Getting the PRINT USING keyword that's missing in SuperBASIC

5-Feb-89

F_FORM by Timo Salmi

I am currently (written in 1987) working on a linear programming and a linear goal programming
code (linprep_exe and linsolve_exe), which I have developed and tested quite thoroughly over
several years for the VAX/VMS. As you probably know linear programming codes are usually
available for mainframe computers, but very seldom for micros. This results from the fact that LP
is a rather spacialized application and not quite trivial to program without certain pitfalls.

An example of a tiny LP-problem:

Max z = 2X1 + 3X2
subject to

X1+ 4X2 <12
3X1-X2<8
X1,X2>0

Naturally I have had to develop a host of Super-BASIC procedures and functions. One function in
particular should be of general interest. As we know, often to our chagrin, Super_BASIC lacks the
PRINT USING statement. My function f_form$ makes up for this. (E.g. Donald Alcock has
presendted a using$ function in his book, but it fails under several special circumstances). The
syntax of f_form$ is adapted from the FORTRAN format statement Ff.d option. Thus e.g.

a = -3.456
a$ = f_form$(a,7,2) will return
-3.46

with the proper leading spaces. Large and small figures such as 9.9E10 and -1.6E-3 do not
produce errors, but are handled by the function. Naturally, bugs can remain, and if anybody finds
any, I would appreciate the information. In f_form$(a,7,0) the point is dropped following BASIC
rather than FORTRAN conventions. Overflow is signalled by string ####.## (in the

case of f_form$(10000000,7,2). The procedure is especially needed if using SUPERCHARGE, since
otherwise supercharged programs output e.g. 0.1 as 9.99999999E-2. (The procedure in

the supercharge manual to format output is not general enough.) I have saved this function on the
cartridge, since it might be worthwhile for inclusion in the library.

Professor Timo Salmi

Home: Office:

Soukankaari 2 B 36 University of Vaasa
02360 Espoo P.O.Box 297

Finland SF-65101 Vaasa

Finland

InterNet addess: ts@chyde.uwasa.fi

26000 DEFine FuNction f form$ (luku, ££%,dd%)

26010 LOCal lukul$ (mp),yl$ (mp),kl%,el%,pl%,pitls,wls (2)
26020 kl%=ff%-dds%-1

26030 IF luku>=0 THEN

26040 lukul$=luku:negl%=0

26050 ELSE :lukul$=-luku:negl%=1:END IF

26060 IF "."INSTR lukul$ OR "e"INSTR lukul$ THEN lukul$=lukul$+.5*10"-dd%
26070 IF lukul$(l)="." THEN lukul$="0"&lukul$
26080 pitl%=LEN (lukul$) :el%="e"INSTR lukul$:pl%="." INSTR lukul$

26090 IF NOT el% THEN
26100 yl$=lukul$

26110 IF NOT pl% THEN

26120 IF dd%>0 THEN yl$=yl$&"."&FILLS ("0",dd%)

26130 ELSE

26140 yl$=lukul$ (1l TO pl%-1)

26150 IF dd%>0 THEN

26160 IF pitl%-pl%>=dd% THEN

26170 yl$=yl$s"."slukul$ (pl%+1 TO pl%+dd3)

26180 ELSE :yl$=y1l$&"."slukul$ (pl%+1 TO pitl%)&FILLS ("0",dd%- (pitl1%-pl%)) :END IF
:END IF :END IF

26190 IF negl%:ylS$="-"&ylS$:END IF :wl% (1)=LEN(yl$)
26200 IF wl%(l)<=ff% THEN

26210 RETurn FILLS (™ ", ff%-wl%(1))&yl$

26220 ELSE

26230 IF dd%>0 THEN

26240 RETurn FILLS ("#",k1%)&"."&FILLS ("#",dd%)

26250 ELSE :RETurn FILLS ("#",ff%):END IF :END IF

26260 END IF :wl%(1l)=1lukul$ (el%$+1 TO)

26270 IF wl%(1)>=0 THEN

26280 IF pl% THEN

26290 yl$=1lukul$ (1TO pl%-1)&lukuls$ (pl%$+1TO el%-1)

26300 ELSE :yl$=lukul$ (1TO el%-1):END IF

26310 wl% (2)=LEN(yl$)

26320 IF wl%(2)<wl%(1l)+1 THEN yl$=yl$&FILLS("0",wl%(1l)-wl%(2)+1)
26330 ELSE

26340 IF pl% THEN

26350 yl$="_."&FILLS ("0",-wl%(1)-1)&lukul$ (1TO pl%-1)&lukul$ (pl%+1l TO el%-1)
26360 ELSE :yl$="."&FILLS$ ("0",-wl%(1l)-1)&lukul$(1TO el%-1) :END IF
26370 END IF :lukul$=yl$:GO TO 26070

26380 END DEFine f form$

26390

Resave and Date-mark Your Programs in SuperBASIC

25th February, 1987
Mr. Leon Heller
30 Baldslow Road

Hastings
East Sussex TN34 2EY
England

Dear Leon,
For publication in QUANTA:

Here is a handy little DSAVE procedure for resaving and datemarking SuperBASIC programs.
Merge it into your program, substitute the name of your program on 32020 between quotes,

and substitute your own name on line 32120. Do not use line numbers from 1 to 3 in your original
program, since the lines are reserved for datemarking. Do not renumber the lines from 1 to 3 at
any stage to avoid confusion. The procedure checks whether the current year on the clock

is 1987. If not, DSAVE is not performed. In due time you have to update the year on line 32040
for obvious reasons. To resave and datemark on e.g. MDV1_ just give command DSAVE 1

If you have diskdrives other than FKDn_, or ramdisk, substitute the devicenames on lines 32090
to 32100 to suit your own peripherals.

1 REMark dsave (c) My Name

2 REMark Wed 1987 Feb 25 09:35:04

3

32000 DEFine PROCedure DSAVE (dr)

32010 REMark DSAVE by Timo Salmi

32020 LOCal a$,bs$:a$="dsave"

32030 b$=DATES :bS$=b$ (1 TO 4)

32040 IF b$<1987 OR b$>1987 THEN

32050 PRINT#0,DAYS!DATES;", DSAVE abort, set date"
32060 BEEP 4000,12:STOP:END IF

32070 IF dr=1:b$="mdvl "s&a$

32080 IF dr=2:b$="mdv2 "&a$

32090 IF dr=3:b$="fdkl "&a$

32100 IF dr=4:b$="fdk2 "&a$

32110 DELETE b$:OPEN7NEW#3,b$

32120 PRINT#3,"1 REMark ";a$!"(c) My Name"
32130 PRINT#3,"2 REMark ";DAYS$S!DATES

32140 PRINT#3,"3 :"

32150 LIST#3,100 TO:CLOSE#3:PRINT#0, "DSAVEd" !'b$
32160 END DEFine DSAVE

Prof. Timo Salmi

School of Business Studies
University of Vaasa
Raastuvankatu 31
SF-65100 Vaasa, Finland

Resetting QL windows in SuperBASIC
BACK TO BASICS

Below you have yet another addition to the abounding set of procedures resetting the windows.
This one is especially intended to be useful in connection with writing SuperBASIC programs.

The alternatives are RESET 8, RESET 4, and RESET 0. All the three are variants of the television
display, where windows #1 and #2 are on top of each other. RESET 8 gives the same standard TV
display as you get from key F2 when switching the QL on. The other two are similar but with
smaller character sizes.

31000 DEFine PROCedure RESET (1)

31010 LOCal il:MODE i:REMark by Timo Salmi

31020 WINDOW 513,256,0,0:PAPER 0:CLS

31030 OPEN#2, con_:WINDOW#2,448,200,32,16

31040 PAPER#2, 1:INK#2, 7

31050 WINDOW#0,448,40~- (i=4),32,216+ (i=4)

31060 WINDOW 448+8* (i=4),200+2* (i=4),32-4* (i=4),16- (i=4)
31070 PAPER 2* (1=8) :BORDER (i=4),4%* (i=4)

31080 FOR 11=0,1,2:CSIZE#il, (i=4)+2*(i=8),0:END FOR il
31090 PAPER#0, 0: INK#0, 7-3* (1=0) : INK 7:CLS

31100 SCALE 100,0,0:FILL O

31110 END DEFine RESET

Useful POKEs in SuperBASIC

PEEKAPOKE

Although QL uses relative addressing peeks and pokes can be useful. Here a a selection of memory
addresses collected by Timo Salmi. Some of the addresses may have different values depending
on the QL ROM version and the peripherals attached. The screen starts from 131072. One way of
saving the screen is writing SBYTES mdv1_screen,2~17,2715

The free memory can be obtained e.g. from function

18000 DEFine PROCedure f mem
18010 RETurn PEEK L(163856)-PEEK L(163852)
18020 END DEFine f mem

Quite a number of similar peeks is provided on the files accompanying Digital Precision's TURBO
compiler.

PEEK_L(163872)/1024-256 returns memory expansion in kilobytes. (Its value will be 0, 256 or
512).

POKE_W 163886,0

other commands ...

time=PEEK_W(163886):PRINT time/50

can under some circumstances be used to measure elapsed time. However, if the commands in
between include e.g. INPUT the counter will be muddled.

Caps lock can be turned on by POKE 163976,255 and of by POKE 163976,0

POKE_W 163980,30 defines the delay before a key starts repeating 30 being the default.

POKE_W 163982,2 defines the rate at which the key is repeated 2 being the default.

POKE_W 163986,3 sets the multitasking toggle key in ACSII. The default 3 is CTRL C. E.g. after
POKE_W 163986,9 the task which the input buffer is attached to is changed by pressing TABULATE
instead of the familiar CTRL C.

A Multitasking Trace for SuperBASIC

TRACE IT

If you have Digital Precision's TURBO you can set up a trace for SuperBASIC. Compile the code
first and then multitask it with EXEC.

1 REMark trace by Timo Salmi

2 REMark Wed 1987 Feb 25 19:45:25

3 :

100 IF COMPILED THEN SET PRIORITY 8

110 OPEN#3,scr :CSIZE#3,2,0:WINDOW#3,136,12,344,16
120 BORDER#3,1,2:INK#3,0:PAPER#3,7:time=DATE

130 REPeat loop

140 IF DATE-time>3 THEN

150 WINDOW#3,2,1,0,0:CSIZE#3,2,0
160 WINDOW#3,136,12,344,16:BORDER#3,1,2
170 time=DATE

180 END IF
190 bline%=BASIC W% (104) :AT#3,0,0
200 PRINT#3, "TRACE" !bline%;

210 p%=5-LEN (bline%) : IF p% THEN PRINT#3,FILLS (" ",p%);
220 END REPeat loop
230

Conversion Between Number Bases in SuperBASIC

TOUCHING ALL BASES

Conversions between number bases are very easy to do with the following SuperBASIC functions.
In order to convert a binary number to an ordinary decimal you would use

PRINT £ todec('1011',2)

For converting a decimal value to hexadicimal could be done with

PRINT f fromdec$(131072,16)

Finally converting e.g. 34 from base 5 to octal would just need

PRINT f fromdec$ (f todec('34',5),8)

18000 DEFine FuNction f todec (number$,base$%)
18010 LOCal i%,dl,k1l,digit$(31),loop

18020 IF base%<2 OR base%$>32 THEN RETurn -1
18030 digit$="123456789ABCDEFGHIJKLMNOPQRSTUV"
18040 k1=1:d1=0:1%=LEN (number$) +1

18050 REPeat loop

18060 1%$=i%-1:IF i%<1l THEN EXIT loop
18070 j%=numbers$ (i%) INSTR digits$
18080 IF j%$>base%-1 THEN RETurn -1
18090 dl=dl+j%*kl:kl=base%*kl

18100 END REPeat loop

18110 RETurn dl

18120 END DEFine f todec

18130

18140 DEFine FuNction f mod(a,b)

18150 RETurn a-b*INT (a/b)

18160 END DEFine f mod

18170

18180 DEFine FuNction f div(a,b)

18190 RETurn INT (a/b)

18200 END DEFine f div

18210

18220 DEFine FuNction f fromdec$ (number,base%)
18230 LOCal numberl,result$(36),digit$(32),loop
18240 IF base%<2 OR base%>32 OR number<0 THEN RETurn -1
18250 numberl=number:results=""

18260 digit$="0123456789ABCDEFGHIJKLMNOPQRSTUV"
18270 REPeat loop

18280 result$=digit$ (f mod (numberl,base%)+1) &results$
18290 numberl=f div (numberl,base%)
18300 IF numberl<=0 THEN RETurn result$

18310 END REPeat loop
18320 END DEFine f fromdecs$
18330

Prof. Timo Salmi

School of Business Studies
University of Vaasa
Raastuvankatu 31
SF-65100 Vaasa

Finland

Testing of File Existence, elapsed time, etc.

INSTRUCTIVE, ISN'T IT

Let us not forget the budding SuperBASIC programmers. Some honed FuNctions and PROCedures
might be in order among the interesting, but abounding material related to the commercial
QL software and hardware so much in evidence in Quanta nowadays.

I have nothing against this trend, since personally I mostly use my the QL as a serious tool.
Nonetheless, we perhaps should have more material in Quanta reflecting the fact that QL also

is a home computer (with features not available in PC's). Perhaps something in the vein of Sinclair
QL World's Better Basic series. So, here we go.

The familiar INSTR operator finds the first location of a character (or a sub-string) in a string. The
search is case-independent. In some applications case-dependent search is needed. Furthermore,
the in the case the special characters, such as the scandinavian letters, INSTR does not function
consistency. The result depends on whether the SuperBASIC program is interpreted or compiled,
and there also may be differences between the different ROM versions, for all I know. So here is a
case-independent function for a single-character search giving consistent results for the entire
character set.

While "B" INSTR "abcdeABCDE" would return 2, gl_instr("B","abcdeABCDE") will return 7.

18600 DEFine FuNction gl instr(d$,e$)

18610 REMark case-dependent INSTR by Timo Salmi
18620 LOCal 1%,p%, loop

18630 1%=0:p%=LEN (e$)

18640 REPeat loop

18650 i%$=i%+1:IF i%>p% THEN RETurn O

18660 IF e$(1i%)=d$ THEN RETurn i%

18670 END REPeat loop

18680 END DEFine gl instr

18690

Notice the intentional use of the REPeat loop and integer variables. In compiled programs, loops
built with integers and REPeat are considerably faster than the more familiar FOR loops. Also
notice that the LENgth of the e$ string is evaluated outside the loop. This speeds up the function
significantly.

TO BE OR NOT TO BE

One of the ever-recurring tasks in writing SuperBASIC programs is finding out whether a file

exists. Here, once again, is a function returning 1 (true) if the file exists and 0 (false) if
not.

27500 DEFine FuNction gl exist (£$)

27510 REMark existence of a file by Timo Salmi
27520 LOCal hl$(16),als$(36),£fbls(36),search,exists
27530 IF LEN(f$)<5 THEN RETurn O

27540 hl1$=£$(1 TO 5)&"tempdir tmp"

27550 DELETE hl$:OPENiNEW#6,hl$:DIR#6,f$(1 TO 5)
27560 CLOSE#6:0PEN_IN#5,hl$:INPUT#5,al$,als

27570 fbls="":IF LEN(f$)>5 THEN fbl$=£fS$(6 TO LEN(fS))
27580 REPeat search

27590 IF EOF (#5) :exists=0:EXIT search:END IF

27600 INPUT#5,als$

27610 IF fbl$==al$:exists=1:EXIT search:END IF

27620 END REPeat search

27630 CLOSE#5:DELETE hl$:RETurn exists
27640 END DEFine gl exist

27650

Notice the habit of dimensioning all strings, which is good programming practice, especially if the
program will be compiled.

TIME FLIES

The time elapsed in using a program can be found in HH:MM:SS format by applying the following
function.

1 start time=DATE
the program (e.g. Quill-boot)

9998 INK#0,7:gl elapsed(0) :REMark output to channel #0
9999

30000 DEFine PROCedure gl elapsed(ch%)
30010 REMark elapsed time by Timo Salmi
30020 LOCal tl,ml,sl

30030 PRINT#ch%, "ELAPSED" ! ;

30040 s1l=DATE-start time

30050 t1=INT (s1/3600) :s1l=s1-t1*3600
30060 ml=INT (s1/60) :sl=s1-60*ml

30070 PRINT#ch%,tl DIV 10;tl MOD 10;":";
30080 PRINT#ch%,ml DIV 10;ml MOD 10;":";
30090 PRINT#ch%,sl DIV 10;sl MOD 10
30100 END DEFine gl elapsed

30110

TOUCHING ALL BASES

Conversions between number bases are very easy to do with the following SuperBASIC functions.
In order to convert a binary number to an ordinary decimal you would use

PRINT f todec('1011',?2)

For converting a decimal value to hexadecimal could be done with

PRINT f fromdec$ (131072,16)
Finally converting e.g. 34 from base 5 to octal would just need

PRINT f fromdec$ (f todec('34',5),8)

18000 DEFine FuNction f todec (numbers$,base%)
18010 LOCal i%,dl,k1l,digit$(31), loop

18020 IF base%<2 OR base$%$>32 THEN RETurn -1
18030 digit$="123456789ABCDEFGHIJKLMNOPQRSTUV"
18040 k1=1:d1=0:1%=LEN (number$) +1

18050 REPeat loop

18060 1%=1%-1:IF 1%<1 THEN EXIT loop
18070 j%=numbers$ (i%) INSTR digits$
18080 IF j%$>base%-1 THEN RETurn -1
18090 dl=dl+j%*kl:kl=base%*kl

18100 END REPeat loop

18110 RETurn dl

18120 END DEFine f todec

18130

18140 DEFine FuNction f mod(a,b)

18150 RETurn a-b*INT (a/b)

18160 END DEFine f mod

18170

18180 DEFine FuNction f div(a,b)

18190 RETurn INT (a/b)

18200 END DEFine f div

18210

18220 DEFine FuNction f fromdec$ (number,base%)

18230 LOCal numberl,result$(36),digit$(32),loop

18240 IF base%<2 OR base$>32 OR number<(0 THEN RETurn -1
18250 numberl=number:results=""

18260 digit$="0123456789ABCDEFGHIJKLMNOPQRSTUV"

18270 REPeat loop

18280 result$=digit$ (f mod (numberl,base%)+1) &result$
18290 numberl=f div (numberl,base%)

18300 IF numberl<=0 THEN RETurn result$

18310 END REPeat loop
18320 END DEFine f fromdec$
18330

Prof. Timo Salmi

School of Business Studies
University of Vaasa
Raastuvankatu 31
SF-65100 Vaasa

Finland

