Appendix B - File formats

This appendix describes the format of output files produced by the
linker.

B.1 Summary of control file commands

This section is a quick summary of the commands possible in the
linker control file.

Lines beginning with * ; or ! are comments and are ignored by the
Linker. All letters in the control file input can be in either case and
case is not significant.

INPUT <file name>
Instructs the linker to include all modules from the named file in
the link.

EXTRACT <module name> FROM <file name>
Instructs the linker to find the module named in the file. If the
module is found it is included in the link.

LIBRARY <file name>

Instructs the linker to search the library from start to finish. Any
modules in the library which satisfy any currently unresolved
references are included in the link.

SECTION <section name>
Declares a section to the linker. All declared sections are
allocated space before any undeclared sections.

COMMON <common option>
Instructs the linker how to handle COMMON sections (if any
are encountered).

RELOC <section name>

Instructs the linker to collect run time relocation information and
place it in the section named.

34

B OFFSET <value>
Instructs the linker to start address allocation and to write the
output file from the address given in the value parameter.

B DEFINE <symbol> [=] <expression>
Defines a symbol at link time. If the expression includes a
symbol which has not already been defined then the linker
expects to find it in a relocatable object module.

B DATA <value> [K]
Defines the amount of data space required by the program
when it is run.

B.2 Relocatable binary format

This section defines the official Sinclair relocatable binary format. It
is self-contained and uses some terms with different meanings from
those used in the rest of the linker manual.

A relocatable object file consists of a sequence of modules, each of
which is a sequence of bytes terminated by an END directive (see
below). It should have a Qdos file type of 2 though this will not be
enforced by the linker. Interspersed with the sequence of bytes can
be directives from the list below; a directive is a sequence of bytes
beginning with the hex value FB.

When otherwise unmodified by a directive, a byte indicates that it

should be inserted at the current address and the address should
be stepped by 1. The special directive FB FB inserts the value FB
in this way.

Note that bytes are overwritten on (not added into) the byte stream,
so that if several sections are located at the same address, it is
possible to overlap (or even interleave) their contents. This is useful
for Fortran block data.

In the following syntax definition, <words>s and <longword>s need

not be word aligned: they just follow on from the preceding data
with no padding bytes.

35

A <string> consists of a length byte (value range 0 — 255), followed
by the bytes in the string. A <symbol> is a <string> of up to 32
chars. A symbol should start with a letter (A — Z) or a dot and the
other characters may be letters, digits, dollar, underline or dot.

B.2.1 Definition of a SECTION

A SECTION is a contiguous block of code output by the linker.
Each section has a name, and any source file can add code to one
or more of the sections. A module's contribution to a section is
called a subsection.

The linker will arrange that each section or subsection will start on
an even address, by inserting one padding byte if necessary. The
value of this byte will be undefined.

Note that if a module returns to a section, this is part of the same
subsection and the linker will not re-align on a word address.

When a section name is used in an XREF command the address of
the start of the subsection is used.

Note that section names are maintained separately from symbol
names (and module names), so there can be a section, a symbol
and a module all with the same name without any danger of
confusion.

B.2.2 Directives

B.2.2.1 SOURCE Syntax: FB 01 <string>

The <string> in this directive indicates information about the source
code file from which the following bytes were generated. This
directive should only appear at the start of a module (ie at the start
of the file or immediately after an end directive: see section B.2.3).

The string will start with the module name which may be followed
by a space followed by a field of further information about such
things as the version number or the date of creation or compilation.
The string should contain only printable characters and be no longer
than 80 characters.

36

This module name should conform to the syntax of a <symbol>
defined above, and may be used by the linker to identify individual
modules within a library (see section B.2.4). The module name can
be generated from a Qdos filename, but if so it is recommended
that the Qdos device name is first stripped off.

B.2.2.2 COMMENT Syntax: FB 02 <string>
The <string> in this directive is a line of comment. It will have no
effect on the binary file, but should be included at some suitable

point in a link map. The string should contain only printable
characters and be no longer than 80 characters.

B.2.2.3 ORG Syntax: FB 03 <longword>
This indicates that the bytes following the directive are to start at the

absolute address given in the parameter. This applies until the next
ORG, SECTION or COMMON directive.

B.2.2.4 SECTION Syntax: FB 04 <id>
This indicates that the bytes following the directive are to be placed

in the relocatable section whose name was defined in a DEFINE
command with the id value specified. See B.2.2.8.

This applies until the next ORG, SECTION or COMMON directive.

B.2.2.5 OFFSET Syntax: FB 05 <longword>
This directive updates the output address: the longword specifies

the address relative to the start of the current subsection or the
latest ORG directive.

The parameter is unsigned, so the offset may not be negative.

B.2.2.6 XDEF Syntax: FB 06 <symbol> <longword> <id>

This indicates that the symbol whose name is the <symbol> is
defined to be the value given in <longword>, relative to the start of
the subsection referred to by the <id>. Note that an <id> of zero
defines the symbol to be absolute.

See section B.2.2.8 for definition of <id>
B.2.2.7 XREF

Syntax: FB 07 <longword> <truncation-rule> { <op> <id>} FB

37

This indicates that the result of an expression involving user
symbols or other relocatable elements is to be written into the byte
stream. Note that this command does not overwrite some existing
bytes, but appends new bytes to the output.

The <longword> parameter defines an absolute term for inclusion in
the expression to be evaluated by the linker.

The <truncation-rule> parameter is a byte which defines the size of
the final result and the circumstances in which the linker might give
a truncation error, or the mode in which truncation should occur
(undefined bits must be set to zero). These are the effects of setting
each bit:

a If bit O is set, the result is one byte.
If bit 1 is set, the result is a word.
If bit 2 is set, the result is a longword.
Only one of these three bits may be set.

b If bit 3 is set, then the number is signed.
See notes below.

C If bit 4 is set, the number is unsigned.
See notes below.

d If bit 5 is set, the reference is PC relative, and the relocated
current address (ie the address to be updated by this
directive) is to be subtracted before the truncation process.

e If bit 6 is set, runtime relocation is requested (for longwords
only). The address of the longword is included in a table
generated by the linker which can be used by a runtime loader.

After the <truncation-rule> is a sequence of terms for the
expression. <op> is a one-byte operator code and can be 2B for "+"
or 2D for "-". <id> is a symbol or section name id as defined in the
DEFINE directive (2.8). The special <id> code of 0000 refers to the
current location counter (ie the address updated by this directive).

The final FB byte terminates the sequence of terms in the
expression.

38

As an example of the use of the signed/unsigned bits, consider a
value which must be written out as a word value; the
signed/unsigned bits are interpreted as follows:

resulting value

< FFFF8000 always out of range
FFFF8000 - FFFFFFFF illegal if 'unsigned' bit is set
00000000 - OOOOQO7FFF always allowed
00008000 - OOOOFFFF illegal if 'signed' bit is set

> OOOOFFFF out of range

There are some examples of XREF directives in B.2.5 below.

B.2.2.8 DEFINE Syntax: FB 10 <id> <symbol>
FB 10 <id> <section name>

This directive is used in conjunction with XDEF, XREF, SECTION
and COMMON.

The directive defines that the <symbol> or <section name> may be
referenced by the 2-byte <id> in XREF directives. A <section
name> has the same syntax as a <symbol>.

Note that positive nonzero <id> values refer to symbols and
negative <id> values refer to section names.

This directive must appear before the <id> value is used in any
other directive.

If two <id> values are used to refer to the same symbol, or if one
<id> value is reassigned to another symbol the effects are
undefined at present.

B.2.2.9 COMMON Syntax: FB 12 <id>

This directive is identical to the SECTION directive except that it
informs the linker that the section is to be a common section so that
references to this section in different object modules refer to the
same memory location.

39

Within the same object module multiple additions to the same
section will be appended together as for an ordinary section.

When different modules create common sections of differing size,
the linker should create a section equal in size to the largest one.

B.2.2.10 END Syntax: FB 13
This directive marks the end of the current object module. If the file
contains only one module, then this will appear at the end of file.

B.2.3 Directive ordering

B.2.3.1 Mandatory Rules

Within a relocatable object file the following rules should be applied
to the ordering of the directives within an object module:

a) A SECTION directive (or ORG or COMMON) must appear
before any data bytes in the module.

b) A symbol or section's <id> must be defined in a DEFINE
directive before it is used in any other directive.

The ordering of other directives is at the discretion of the authors of
compilers or relocatable assemblers, though it will normally be
dictated by the source code.

B.2.3.2 BNF definition of a relocatable object file

This BNF uses { } to mean 0 or more repetitions of an item.
<relocatable object file> = <module> { <module> }

<module> = SOURCE { <chunk> }END

<chunk> = <header> <body>

<header> = { <header command> } <section command>

<header command> = COMMAND | XDEF | DEFINE

<section command> = SECTION | ORG | COMMON

40

<body> = { <data byte> | <body command> }

<body command> = OFFSET | XDEF | XREF | DEFINE | COMMENT

B.2.4 Library format

B.2.4.1 Use of libraries in the QL Linker

A library is a relocatable object file as described above, but it will
normally contain more than one module. Note that a library can be
created by appending smaller libraries or object files.

When the linker processes a LIBRARY command it checks each
module to see if it resolves any external references. If so, that
module will be included in the link.

The linker also has a facility to extract a specific module from a
library, using the module name in the source directive.

B.2.5 Example

The object module format will be illustrated with the aid of this
example assembler source module: the file name is
"MDV1_EXAMPLE_ASM".

The Program is shown in Fig 1.

41

6'8°'L'9'G Y €TI0

g'04a :¢ 319v.L S0¥0€0201000

+d3HLO FHL-INILNOY LYHLx-INILNOY SIHL TOA : | ITGVL XXXXXXXXXXXX

od Ju8.Jnd BY) 10U ‘Bul| JUS1IND 8y} JO Ue)S 8y) 1e,

ssaJippe ay) se ,,, slaldisjul Jajquwasse siy) Jey) alou,

s31gvl viva

319V.L HOYV3S
ov(Ood)lL 31avl
(ov)8'z 319v.L - 9vL T¥YNId #

3d020

H3IHLO IHL ANILNOY LVHL
319V1 HOYV3S

av.L 1vNIH

3aNILNOY SIHL ‘I 319vL
1eW.o} a|npouw 198(qo ay) aessn|||

NOILO3S

dsr
vl
M3IAOIN

-INILNOY SIHL

NOILO3S
434X
434X
434X
43dX
J11LL

XXXXyg3y
XXXXV4 Ly
8000XXXXD/L1LE

"1 Bi4
anN3

800000

¢/0000

3€2100
veECL00
¥€2100
¥€2100

42

The generated object module would then look something like this (in
file "MDV1_EXAMPLE_REL"):

FB 011045 58 41 4D 50 4C 45 20 32 38 2F 30 39 2F
38 34
SOURCE EXAMPLE 28/09/84

FB0223496C6C75......
COMMENT lllustrate

FB 10 FF FF 04 43 4F 44 45
DEFINE -1 CODE

FB 10 FF FE OB 44 41 54 41 5F 54 41 42 4C 45 53
DEFINE -2 DATA_TABLES

FB 06 06 54 41 42 4C 4531 0000 00 72 FF FE
XDEF TABLE 1 DATA_TABLES

FB 06 OB 54 48 49 53 52 4F 55 54 49 4E 45
00 00 12 34 FF FF
XDEF THIS ROUTINE CODE

FB 10 00 01 08 46 49 4E 41 4C 54 41 42
DEFINE +1 FINAL TAB

FB 10 00 02 OB 53 45 41 52 43 48 54 41 42 4C 45
DEFINE +2 SEARCH TABLE

FB 10 00 03 OB 54 48 41 54 52 4F 55 54 49 4E 45
DEFINE +3 THAT ROUTINE

FB 10 00 04 08 54 48 45 4F 54 58 45 52
DEFINE +4 THE OTHER

FB 02 FF FF
SECTION CODE

43

317CFB 07 FF FF FF 38 02 2B 00 01 2D

FF FE FB 00 08
MOVE XREF -C8 | + FINAL TAB - DATA-TABLES
Rules: word

41 FAFB 0700000072 2A 2B FF FEFB
LEA XREF | + DATA-TABLES
Rules: PC - rel, word, signed

4E CAFB 07 00 00 00 00 2A 2B 00 02 FB
JSR XREF | +SEARCH TABLE
Rules: PC-rel, word, signed

FB 02 FF FE
SECTION DATA-TABLES

FB 07 0000 11 C204 2B FF FF 2D FF FE FB
XREF 1234-00 72 | + CODE-DATA-TABLES
Rules: long

FB 07 FF FF FF 8E 04 26 00 03 2D FF FE FB
XREF -00 72 | + THAT ROUTINE - DATA-TABLES
Rules: long

FB 07 FF FF FF 8E 04 2B 00 04 2D FF FE FB
XREF -0072 | THE OTHER + DATA-TABLES
Rules: long

FB 13
END

44

