR...32

palette...23, 26

DTR...32

Coercion..21

Colour..

E

16 million colour mode................................26

256 colour mode..23

Elements..4

8 colour mode..22

Error handling...48

palette.............................23, 26, 27, 28, 30, 31

Events..53

COM..32

EXIT..79

Commands...

Expressions..50

direct..44

Extended environment.......................................51

keywords..70

badly behaved software...............................54

screen...80

boot programs..59

turtle graphics..90

cursor keys...52

windows...91

errors when setting hotkeys.........................59

Communications..32

events...53

channels...12

guardian windows..53

devices...38

hotkey operations...57

networking.......................................41, 42, 80

hotkey system 2...57

Comparisons..88

how hotkey system 2 works.........................58

Console device..39

locked windows...52

Control characters...14

loose items...56

Conversion..21

menu items...55

Coordinates..

mouse...52

graphics..66

pan and scroll...56

04/23

93

picking...52

L

pointer interface...52

primary windows...53

Line numbering...76, 87

restoring windows..53

direct commands..44

setting hotkeys...58

Lines..67

single keystrokes..55

Local variables..65

split and join..56

Locked windows...52

unlockable windows....................................53

Loops...79

window manager..55

Loose items...56

LPT port..32

F

M

File types...64

Filename..38, 70

Maths functions...71

Files...64

Menu items..55

Filling shapes...67

Microdrives (mdv)...72

Floating point..37

Modes..80

Floppy disk..42, 64

Mouse..52

Floppy disk drives...64

Multitasking..82

Floppy disk images..64

FOR...79

N

Functions...65

Name...37, 70

G

NEXT..79

Nul device...41, 72

GND..32

Graphics..66, 75

O

turtle...90

Guardian windows...53

OPEN..12

Operating system...76, 82

H

Operators...73

Ordering..

Handshaking..33

coercion...21

Hex codes..14

precedence...73

Hexadecimal..37

Output..

High resolution colour.......................................26

channels...12

History device...41, 68

HOME thing..69

P

Hotkey system 2..57

Palettes..23, 26, 27, 30

I

Pan...56

PAR device..40

I/O..

Parallel...32

devices...38

Parameters...65

Qdos...76

Picking...52

QSOUND...43

Pictures..66

windows...91

Pipe device..41, 74

Identifiers..70

Pixel coordinates...75

Initalisation..87

Pointer interface..52

Input..

Points...67

channels...12

Power up..86

devices...38

Precedence...73

windows...91

Primary window..53

Integers..37

Procedure...65

Internet protocol..80

Programmable sound generator...........................5

QSOUND...43, 77

J

Programs..76

PRT device..40

Join..56

Q

K

Qdos..76

Keyboard conventions.......................................14

QL..76

Keyword..70

QSOUND..43, 77

94

04/23

R

STX...40

Switching on..86

Ram disk..43, 78

Syntax definitions..89

Repetition..79

Restoring windows..53

T

RI...32

RS-232-C...32

TCP..41, 80

RTS..32

Time..20

RXD..32

Trig functions..71

Turtle graphics...90

S

TXD...32

Type conversion..21

Scaling...66, 67

SCK...42, 80

U

Screen..80

colours...22

UDP...42, 80

con...39

Unlockable windows...53

modes...80

scr...39

V

windows...91

Scroll...56

Variables..37

SER..39

binary...37

Serial communications......................................32

floating point..37

Signals...32

hexadecimal...37

Single keystrokes...55

integer..37

Slicing..81

local...65

Smsq/e...82

string..37

Sound...84

AY-3..5

Programmable sound generator.....................5

W

QSOUND...43, 77

Winchester hard disk...................................43, 90

Split...56

Window manager..55

Sprites..34

Window manager colour palettes......................28

SRX...40

15 Bit RGB scheme.....................................31

Start up..86

border colours palette scheme.....................30

Statement...87

grey scale palette scheme............................30

Stipples..23, 31

palette stipples scheme................................31

Strings..37

simple colour palette scheme.......................28

arrays...87

the colour palette scheme............................28

comparisons...88

the system palette schemes..........................28

slicing...81

Windows..91

variables...87

04/23

95

index-22_36.png

index-22_35.png

index-22_4.png

index-22_18.png

index-22_17.png

index-22_37.png

index-22_2.png

index-22_6.png

index-22_5.png

index-22_19.png

index-22_8.png

index-22_21.png

index-22_7.png

index-22_20.png

cover.jpeg
QPC2

Concepts

The Concepts Reference Guide describes concepts relating to SBASIC and QPC2. Itis best to
think of the Concept Guide as a source of information. If there are any questions about SBASIC
or QPC? itself which arise out of using the emulator or other sections of the manual then the
Concept Guide may have the answer. Concepts are listed in alphabetical order using the most
likely term for that concept. If the subject cannot be found then consult the index which should
be able to tell you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be entered
and run. Examples listed without line numbers are usually simple commands and it may not
always be sensible to enter them into the emulator in isolation.

This guide is a combination of the Sinclair QL manuals Concepts section, the (Super)Gold card
manual, the Toolkit 2 manual, the QPAC2 (Extended Environment), the SMSQ/E manual, and
the QPC2 manual.

© 1984 SINCLAIR RESEARCH LIMITED
©MIRACLE SYSTEMS

© 1994-2002 TONY TEBBY

©MARCEL KILGUS

QPC2V5.02 SMSQ/E V3.38 Release V1.03

index-22_33.png

index-22_32.png

index-22_34.png

index-22_26.png

index-22_28.png

index-22_27.png

index-22_3.png

index-22_29.png

index-22_31.png

index-22_30.png

index-7_1.png

index-22_23.png

index-22_9.png

index-22_22.png

index-22_25.png

index-22_24.png

index-22_1.png

index-22_11.png

index-22_10.png

index-22_13.png

index-22_12.png

index-22_15.png

index-22_14.png

index-22_16.png

