QDOS / SMS

Reference Manual

Version 4.8

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Forword and table of contents p.1

Foreword

This is the 4th edition of the QDOS/SMS Reference Manual, a guide and manual for programming the QL as
well as QDOS and its many descendants, including especially SMSQ/E. The purpose of this is to have an
up-to-date guide to the facilities offered by QDOS and SMSQ/E. This text is based on the original 3rd edition
of the manual, as it was published by Jochen Merz and Marcel Kilgus, and then scanned in by Derek
Stewart. Except to make changes for error corrections and new insertions, | left much of the original text
untouched, even where it was mostly outdated.

Of course, all of this was made possible by the original writers of the original texts (Tony Tebby, Jochen
Merz, Marcel Kilgus), and thanks go to them.

As to the amendments made in this text, | did correct all errors | was able to spot. | also continued to point
out the differences between the plain QDOS variety of things and those for SMSQ/E, where appropriate.
Included in this edition are the updates for SMSQ/E as they stand now. It is true that this text now contains
much information that is specific to SMSQ/E, but this is due to the fact that SMSQ/E is still being developed,
whilst the other OSes aren’t. Thus, there are now sections on the HOME thing, the SMSQ/E style guide etc.

In this manual, S*Basic means the QL's SuperBASIC and SMSQ/E's SBasic. SMSQDOS means something
is applicable to SMSQ/E and QDOS. Sometimes you will find reference to assembler key files (e.g.
keys_qdos_io). These refer to the keys files as found in the “keys” subdirectory in the SMSQ/E sources.

The page numbers in each section and indexes thereto refer to the page numbers of that section.
Unfortunately, whilst the initial table of content is “ clickable” (CTRL + left mouse click on a section to go
there), this is not true for the indexes.

Much care has gone into trying to make sure that the information herein is correct. All remaining
errors/omissions are mine.

Ideas, corrections and / or suggestions are always welcome. After version 4.0, this manual is maintained by
W. Lenerz only. Per Witte has pointed out numerous improvements/errors.

Wolfgang Lenerz
Derek Stewart

Versions of this manual as of v. 4.1 (all by WL)

v. 4.8 Some typos (6-2, 6-4, 16-7, 13-1), removed reference to system variable sys_10i (was at $00c2). A
value of -1 in D3 is “delete” in IOA.OPEN, some explanation on IOA.DELF in SMSQ/E. Correct examples for
vector IOU.SSIO. Typos/error corrections and additions in Appendix A. Vector MEM.ALHP: the condition
code is not cleared on success on all QDOS ROM versions (it is on SMSQ/E). Added order of keyboard
tables.

v. 4.7 Better explanation of the value retuned in D1 by SMS_ACHP and of how literal numbers are stored
in S*Basic. Included the table for SMSQ/E Sbasic variables.

v.4.6 The length word in D2 for IOB.FLIN and IOB.FMUL is a positive word. SBasic arithmetic operation
qa.flong renamed to ga.fltli to keep in sync with the keys_qglv keys file. Correct reference to language
handling for trap#1 with sms.ldmm and following. CV.DATIL is available on SMSQ/E machines only;
IOB.EDLIN is really called |IOB.ELIN.

v.4.5 Typos, added keys/information about standard hard disk format, SBasic name table additions for
integer REPeat and FOR loop indexes, warning for device driver linkage blocks, IOB.FLIN under SMSQ/E
level 3 drivers may convert <CR><LF> to <LF>.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Forword and table of contents - 2

v.4.4 Wrong label for SMS.LSHD corrected in trap description. MEM.ACHP does not modify A3 in
SMSQ/E. Entry regs to vector $11C corrected. Correct registers for vector SB.GTINT and following shown.
Current thing parameters completed and some keys don’t exist. On SMSQ/E it is not necessary to have the
maths stack pointer in A1 before calling vector QA.RESRI. Spurious content of D2 & D3 removed from
CV.ILDAT and CV.ILDAY.

v. 4.3 Added some hyperlinks. IOU.DNAM: corrected spelling of some examples. Explained that opening a
directory will open the next higher directory if not found. Typo corrections in the hardware keys section.
Added keys for pointer device.

v. 4.2 Corrected wrong register on entry to SB.PUTP (was A1, is now A3). IOB.SMUL.: the buffer size is a
positive word; D1 upper word is destroyed. IOB.FLIN/IOB.SMUM: error return if no LF found corrected, must
be ERR.BFFL and not ERR.OVFL; D1 upper word is destroyed. IOU.DNAM correct title for trap.
RCNT_GARJ, RCNT_GALL, RCNT_GALJ : return description, parameter description and examples
corrected.

v. 4.1 Corrected missing source & destination registers when restoring SR in section 10.9 example.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Forword and table of contents p.3

The page numbers in this clickable table of contents refer to the page numbers within each section.
CTRL+Left Click goes to the entries.

Table of contents

0. Why this book? (Original foreword by Jochen Merz)..........cccccuvvimieeencciiiiimnncnncniniennns 1
1. About this GUIdE.........cooiiiiiri e s 1
2. Introduction to QDOS / SMS / SMSQUE......ccceiiiiiiiiirissssssssssssssssssssesssseesessssssssssssssnes 1
2 I Y/ =T 0 g T A 1 = T o J PR 1
P2 O T T T 0] = 2
2.1.2. System Variables........oooo oo 2
2.1.3. System Management Tables. ... 2
2.1.4. CommMON HEAP ArCa.......cco oot 2
2.1.5. Free MemOry ArCa..........uuuiiiiiiie e 2
A B TS = = L] o= = T 3
2.1.7. Transient Program Ar€a.............ocuiii ittt a e e e e e e eees 3
2.1.8. Resident Procedure Ara..........coooooioiiiiio e 3

2.2. Calling QDOS/SMS ROULINES.....cciiiiiiiiiiiiiiieiee et 3
0 T I =T o1 TP 3
2.2.2. Vectored ROULINES........ooiieeeieie et e e e e e e 4
2.2.3. ALOMIC ACHONS. ...ttt e e et e e e e et e e e 5

2.3. EXCePLioN ProCESSING.......uuiiiiiiiiiiiiiee et 5
S - o U o PP 6

3. Machine Code Programming........cccccceeeiiiiiiiiisssmnnnsssssssssssssssssssssss s s e s s ssssssses 1
B d. OIS 1

X 20t O O o T4 =1 I Lo o 3 1
3.1.2. SPECial ProgramsS.........cooiiiiiiiiiiiieieeee ettt s 3
3.1.3. Job Control Enhancements [SMSQ/E].........coooiiimiiiiiiiiiii e 4

3.2. S*Basic Procedures and FUNCHONS...........c.vuiiiiiiiiii e 5

K R T I~ T S 5
3.4. Operating System EXIENSIONS. ... 5
4. Memory AllOCAatioN........ccooiiirr s 1
S I o 1= T oIV ol F= T T o 1
5. Input/ Output on the QL..........ooiiiiiieiie s e e e e e e e e nnas 1
oI TS 1= - 1 PSSP 1
ST 1= 1L P PURPPPRRR 2
STRC TS o == o =T o o I @70 g < To] L= 1L J U 3
5.3.1. Display MOAES.......ccooeiiiiiiei e e e e 3
5.3.2. Window Properties and Operations..............cuuuuiiieiiiiiiiiiiiieeeeeeeie e 3
5.3.3. Screen Character Output Operations............ccoooeeiiiiiiiiii e, 5
5.3.4. Graphics OpPerationS..........cciiiiiiiiiiiieiiiiie e e e e e e e e e e 5
5.3.5. Special Properties of Console Channels....................cccoiiiiiii e, 6
5.3.6. Special Keyboard FUNCLONS............uuuiiiii 6
5.3.7. Extended OperationNS [SMSQ/E]««««««««ceeeeeeerrmrareeeeeeeeaaeeeeeeeeeeeeeeeeeannrernnnnnnaaaaaeeeens 6
5.3.8. Dlsplay [SIMSQ/E] e+ + v asssannsssnnansssnnnsssssnsssssssnssnnssssssssssssnnsnssssssssssssanssssssssssssnnnnnsssssenns 6
5.3.8.1. New CON drivVer VECIOIS.uuuiiiiiiiiiiiieeiieiiiiiiee e e e e e e e e e 6
5.3.8.2. New (WMAN) colour format..........oooiiuiuimiiiiee e 14
5.3.8.2.1. Stipple FOrmMat........ooooviiiiiiiiii e 14

5.3.8.2.2. 3D Border FOrmMaL....... ..o 14

5.3.8.3. System palette entries........cooovvvuiiiiiiiiie 15

5.3.8.4. New BasiC KEYWOIdS............uuiiiiiiiiiiiiiiiiiiiiiiiiii e 16

5. 3.8 .. COlOUIS. . e e 16

5.3.8.4.2. Palette handling........ccocuuiiiiiii 17
5.3.8.4.2.1. System palette Keywords..........ccccoooiiiiiiiiiiiiee e 17
5.3.8.4.2.2. Job palette Keywords.............cooviiiiiiiiiiiii 17

5.3.8.5. NEW MOVE MOUES........uuumiiiiiiiiiiiee ettt ea e 18

5.3.8.5.1. The MOVE MOUES.......uuuie e e e et e e e e e e e eeenn e e eeeeeees 18

5.3.8.5.2. Configuring/setting the move mode............ccooovviiiiiiiiiiiiiiee e, 18

5.3.8.5.3. Configuring/setting the degree of transparency...........ccccccceeeeeeeennnn. 19

5.3.8.6. Graphics with alpha blending............coooiiiiiiiiiiiii e 20

5.3.8.6.1. Machine code interface............ooovvveiieiiiiiiiiiiiiiie e 20

5.3.8.6.2. S*BasiC KEYWOIrdS.........c.uuuiiiiiieeeiiiiee e 21

6. QDOS DeViICe DFIVEIS.....ccciiiiiiiiiiiiisisisssssss s s s ssmss s s sssss s s ssmn s s s s e s nmn s s e s e s nmnnsssns 1
6.1. Device Driver Memory AllOCatioN.............uiiiiiiiiiie e 2
6.2. Device Driver Initialisation...........ccoooiiooiie e 2
B.3. PRYSICAl LAYEI ... aanas 3
6.3.1. External Interrupt TasKS.......oooo i 3
6.3.2. Polling INterrupt TasKS......ccooo i 3
6.3.3. Scheduler LOOp Tasks.......cooo oo 3

B.4. ThE ACCESS LAYETo e e e e e e e ea e e e eenas 4
6.4.1. The Channel Open ROULINE...........ooiiiiiiii e 4
6.4.2. The Channel Close ROULINE...........ccuiiiiiiiiieiee e 5
6.4.3. Input/OUtpUt ROULINE.......co i 6

7. Directory Device DriVers.........ccciiis s 1
7.1. Initialisation of @ DIreCtory DIiVEr...........eeiiiii i 2
7.2, ACCESS LAYEot e e e e e e e e e e e e e e e et e e et e e aeeeenannnnnna 3
7.2.1. The Channel Open/File Delete Routine................ooviriiiiiiiiiiiiiieee e 4
7.2.2. The Channel Close ROULINE...........ccoooiiiiiiie e 5
7.2.3. The Input/ Output ROULINE..........oiiiiiiiiiieee e 6

4% TS 1 = Y/ LT OSSP 6
7.4. The Format ROULINE. ... e 8
8. BUIlt-in DeVICe DIiVErS.....oooceeeccicieirrrcc s rrre s rrme s s s s re s s s ems s s s s nas s s e nm s s s e nn s s sennan 1
8.1. QL Floppy Disc Format [EXT]....ccuiiiiiieiiiiieieeeeeeeee e 2
8.2. Direct Sector Read/Write [EXT]...ccoo i 4
8.3. Additional Standard Device Drivers [ST] [EXT] [SMSQ/E]......ccccoeevimiiiiiiieiiiiiiies 4
9. Interfacing to S*BaSIC......cccceciiiiiiiiiiiii i ——— 1
9.1. Memory Organisation within the S*BasiC Area..............cccceeeeeeiiiiiiiii e, 1
9.2. The NamMe TabI@........oo e e et e e e e e eennaans 2
9.3, NAME LISt ..t e e e 3
9.4. Variable ValUES AFEa..........uuuuuuueuiiiiiiiiieie e e e e e e et e e e e e e eeannna e e e eeeeesnnaaeeeas 3
9.5, StOrage FOrMALS.......oooiiiiiiiiee et eeeaaaa 3
SRS I [0] (=Te [T g3 (o] = To [T PP PPPPPPPPRRR 3
9.5.2. Floating Point Storage............ooooiiiiiiii e 3
9.5.3. SHNG STOrAGE. 3

S IR T N =)V (o] = To [TSP 3

9.6. Code RESINCHONS......cceeie e e 4
9.7. Linking in New Procedures and FUNCLIONS............couuiiiiiiiiiiiii e 4
9.8. Parameter PasSiNg........ccouuiiiiiiiiiiiiie e 5
9.9. Getting the Values of Actual Parameters...........ccooouviiiiiiiiiiiiie e 5
9.10. The Arithmetic Stack Returned Values.............ccoooeiiiiiiiii e 6
9.11. The Channel TabIe........oooii i aeeenneenanana 6
10. Hardware-related Programming..........cccccommmmmiiiiniiinn s 1
L0 2 B /=T o T Y 1Y/ =T o T PP 1
10.2. DiSpPlay CONIIOL......cooiiiiiiie et s 2
10.3. Display Control REGIStEr.........ccooiiiiieeeeeeee e 2

10.4. Keyboard and Sound CONtrol...............coeuiiiii 2

TO.5. SEIAI IO e e, 3

O =T | (10 =K [Yo G 3
TO.7. INEIWOIK. ...ttt e ettt et e e e e ettt e e e e e e e et tb e e e e e eeeaaneeeeeas 3
2R TR 1Y/ T o o 4 1Y 3
10.9. User and Supervisor Mode [ST]....cooiiiiiiiiiiiieeeeee et 5
10.10. The Interrupt SYStemM [ST]....oue e 6
10.11. The MIDI INterrupt SErVEr [ST]...uumuuueeieieieieiieeieieriree e e e e e e e e e e e e e e e eeeeanes 7
10.12. Different Processors [STI[SMSQVE].......cccooiiiiiiiiiiiiii e 7
10.13. Different Machines [ST, SMSQY].......ccooiiiiiiiiii s 7
(O R I TN N N I 1Y N S 8
11. Adding Peripheral Cards to the QL............ccoiiiiim 1
R I ="q 0= 10 13 N @ 1 1Yo oI 1
11.2. CPU INEITACE. ... 1
11.3. Peripheral Card AdAreSSiNg.......couooiiiuuiiaea s 2
11.4. Add-0Nn Card ROMS.........uiiiiiiiee s 2
12. Non-English Systems.......... .. 1
20 IV o =T o T 1
12.2. Non-English-language Keyboards........... .o 1
12.3. Character Set [NOt SMS2] [SIMSQ] s s s+ sassssnanssssanssssnnsansssesssssssssnnssssesssssssssansssessssssssnnnnnnsnss 2
12.4. Special AIPRabEtS.......cooi i 3
13. SyStem TrapsS.....cciiiiiiiieiirr i ———————— 1
13.1. Trap 1 Keys - numerical order with page reference..........c...cccooooviiiiiieiiiiiiinee, 22
14. 1/0 Management TrapsS......ccccccccuumummmmnnnnnnnnnsissrrrrnassss s srssmssss s s s s s snnsssssssssssnnnsssssssnnns 1
14.1. Trap 2 Keys - numerical order with page reference..............ccccovviiiiiiiiiiiiiccceenee. 6
T 1L X o= =T I - T o =3 1
15.1. Trap 3 Keys - numerical order with page reference..............cccccoeiiiiiiiiiiiiiiiiin. 38
16. Vectored ROULINES........ccooiiiiiiiiiiirinrssrrri s s s s s 1
16.1. Vectored Routines - numerical order with page reference..........cccccccuvviiieiennnnnnne. 22
17. Thlngs [EXTI[SMSQ/E]s s nnssnsssssasnassanssssassnsssnsssnssssssssssssssssssssssssssssnsssssssssssnssssnssansannsssnsssnsnnnnsnns 1
171, TRING SIUCIUIES.....eeiiiiie e e e e e e e e e e e e eeeeeaaaaees 2
17.1.1. Thing INkage formMat............oooiiiiiiiiiieeeeeeeeeeeeeeee e 2
17.1.2. Thing header format..........oo e 2
17.1.3. List of ThiNgS HEAAEN.........ooiiieiiieeeeeeeeeeee et 2
17.1.4. Executable Thing Header..........cooo i 3
17.1.5. Extension Thing Header..........ooooriiiiiiiii e 3
17.2. Different sorts of ThiNgG.......oooiiiiiii 3
L T N o1 0T Y=] (o] = P 4
17.4. Thing ENtry POINtS.......ooiiie e 11
17.4.10. TH ENTRY oo e e e e e e e 11
17.4.2. TH EXEC ettt ettt e e e e e e e e e e aaaaaaaeees 11
17.4.3. Example of entries to the Thing Vector system...........cccccoooiiiiiiiiiiiiniiinnnnnn. 11
17.5. EXIENSION ThINGS. ..o 14
17.5.1. Extension Thing Header..........oooormiiiiii i 14
17.5.2. Level 1 Extension Thing Parameter Definition...............ccccoooiiiiiiiiiiiiiiiiinns 14
17.5.3. Call Values and KEYS..........oooiiiiiiiiiiiiiieieee et e e e e 15
17.5.4. Pointer Parameter USAge..........ccooiiiiiiiiiiiiiiieeeeiie e 15
17.5.5. Optional Parameter...........oooooiiiiiiiiiiee e 16
17.5.6. Array Parameter.........oooiiiiiiiiiiii e 16
17.5.7. Parameter TYPES. .. cccoi ittt e e e e e e e e e et e e e eraaa s 16
17.5.8. Example Parameter Definitions.............ccoo oo 16
17.5.9. Parameter LiSt..........uuuuiieiiiiiiiiiie e e eeeees 17
17.5.10. Defining Extension ThiNgS..........oooo i 17
17.5.11. Accessing Extension ThiNgS........ccooooiiiii e 17

17.5.12. When to Use Extension ThingsS.........ccciiiiiiiiiiieeeeeeeeeeeeeee 17

L TR 45T 1
LR T = (o il =) TSP 1
18.2. System variabIles..........ooo i 2
18.3. SuperBasic Variables............coooiiiiie e 7
18.4. SBasic Variables [SMSQ/E].....ccuuiiiiiiiiiiiiee oo 10
18.5. Basic channel definitions and tOKeNS................ooooiiiiiiiii e 12

18.5.1. Offsets on BASIC Channel Definitions........ccccoooiiiiiiii e, 12
18.5.2. BASIC TOKEN VAlUES.....cccei i 12
18.6. Job Header and Save Area Definitions.............oiiiiiiiiiiii e 15
18.7. Slave Memory Block Table Definitions. ..o 16
18.8. Channel DefiNitioNS.........ooo oo 17
18.9. File System Definition BIOCKS...........cooiiiiiiiiiiiicie e 18
18.9.1. 18.Standard channel block for filing system.............ccoeviiiiiiiiiiiiiii, 18
18.9.2. The common part of a physical definition block..............ccccccveeeiiiiiiiiiiieeee. 18
18.9.3. Microdrive Physical Definition BIOCK (Quj.«««««xxxeeeeenreeeereeiiiiiieeeeeeeiicee e 19
18.9.4. Other Filing System Physical Definition BIOCK [sMsqiiexme-«eveeeeeeererermninieeerennnnn. 19
18.10. Device Driver Linkage BIOCK............uuuuumi e 20
18.10.1. Screen Driver Data Block Definition...........cccoooiiiiiiiiieeee 21
18.10.2. Serial Channel Definition BIOCK [qu.««« v vvvvrrrrrmmmiiiiiiiee e 22
18.10.3. Network Channel Definition BIOCK [aij...vvveeeeeeieiiiiiii e 22
18.11. Queue Header DefinitioNS..........oooe oo 22
18.12. Arithmetical Interpreter Operation Codes...........oovviiiiiiiiiiiiiiiiiiiee e, 23
RS TR G T | @ T | Q@70 o o =1 g o S 24
R T o P2 1o (V= TSI S TSP 25
1815, TrAP KBYS... ettt 27
18.15.1. Trap 1 Keys (System Traps)......cccooeiiiiiiiiie e e e 27
18.15.2. Trap 2 Keys (I/O AllOCAtioN Traps).......ceeeeeeiiiiiiiiiiaieiae e 28
18.15.3. Trap 3 Keys (/0 TrapsS)...ueeeeeeeeeiiie ettt e e e e e e e e e aeeenes 29
18.16. List of Vectored ROULINES..........oouiiiiiiie e 31
18.17. KeYS fOr TRINGS...cooiiiiiiiiiiiiiieeee e e e e e e e e e s 33
18.18. Keys for HOTKEY Thing.........uuiiiiiiiiiiiiiieiiee e 36
18.19. Keys for format of pointer device driver definition block...............ccccccceeeiiiiienns 37
18.20. Hard disk format: QLWA 41

L TR 5 O PP 1

19.1. Language handling in SMSQL.........cuuuiiiiiiee s 1
S TR S T o T T o] 1= P 1
19.1.2. Classification of Language Dependent Modules................ccccoeiiiiiiiiiiiiiiiiinnnns 1

19.1.2.1. Printer Translate Tables.........cooooviiiiiiiiii e 1
19.1.2.2. Keyboard Tables........ooo e 1
19.1.2.3. MeSSage TabIes.........oooo i 2
Language Preference TabIes...........u i 2
19.1.3. Language Dependent Module Structure...............cceiiiiiiiiiiiiiee e 3
19.1.4. Language SpeCifiCation..........cccuuuiiiiiiiee e 3
19.1.5. IMPlemMentation..........oooriieii e 3
19.1.6. System Variables.........cc.uuiiiiiiiiiie e 3
19.1.7. Additional Trap #1 CallS.........uueeiiiiiiiiiiiiieee e e e e eeeaee 4

19.2. Additional Trap #3 CallS.......cooiieiieiiiiee s 7

19.3. SMSQ Cache HandliNg........ccouui s 7
19.3.1. PrINCIPIES. ... 7

19.3.1.1. MECBBO20........ccceeeeiieee et e e e e e e e e e e e e e e e eeeeeeeeeeeesssnananaana 7
19.3.1.2. MECBBOB0... ..o ittt e e e e e e e e e e e e e e aeeeeeeeeeeeeeesnnnnnnnnnnns 8
19.3.1.3. MCECBBOAO0..... ..o eeeeeeaanaannaaaaa 8
19.3.1.4. MOECBBOBO.........ceieeeieeieee ettt e e e e e e e e e e e e aeeeeeeeeeeeeeeesnnnnnnnnnnns 9

19.3.2. Cache Manipulations..............uuuuuiuiiiiiiieiiiii e e e e e e e e e eeennnns 10

19.3.3. Encoding the Cache Operations..............ooiiiiiiiiiiiiii e, 11

19.3.4. Using The Cache Operations..............ocoiiiiiiiiiiiiii e 12
19.3.4.10. CINVBi...cooiiiiie e e et as 12
19.3.4.2. CINVDt 12
19.3.4.3. CINVI oo e e e e e e e e e et e eeeeeeeennnnnnnas 12
19.3.4.4. CDISBi....cooi i e e e e e e e e e —————————— 12
19.3.4.5. CDISH .. e e e e e e e e et 12
19.3.4.6. CENAB. ...ooooiiiii e e e e e e e e e e eanannnaa 12
19.3.4.7. CENAL ..o e as 13
19.3.4.8. System Variables......... ... 13

20. The HOTKEY SyStem Il [Exmjeceeeeerrimrrrisiiiiniiiininssirsssnes 1
20.1.1. The HOTKEY HEM.. ... e e e e e aa e 6
20.1.2. HOKEY VECIOIS.ot e e e e e s 6

21. The Button Frame [EXT].....cooiiirrrrinr s s e 1

22. The HOME Thlng [EXT] [SMSQ/E] e s anasssauunasssusnsssnssssssssassssssssssssssssssisssssssssssasssssessnsssssssssssannnns 1

22.1. Purpose and facilities............ooo i 1

2211, HOME AIFECIONY ..o e e e e e 1

22.1.2. HOME FIlENAME......eiiiiiiiieiee e e ettt e e e eeeea e e e e eeees 1

22.1.3. CUITENt DIMBCIOIY ..ot a e 1

22.1.4. Default Directory for named jObS............cooooiiiiiiiiiiiii e, 1

22.2. The HOME Thing under SMSQ/E and QDOS............ooiiiiiii e 2

22.2.10. SMSQUE..... o oot aaaaaas 2
22.21.1. The EX(eC) etC COMMANGS.......coeiiiiiiiiiiiiiiiiieie e 2
22.2.1.2. QPAC Il and other file managers..........cocoeeeeiiiiiiie e 2
22.2.1.3. FleINO....uuiiiiiieeee e e e 2
22,204, BaASIC..ueiiieiiiiie e e e e e e e e e e e e e aaaaaan 2

22.2.2. QDO ... e e e e e e e e e e ettt ———————————— 2

22.3. Using the HOME ThiNG......uuiuiiiiiiiiiee e e e e e 3

P T I o (o] 0 ST = 7= T (o 3
22.3.1.1. Getthe home dir€CtOrY........uuuuiiieiiiice e 3
22.3.1.2. Getthe home filename............coooeiiiiiii e 3
22.3.1.3. Getthe current dir€CtOry........coooviiiiiiiiiie e 3
22.3.1.4. Default NameSs.....cccoo oo 3
22.3.1.5. Get the version of the HOME Thing..............cooooiiiiiiii e, 3

22.3.2. From maching COAE.......ccciiiiiii e e e 4

22.4. Setting up @ home dir€CtOrY.......ccccoiiiii e 6
P S I o (o] 0 Sl = 7= T [6
22.4.2. From Maching COdE.........oouueiiiiiiiiiiiiiie e e e e e e e e e e e eeeees 6

23. The RECENT Thlng [SMSQ/E]=ssenasanunasssunnsasnsnsssssssmnsssssssssssssssssesnsssssssesiisssssnsssssssssssennnnnnnns 1

P22 Tt I 0o To =Y o1 TP EPPPSPRR 1

P22 Tt It T I 1= 1 S 1

23.0.2. JOD IDS. . e a e e e aaas 2

23.1.3. BUEIS o 2

23.2. The Thing interface iN ASSEMDIET............uuuiiiiiiiiiie e e e e e eeeaaes 3
23.2.1. JobIDs and Name POINtEr..........oooviiiiiiieeie e 4
23.2.2. ThE ©XIENSIONS.etiiiiiiiiiiiiiiieiittee ettt e e et e e et s e e e e eeetaae e e e e e eeeenn e e eeeeenes 4

23.3. SBaASIC KEYWOITS.cciiiiiiiiiie ettt 14

23.4. CoNfIQUIAtiON......coiiiiiiiieeeeeeeeeeeeeeee e 21

23.5. Performance PeNalty...........oooo i 21

24. Appendix A Compiling SMSQE with SMSQEMake............cccoormmmrrrrirrrriniiiiicccccssnnnns 1

24.1. Compiling the SOUrCE COE.........ccciiiiiiiiiiiiiiii s 1

S U= To |8 1T =T 0 g T=T o | (PP 1
24.2.1. The DEV dEVICE.....ccc ettt e e e e e e e e e 1
24.2.2. TNE @SSEMDIET ...t e e 2

24.2.3. The linker, cctf and make programs and how to use them..................cccceee. 2

24.2.3.1. The MaKe Program..........cooeiuiuiii i
P T I 1= 11] SO
24.2.3.3. CCT e
24.3. How to use SMSQEMAKE.........cooi i
24.3.1. Setting up the environment...........ccoooiiiiiiiiiii e
24.3.2. Description of the program.............oooo i
24.3.2.1. The title DAr....ccoo e
24.3.2.2. TE targel FOW.....ceeiiiiiiiiiiee e e e e e e e e e e eeeeeanaes
24.3.2.3. The linK fileS WINAOW.........coiiiiiiiiiiiiiie e eeeeeeeeeaes
24.3.2.4. The "All" M. ..o e e e e e e e
24.3.2.5. The "OK" HeM it e e e e e e e e e e e e e e eeeeeeeennes
24.3.2.6. The DEL ItEM ..ot e e e e e e e e e e e e e e e e e eeeaeeennnnnnnns
24.3.2.7. The "MaKe" ItEM........uiiiiiiiiie e
24.3.3. Command line parameters. ...
24.3.4. A proposed Way Of WOTKING.......uuueurriiiieiiieiiieeee e e e e e e et e e e e e e e e e e eaeeees
PG TR TR = (ol (=T Yo
24 .4. Recompiling or changing SMSQEMaKE.............cccoooiiiiiiiiiiiiie e
24.5. AdditioNal PrOgramIS.uuiiiiiiiie et e e e e e e e e e et e et e e e e e e e e e e r e

25. Appendix B Official SMSQJ/E style guide..........ccooemmmrriiiiiiinrsnnssssesssssssenes
25.1. GeNeriC reqQUIrEMENTS.oiiiiiiiiiiieeeeeee ettt e e et e e e e e e eeeana e e e eeeas
25.1.1. Development SYSIEM.........uu i

P2 T I AN T=T=T 0 1 o] (=
P24 Tt G T 01 T= T = Tod (= 1= SR

A T R S I = 2 (o] o 13
P X1 0] o] (=T 1T
25.2.1. GENETrIC file SITUCIUIE.......ueiieeeeeeeeee e
I 1= Vo 1= < ST
PSR T OF- 1T
P A S 7o 0 o110 0 (=Y 01 R
25.2.5. LADEIS....o e e
25.2.6. References to include and other files..........cooovuiiiiiii i,

0. Why this book? (Original foreword by Jochen Merz)

First of all, many people asked for documentation about QDOS. The QL Technical Guide is out of print for
some years, and it is impossible to get. The information is not up-to-date, and many things are missing. The
Thing System documentation and the HOTKEY System Il won't be modified too much in the future, so it
makes sense now to explain how to use it. So that's why | thought it could be useful to make a new
'Operating System Guide'.

It took weeks to get this text typed in, and it took even more time to format everything, update the keys and
text, and make sure that the text is as bug-free as possible. There will be typing-errors in the text, I'm sure,
and if you find any serious mistake, please write. But, please make sure it is not a problem of your way of
machine-code programming (QMON is quite helpful!). If you have serious questions and you cannot find an
answer, please do NOT write, just call! If you really discovered a typing-bug, then you can write to

Jochen Merz Software Tel. 0203/502011

Im stillen Winkel 12 Fax 0203/502012
47169 Duisburg Mailbox 0203/502013
Germany

Also, if you have written a useful application pointer-program of larger size and use, and you would like to
see it distributed, then please send a copy of it to us. If it is a kind of program which is really worth marketing
and selling, we could probably do it.

| take the chance and write some lines for those people who always find fault with the price, so I'm telling the
story about Qptr: It was not half as hard to get the Qptr manual in a printable form; the text files from QJUMP
were in ASCIl-format with control codes embedded. Still, it took many, many days to get it converted into
Text87 format, updated and printed. The update price (including a new 160 page manual with binder) is
£13.50 (less than just a disc-update price of most other suppliers of computer software!), which leaves me
about £6 after the costs for the printing, binder etc. are subtracted. Okay, there are some new customers of
the product, but most orders are updates, and on the other side, there are advertising costs etc. If | double
the number of currently sold Qptrs and updates, and count that against the hours used for producing the
product, then this will result in less than 40 Pence per hour. Who would work for this? And, this does not
consider the time taken to produce the individual copy, just the master. The question, why in the world do |
spend my time, if it's not worth at all, is easy to answer: somebody has to do it, because this documentation
is the basic for every pointer-program, and we urgently need new programs for the QL!!! This is also the
reason for producing this book you are just reading: it is important to know how to program the QL, to keep it
staying alive!

Back to this book: it is a mixture of the Technical Guide, The HOTKEY System IlI, the THING system,
together with information about Level 2 device driver found in different hardware add-ons for the QL and the
QL-Emulator for the ATARI ST, as well as some information about the QDOS-compatible operating systems
SMS2 and SMSQ, and even more.

The keys used in this book are SMS notation, as these keys are more meaningful then the keys used in the
QL Technical Guide. You will also find these keys in the Qptr package. They have been introduced a few
years ago, so it not only helpful but consistent. | decided not to put the old keys in brackets, as it is more
confusing than helpful. People using the old keys will have the documentation; they probably do not need
this book. People starting new projects should use the new keys, and if they use the Pointer Environment,
they have to do so anyway.

This manual describes features available on all machines where not told otherwise. It assumes JS or MG or
later ROMS. You may find some abbreviations in square brackets throughout the manual, they tell about
restrictions. In general, try to program your programs that they don't collide with these restrictions. Where
necessary, check software version and/or hardware to trap crashes.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 0 - 1

[QL]

[ST]

[SMS]

[SMSQ]
[not SMS2]

[DD2]

[DV3]
[EXT]

[QDOS Vx.xx+]

[SMSQ/E]

Only supported on QL, not on the QL-Emulator or other emulators. This usually applies
to hardware features, especially microdrives or the direct programming of the serial
ports. These features may work on an emulator, but are not guaranteed.

Only supported on the QL-Emulator for the ATARI-ST. This usually applies to hardware
which does not exist on a QL. Will also work under SMS2 if it is running on an ST.

Needs the operating system SMS2 or SMSQ (/E) to be installed. Many features marked
with [SMS] will also work on QDOS running on a QL-Emulator, but this is not
guaranteed.

Needs the operating system SMSQ or SMSQ/E to be installed, preferably in the most
recent version.

This feature is not supported on SMS2, so better avoid it if you want to write programs
which run under all operating systems.

Only supported on Level 2 Directory Device Drivers. This depends on the hardware
connected to your machine. Microdrives and old Floppy Disc drivers are not Level 2,
whereas the Drivers for the Miracle Winchester (for example), or the RAM disc, Floppy
Disk and Hard-Disk on the ST-Emulator (from Level C onwards) are Level 2. Devices
on SMS are minimum Level 2.

Only supported on Level 3 Directory Device Drivers.

needs some kind of extension to be installed. This could be the HOTKEY System II, the
Pointer Environment, or SuperToolkit Il, for example. It could also be built into a
hardware expansion, e.g. Floppy-Disc-Controller. In general: available for ‘well
equipped' users, especially QL-Emulator owners. Will be available in SMS2.

only supported from operating system versions x.xx onwards supported. Can have
unpredictable results on older versions.

Needs the operating system SMSQ/E to be installed, preferably in the most recent
version.

Credits: Many thanks to Tony Tebby for his permission to use a lot of his documentation for this book.

Thanks also to a very helpful friend who checked the typing.

Many thanks to all of those users who keep on asking for documentation - they showed interest which made
me think of doing this book.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 0 -2

1. About this Guide

This guide describes the methods which may be used for machine-code programming on the QL.

Its contents are also relevant to compiler writers who must implement a run-time library for other languages.
This guide describes only those techniques which are specific to the QL. It does not contain a general
description of 68000 or 68008 assembly language programming: this information can be obtained from a
number of different sources. It is therefore, strongly recommended that a reference book describing
68000 assembly language be consulted before attempting to understand this guide.

The guide also gives details of how various peripherals such as hard disk interfaces, add-on memory and
ROM cartridges may be added on to the QL, with many details about how the firm-ware for such devices
should be written.

Readers may notice that there are no circuit diagrams or detailed explanations of the QL's internal hardware
structure in this manual. This is because it is not necessary to have such information in order to write
software for the QL. Sinclair tried in the design of QDOS to provide you with a stable interface to the machine
through its operating system; everything you need is there and so long as you build your products using the
interface provided there is no danger that any future upgrade of the QL will introduce an incompatibility with
existing software products.

Programs using supported entries only will work fine on future versions of the operating system, as well as
on different hardware like the ATARI ST QL-Emulator or QXL card.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 1 -1

2. Introduction to QDOS / SMS / SMSQ/E

QDOS is the QL operating system. SMS is an advanced version, completely reprogrammed but as
compatible as possible. SMSQ/E is the modern evolution of SMS. All of them are single-user multi-tasking
operating systems: that is, they provide the means for several independent programs to run concurrently; in
the QL or elsewhere, but do not provide any mechanisms to prevent those programs from interfering with
each other. QDOS can be thought of as a collection of several things:

1. A set of useful routines for performing functions such as memory allocation, Input/Output, etc.

2. A mechanism for maintaining lists of things to be done on interrupt, including the function of
allocating slots of CPU time to programs which require them.

3. A mechanism for starting up the computer, and determining the configuration of any add-on
hardware that is connected to it.

In most cases in this book, wherever QDOS is mentioned, the explanation also applies to SMSQ/E, if not,
this will be stated.

The QDOS mechanisms for start-up are described in Section 2.4. Once start-up has been performed, QDOS
does not "run" in the sense that traditional operating systems run: its pieces of code and data structures
simply exist for programs to use. There is no QDOS "main program" that maintains continuous control of the
machine: the S*Basic interpreter, which takes the place of the command line interpreter found in traditional
operating systems, is simply a program which runs on the QL and uses QDOS's facilities, albeit with a
number of special provisions. It is possible, and indeed commonly done, to destroy the S*Basic interpreter
completely, and yet still use all the facilities of the operating system.

Note that in this guide, hex numbers are preceded by a dollar sign ($) as used in the Motorola assembly
language format.

2.1. Memory Map

This Section describes how QDOS maintains its RAM area. On the standard QL, the RAM starts with the
screen RAM at address $20000, and the area available to QDOS starts at $28000.

In an unexpanded QL, the RAM finishes at $3FFFF, whilst in a QL with expansion memory, the RAM may go
up as far as $BFFFF. The QDOS initialisation routine determines the amount of RAM present and adjusts
the position of its pointers accordingly.

In an ST, RAM may end up at $3FFFFF. The current version of QDOS supports only a maximum RAM size
of 4MB, so it can't be expanded any further. SMSQ/E supports much more memory, in theory it can address
the whole 32 bit memory. However, since some programs, notably Qliberator, use the upper 3 bits of
addresses for their own purpose, most SMSQ/E machines will limit this to something like 256 MB. The
memory map is as follows:

SYS _RAMT Top of RAM
SYS_RPAB Resident procedure area
SYS_TPAB Transient program area
SYS SBAB S*Basic area
SYS FSBB Free memory area
(used up for slave blocks by the filing system)
SYS CHPB Common heap area
System management tables
System variables Base of system variables
Display RAM Base of RAM

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 2 - 1

211. Principles

There is no memory management hardware in the QL. This means that all code must execute from fixed
addresses in physical memory, and that a piece of code may not be moved after it has been loaded into
memory. For this reason, memory is usually allocated in fixed size areas which remain in a fixed location
until deleted. The S*Basic area is an important exception to this.

2.1.2. System Variables

The QDOS system variables are a block of memory containing information required by the operating system.
This block is normally located at address $28000, but is not fixed at this address in principle.

Applications programs should not rely on that fixed address, but should get the address of the base of
system variables by calling the SMS.INFO trap (see Section 13).

Some of the system variables can usefully be monitored by applications programs, and some of them can
safely be altered. A complete list of the system variables, each with its size and offset from the base of
system variables, given in Section 18.2.

Included in the system variables area are a set of longword pointers indicating the locations of the other
areas in the memory map.

2.1.3. System Management Tables

Immediately above the system variables are various tables used by QDOS to maintain the list of jobs and
various other pieces of information. The supervisor stack also resides in this area.

21.4. Common Heap Area

The Common heap area contains the channel definitions which are maintained by the I/O sub-system,
together with the working storage required by 1/O drivers or programs. The allocation of space in this area is
carried out either by device drivers, when invoked, or directly by jobs. There are two traps provided to
allocate and release space in this area: SMS.ACHP and SMS.RCHP (see Section 13). The heap allocations
of a job are automatically released when the job is removed.

The common heap is an example of the use of a general heap mechanism provided by QDOS, which
operates in the way described in section 4.1.

The user code needs to retain one pointer to the free space in the heap. This is a long word and is a relative
pointer to the free space in the heap. When the heap has no free space, either because it does not exist, or
because it is full, this pointer is zero.

2.1.5. Free Memory Area

The free memory area is used by QDOS as a buffer memory for the Microdrives, or, if QDOS is suitably
extended, for other filing system devices. The area is structured as a collection of slave blocks, that is, blocks
which are associated with a physical block on medium. When memory is allocated in another area which
would encroach on the free memory area, QDOS must remove one or more slave blocks. Before such a
removal takes place, QDOS ensures that a true copy of the information is present on the medium.

Whilst the common heap grows upwards into the free memory area, the areas above it grow downwards into

it. As there are three areas above it (the resident procedure area, the transient program area and the
S*Basic area), special provisions are made so that all three can grow at the appropriate times.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section2 - 2

2.1.6. S*Basic area

The S*Basic interpreter owns a special area located immediately above the free memory area: this area is
used for all the interpreter's storage requirements such as the S*Basic programs, its variables, its table of I/O
channels and the interpreter's working storage. This area is noteworthy in that it can be moved by QDOS
without the knowledge of the S*Basic interpreter if an area above it needs to grow, or if the S*Basic area
itself needs to shrink. Its size may also be altered. The mechanism which makes such movement or
alteration in size possible operates as follows:

All references to the S*Basic area are made relative to the address register A6, and the value of A6 on entry
to the interpreter is adjusted by QDOS to the current base of the S*Basic area (which is held in the system
variable SYS_SBAB), offset by the length of the interpreter's job header (currently $68 bytes).

The S*Basic interpreter divides its working area into several portions, details of which may be found by
looking at the BV definitions in Section 18.3. (for QDOS) and the SB definitions in section 18.4 (for SMSQE)
All of the pointers to these various portions are also relative to AG.

Note that, under SMSQ/E, the SBasic area doesn't move. If you write an extension, references thus needn't
be relative to A6 during the entire processing. However, doing so will make your extension incompatible with
QDOS.

21.7. Transient Program Area

The transient program area is the area of memory into which the user's applications programs are loaded.
Each job is allocated a block of memory in the transient program area, which it keeps until it is deleted: this
area is used for the job's code, data and stack. Programs loaded in this way are not normally re-entrant, but
it is relatively straightforward to use the mechanisms in the system to set up a single piece of code which is
shared by several different jobs with different data areas.

There is no safe way of determining a priori where a program will be loaded, therefore programs are normally
position independent (see Section 3.1 on jobs).

2.1.8. Resident Procedure Area

Memory allocated in this area is unavailable to the operating system. The system knows only two things
about the resident procedure area: how to allocate memory in it, and how to release it completely. Both of
these operations can only be carried out when there are no transient programs in the machine, due to the
fact that the transient program area cannot be moved.

Normally, the allocation is done immediately after start-up, and deallocation is never performed.

The area is normally used to load in machine code procedures and functions written to extend the S*Basic
language (see Section 9.7), and occasionally for loading in the code of device drivers when these are not
located in ROM in an add-on device.

2.2 Calling QDOS/SMS Routines

There are two categories of QDOS routines available to the user: traps and vectored routines. The
mechanism for calling a routine is different for each of these two categories.

2.21. Traps

Traps are called using the 68008 TRAP #n instruction: on the QL, this has the effect of a subroutine call to a
defined location which has the side effect of saving the status register and entering supervisor mode.

Of the sixteen trap numbers available on the 68008, numbers 0 to 4 inclusive are defined for use by QDOS,

the remainder being free for the user to redirect to his own routines. Roughly speaking, the traps are utilised
as follows:

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section2 -3

TRAP #0 Special trap for entering supervisor mode.

TRAP #1 Manager traps - routines which perform overall control of the hardware and of the
operating system's resources.

TRAP #2 Input/ Output management traps (I/O traps which allocate resources).

TRAP #3 Input/ Output traps which do not allocate resources.

TRAP #4 Special trap for the S*Basic interpreter.

Traps are called by setting up any required parameters in registers A0-A3 and D1-D3, setting up the code for
the required trap in DO (usually with a MOVEQ instruction), then executing the TRAP instruction. Trap
routines do not affect D4 to D7 or A4 to A6. There are, however, a few defined cases which are exceptions to
this.

When the TRAP operating is complete, control is returned to the program at the location following the TRAP
instruction, with an error key in all 32 bits of D0O. This key is set to zero if the operation has been completed
successfully, and is set to a negative number for any of the system-defined errors (see Section 18.1 for a list
of the meanings of the possible error codes). The key may also be set to a positive number, in which case
that number is a pointer to an error string, relative to address $8000. The string is in the usual SMSQDOS
form of a word giving the length of the string, followed by the characters.

Note that all traps can return the error code ERR.IPAR (for invalid parameter). Note also that the condition
codes may not be set according to the error code on return from a trap, thus a program wishing to detect an
error should execute a TST.L DO instruction immediately after the TRAP instruction.

Details of all the system traps are given in Sections 13 — 15.

2.2.2. Vectored Routines

In addition to the routines accessed by traps, there are several utility routines which are available to the
applications program: their addresses are held in a vector table which is located in the ROM starting at
address $CO0. A vectored routine can be accessed by the following code:

MOVE .W VECTOR_ADDRESS, An
JSR (An)

where VECTOR_ADDRESS is the address of the vector table entry, and An is a suitable address register
which is not required by the particular routine on entry.

There are some exceptions to this technique: for some vectored routines, the code is:

MOVE . W VECTOR_ADDRESS, An
JSR $4000(An)

The entries in Section 16 for vectored routines which require this treatment are suitably marked.

There are no general rules covering the handling of errors in vectored routines. Some routines return an
error code in DO in the same way as traps, but others use the technique of returning to one of a set of
alternative return addresses. An example is the vectored routine MD.RDHDR, which returns to the location
after the call if there is a "bad medium" error detected, to the address 2 bytes later if there is a "bad sector
header" error detected, and to the address 4 bytes later for a correct completion. Thus the correct code to
trap these errors would be:

MOVE . W VECTOR_ADDRESS, An
JSR $4000(An)
BRA.S BAD_MEDIUM_ERROR
BRA.S BAD_SECTOR_ERROR
* Code for processing a correct return starts here
BAD_MEDIUM_ERROR Code for processing a bad medium error starts here
(...)
BAD_SECTOR_ERROR Code for processing a bad sector error starts here

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 2 - 4

Obviously, a similar mechanism can be used with any number of error returns (including zero or one).

Complete details of the vectored routines are given in Section 16.0, including information about the
behaviour of each routine when an error occurs.

2.2.3. Atomic Actions

In general, system calls are treated as atomic: while one job is in supervisor mode, no other job in the
system can take over the processor. This provides for resource table protection without the need for complex
procedures using semaphores. If a job needs to execute some action other than a single system call into
which no other job must be allowed to intervene, it should enter supervisor mode before entering the code
which performs this action. Supervisor mode is entered using TRAP #0. The stack pointer only is changed by
this trap.

A job should only use 64 bytes on the supervisor stack and all of the space used on this stack must be
released before exiting supervisor mode. In general, there should be nothing on the supervisor stack when a
manager trap is made. Under SMSQ/E, 512 bytes may be used on the supervisor stack.

Some system calls are only partially atomic, that is, when they have completed their primary function, some
other job may gain a share of CPU time before control returns to the calling job. These partially atomic
system calls must not be made from a job in supervisor mode. All of the scheduler calls (i.e., TRAP #1 with
DO =4, 5, 8, 9, $A, $B) fall into this category, as do all the 1/O calls (TRAP #3), unless immediate return
(timeout=0) is specified.

A piece of code in supervisor mode can be interrupted by the frame (50/60 Hz) or external interrupts, so care
must be taken, when writing interrupt servers, that the system's internal data structure is not modified,
directly or indirectly, by system calls. In practice, since interrupt servers tend only to be moving data into or
out of queues, this is not a serious limitation.

2.3. Exception Processing

There are three categories of exception traps on the 68008: user traps, traps for software error conditions,
and traps for hardware interrupts. There is also one special hardware trap called "bus error", which can be
used to trap bad conditions on the address bus: this trap is not supported by the QL hardware.

User traps 0 to 4 inclusive are treated as defined in Sections 13 through 15.

User traps 5 to 15 inclusive, together with the software error traps for "address error”, "illegal instruction”,

"divide by zero", "check array", "trap on overflow", "privilege violation" and "trace" are redirectable by the
user on a per-job basis: see the entry for SMS.EXV in Section 13.

Traps and exception vectors which are not used by QDOS may be redirected through a table which is set up
by particular job.

If a job has set up a table of trap vectors for itself, then that table will automatically be used when that
particular job is being executed. The vector tables used by other jobs will not be affected. A job set up by,
even if not owned by, a job which has set up a table of trap vectors, will use the same table as that job, until
it is redefined.

If the Job ID is a negative word, then the table will be set up for the calling job.

The table is in the form of a long word address for each trap or exception.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section2 -5

They are in the following order:

$00 address error

$04 illegal instruction
$08 zero divide

$0C CHK

$10 TRAPV

$14 privilege violation
$18 trace

$1C interrupt level 7
$20 trap #5

$24 trap #6

$28 trap #7

$2C trap #8

$30 trap #9

$34 trap #10
$38 trap #11
$3C trap #12
$40 trap #13
$44 trap #14
$48 trap #15
$4C end of table

All interrupts on the QL are auto-vectored, therefore there is no treatment of the 68008 vectored interrupt
traps. Interrupts generated by the QL internally are level 2 auto-vectors: the interrupt handling mechanism
includes the facility for detecting an interrupt on the EXTINTL (external interrupt, active low) line in the QL's
expansion port.

It is also possible to generate a level 7 (non-maskable) interrupt: the treatment of this can also be redirected
on a per-job basis. Under QDOS (not SMSQ/E), pressing CTRL-ALT-7 on the keyboard generates a level
interrupt and also resets all communications with the IPC: a suitable interrupt handler could be written to
perform a warm start on the system to allow partial recovery from a crash.

2.4, Start-up

The first thing that QDOS does when the system is reset is to execute a RAM test. This test determines the
amount of contiguous RAM present, and if there is any RAM failure, hangs up the machine.

QDOS then initialises the system variables, the system management tables, and the S*Basic area.

The address $C000 is then checked by QDOS for the characteristic longword $4AFB0001: if this is found,
QDOS links in the S*Basic procedures contained in the ROM, prints out the name of the ROM, and performs
a JSR to its initialisation point (details of the correct format of the ROM are found in Section 11.4). It is
perfectly in order for the code in this ROM to take over the machine completely and never return to the
system, for example if another operating system were being booted.

QDOS then does the same for the other ROMs in the expansion slots.

If all of these ROMs return control to QDOS, the next action is to try to open a device driver "BOOT": if this is
found, its contents are loaded as a S*Basic program and executed. If no device driver "BOOT" has been
linked in, QDOS attempts to find a file "MDV1_BOOT" and load and execute its contents as a S*Basic
program. SMSQ/E will search for either “FLP1_BOOT” or “WINx_BOOT", according to the way it is
configured. If both of these attempts fail, the system starts up the S*Basic interpreter with an empty program
memory.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section2 -6

3. Machine Code Programming

Five types of machine code are available to program the QL, each being used to perform quite different
operations: jobs, S*Basic procedures and functions, tasks, the operating system or extensions to it and
“Things”. Thus there are several differences in both the form in which they are written, and the way in which
they are treated by QDOS. Things have their own section in this manual.

3.1. Jobs
3.1.1. Normal Jobs

Most application programs written in machine code or compiled code will be in the form of jobs. A job is an
entity which has a share of machine resources: it has a priority which allows it to claim time-slots of CPU
activity, and it has a fixed-size area of memory where data and code can be stored: code normally starts at
the bottom of the area, and data at the top. This area is located somewhere in the transient program area.

Note that the command interpreter is itself a job but with the exceptional characteristic that its data area is
expandable.

A job also has the ability to own I/O channels or other jobs. There is no protection between jobs under
QDOS, so that channels are available for use by all jobs. Ownership simply implies that when the owner of a
channel or job is deleted, the owned channel or job is deleted also (this process continues recursively).

Jobs have three well-defined states: they are active, sharing CPU resources with other jobs; suspended, for
example, waiting for I/O or another job; or inactive, occupying memory but not capable of using CPU
resources.

The priority of a job can be zero, in which case it is suspended, and does not consume CPU time.

It can in fact be suspended for its entire lifetime and never execute at all, which would be the case if it was
simply used as a means of obtaining some memory into which data could be loaded. A job at any other
priority level is active.

When a job is started, two parts of its area of memory have defined meanings:

The bottom of the code area, and the stack, which is at the top of the data area.

It is the programmer's responsibility to set up the bottom of the code area, which should be in the following
form for use by SMSQ/QDOS utilities:

JMP. L JOB_START

DC.W $4AFB

DC.W JOB_NAME_LENGTH

DC.B "Name of job' (word-aligned)
JOB_START

* Code begins execution here (assuming that the
* start address defined when the job was created was zero)

On the first occasion that a job is activated, (A6) points to the base of the job area, (A6,A4) points to the
bottom of the data space, and (A6,A5) points to the top of the jobs area.

There may be some information on the stack, which will be in the following form:
(A7) points to the number of channels which have been opened for the job before it was activated; above this
is a sequence of long words holding the channel IDs, and above these are a command string which may

have been passed to the job.

It is the Programmer's responsibility when starting a job to set up this information: the S*Basic EXEC,
EXEC_W commands and any utilities produced by Sinclair are compatible with this form.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 3 -1

(A6,A5) }Command string length(word) + bytes

IChannel ID long
}Channel ID long
‘II
‘II
}Channel ID long
\

(A7) 'Number of Channel Ids word

\
(AB,A4) |Data area
\

(Code area
\
}Job name length(word) + bytes
$4AFB word
(A8) }JMP.L JOB_START

Note that the normal sequence in QDOS is as follows:

1. reserve space for a job;
2. load its code in;

3. open its channels;

4. activate it.

Execution begins at an address specified when the job was created. This is normally specified as zero, which
is why the first thing in a job is normally a JMP.L instruction to the entry point of the code. Since QDOS
cannot give guarantees as to where a job will be loaded, it is usual to write jobs as position-independent
code, although it is possible to avoid this constraint if a special relocating loader is used after the space for
the job has been allocated.

The system job table holds information about the jobs within the system. The system variable SYS_JBTB
points to the base of the job table, and SYS_JBTT points to the top. The table is a series of long words each
of which points to a job control block: the contents of this are described in Section 18.6. The job is identified
to the system by its Job ID: this is a longword consisting of a word giving its position in the job table (in the
least significant word), and a word of tag allocated by the operating system when the job is created (in the
most significant word).

The traps that may be called relating to jobs are as follows:

SMS.INFO returns the current Job ID, plus miscellaneous information
SMS.INJB returns the status of a job

SMS.CRJB creates a job

SMS.RMJB removes an inactive job

SMS.FRJB forces removal of a job (whether inactive or not)
SMS.FRTP finds the largest space available for a job
SMS.EXV sets the trap-vector table for a job

SMS.SSJB suspends a job

SMS.USJB releases a job

SMS.ACJB activates a job

SMS.SPJB changes the priority of a job

A job terminates itself by calling SMS.FRJB with its own Job ID (or -1, which always refers to the current
job).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 3 -2

3.1.2. Special Programs

Special Programs have, like standard jobs, the value $4AFB in bytes 6 and 7. This is followed by a standard
string (length in a word followed by the bytes of the program identification). This is followed by a further value
of $4AFB (aligned on a word boundary). When the program has been loaded, the option string put on the
jobs stack and the input pipe (if required) opened and its ID put on the job's stack, then EX will make a call to
the address after the second identifying word.

Note that the code call will form part of a Basic procedure, not part of an executable program.

Special Program

Call parameters Return parameters
D1-D3 D1-D3 7?7
D4.L 0 or 1 if there is an input D4 ?2?7?

pipe ID is not on stack
D5.L 0 or 1 if there is an output D5 nr. of channel ID's on stack
pipe ID is on stack

D6.L job-ID for this program D6 ??7?
D7.L total nr. of pipes and filenames D7 ??7?
AOQ address of support routines A0 ??7?
A1 pointer to command string A1 2?7
A2 A2 7?7
A3 pointer to first filename A3 ??7?

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

|

(name table) (relative to AB) * }

A4 pointer to job's stack A4 }
A5 pointer beyond last filename A5 27?7 |
(name tab.) (relative to A6) * }

A6 base pointer A6 preserved }
\
\
\

Error returns: any standard returns

The entries marked with * are relative to A6 (standard S*Basic procedure passing registers, see Section 9.8).

The file setup procedure should decode the filenames, open the files required and put the IDs on the stack
(A4). D5 must be incremented by the number of channel IDs put on the job's stack.

A0 points to two support routines, the first lies a (AO) and gets a filename, the second lies at 2(A0) and opens
a channel:

The routine (A0) to get a filename should be called with the pointer to the appropriate name table entry in A3.
DO is returned as the error code, D1 to D3 are smashed. If DO is 0, A1 is returned as the pointer to the name
(relative to AB). If DO is returned positive, AO is returned as the channel ID of the S*Basic channel (if the
parameter was #n), all other address registers are preserved.

The routine 2(A0) to open a channel should be called with the pointer to the flename in A1 (relative to A6).
The filename should not be in the Basic buffer; D3 should hold the access code and the Job ID (as passed to
the initialisation code) should be in D6. The error code is returned in DO, while D1 and D2 are smashed, and
A1 is returned pointing to the filename used (it may have a default directory in front). If the open fails, A1 will
point to the default+given filename. The channel ID is returned in AO and all other registers are preserved.

In both cases the status register is returned set according to the value of DO.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 3-3

3.1.3. Job Control Enhancements [SMSQ/E]

The S*Basic extensions FEX, FEW, FET and FEP have been added to SMSQ/E v3.00 and later.
These are function calls corresponding to the procedures EX (EXEC), EW (EXEC_W), ET and EXEP.

FEX
job id = FEX(<file name>)

Executes and returns the ID of the job <file name>.

This ID can be used to manipulate the job in various ways by using the other job control extensions, such as
SPJOB, AJOB, RJOB, etc.

The full syntax using input and output channels, as well as filters, is supported. See the TK2 documentation,
Section 8.xx for details.

Note: In the event of filters being set up, only the ID of the first job is returned.
Note: The name FEX clashes with the eponymous keyword from FileInfo2. By the time you read this a later
\ég:ts]i‘on of FI2 may be available, otherwise you will need to patch one or the other of the keywords to access
FET
As for FEX above, except the job is not activated.
FEW

er = FEW(<file name>)

Returns the error code returned by the (first) job. Syntax as for FEX above.

Note: FEW tries to open the channels of files supplied in the parameter list before executing the job(s). Any
errors arising from this, including erroneous parameters, are returned to the caller as "hard" errors.

FEP
job _id = FEP(<thing name>)

Executes and returns the ID of the job <thing name>. FEP is the implementation of EXEP as a function.
Refer to your Qpac2 manual for details.

EXF
job_id = EXF (<file name>)

This keyword is, in function, totally identical to the FEX keyword introduced by version 3.00 of SMSQ/E (it
uses the same code, just another name).

The FEX keyword in SMSQ/E FEX clashes with the FEX keyword contained in FileInfo Il. To avoid having to

patch either SMSQ/E or Filelnfo Il (even though an S*Basic program to patch Filelnfo Il is supplied) you can
simply use the EXF keyword, instead of the SMSQ/E FEX keyword.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 3-4

3.2. S*Basic Procedures and Functions

The S*Basic command interpreter is job number zero. It behaves like all other jobs in most respects, with the
important exception that it owns a special data area which is expandable, and may be moved without the
knowledge of the interpreter. This area is located immediately below the transient program area.

Machine code procedures and functions which are added to S*Basic appear to the user to be identical to
those which are built into the ROM. From the user's point of view they are routines which are executed from
within either job number zero (in QDOS) or any other S*Basic job (under SMSQ/E), but which have certain
constraints on the way they are coded.

The most important constraint is that A6 is used to point to the (moveable) base of the S*Basic data area. On
the QL under QDOS, the system may move the area and change the value of A6 between instructions
without the knowledge of the interpreter, therefore A6 must not be modified within the procedure or function,
and its value must not be stored or used in calculation. This constraint may be side-stepped by entering
supervisor mode, but A6 must then be restored on exit back to user mode (the processor is in user mode
when a procedure or function is entered). The stack pointer A7 must of course be restored to its original
value before exiting from the procedure. Note : this restriction concerning register A6 does not apply to
SMSQ/E.

On exit from the procedure, an error key is passed to the interpreter in D0.L: this must be set to zero if there
was no error. The procedure or function can then be exited using an RTS statement.

If machine code procedures or functions are to be used either recursively or in recursive S*Basic procedures,
they must obey the usual constraints of having no local variables and no self-modifying code.

Machine code procedures and functions are normally loaded into the resident procedure area above the
transient program area. This area can only be expanded or deleted when the transient program area is
empty, which is normally immediately after the machine is booted.

Trap #4 is the one special trap which relates to S*Basic procedures and functions. This trap is used to make
the addresses passed to an I/O trap relative to A6, which is necessary when working with the S*Basic
variables area. It only affects the following trap, and must therefore be called before each trap whose
addresses are to be modified.

Details of parameter passing, function returns and other useful information about the S*Basic interface are
given in Section 9.0.

3.3. Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of the physical layer of a device
driver. They obey special rules according to the precise conditions under which they are called: these rules
are described in the Sections on device drivers (Sections 6.0-8.0). The important restriction on tasks is that
they must not allocate or release machine resources: this should only be done from within a job, or within the
access layer of a device driver.

3.4. Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above categories: they are special
routines called from within a job via the QDOS Input/ output sub-system (see Section 6.0).

These routines have their own rules, and these are described in the Sections on device drivers (Sections 6
to 8).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 3-5

4. Memory Allocation

Memory is allocated differently in each area of the QDOS memory map.

4.1.

Memory in the resident procedure area is allocated using the trap SMS.ARPA.

Memory in the transient program area is allocated by the mechanisms described in Section 13.0 for
creation and deletion of jobs. The vectored routines MEM.ALHP and MEM.REHP may be used
within a job to perform primitive heap allocation inside that job's own data area.

Memory in the S*Basic area is allocated by various mechanisms. The traps SMS.AMPA and
SMS.RMPA are used by the interpreter to change the size of the entire area, but are not normally
used by anything else. The vectored routine QA.RESRI is used to allocate space on the arithmetic
stack: the interpreter itself cleans up this space on return from a procedure or function. Space in the
remaining parts of the S*Basic area is usually allocated by the vectored routines being used to
perform the operations that require the space, so that this allocation is invisible to the user, except
that it usually results in a modification of the value of A6.

Memory in the free memory area is not allocated or deallocated by the user, except by the slave
block mechanisms defined in Section 7.0 on directory device drivers.

Memory in the common heap is allocated and released by the traps SMS.ACHP and SMS.RCHP.

The area allocated in this way by a job is released when that job is deleted. The same mechanisms
can be accessed from within device drivers via the vectored routines MEM.ACHP and MEM.RCHP.

Heap Mechanism

The mechanism for allocating and releasing space are common to various routines. They are as follows:

A heap is an area of memory which contains a linked list of free heap items. Each heap item is an
area of memory (which is a multiple of 8 bytes long), together with a pair of long words: the first is
the length of the heap item, while the second is a pointer (relative to itself) to the next heap item in
the list. The use of relative pointers ensures that heaps may be moved.

A heap is set up by linking an area of ram -> memory into a non-existent heap (free space pointer =
0). A heap is expanded by linking an area of ram -> memory, preferably but not necessarily,
contiguous with the current top of the heap, into the heap.

Provided the user code can remember the length of a heap item, all of the memory in it may be used
by the code. On allocation of the heap item, the first long word holds its length, and so, if desired,
this may be retained by the user code.

The user code requires to keep one pointer to the first free space item in the heap. This is a long
word, and is relative. When the heap has no free space, either because it does not exist, or because
it is full, this pointer is zero. Note that memory is always allocated as a multiple of 8 bytes.

Releasing a heap item adds it to the list of free space items within the heap, and consolidates it with
adjacent free spaces where appropriate.

The vectored routines MEM.ALHP and MEM.REHP may be used for allocating/releasing memory
within a heap.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section4 -1

5. Input/ Output on the QL

A QL program uses /O by accessing QDOS. The I0SS in turn accesses the device driver for the appropriate
device. The device driver is a piece of code which can perform low-level I/O routines for a particular device:
that device may correspond to a piece of hardware, such as a serial port, or it may be some notional device
occupying a piece of memory, such as a pipe, which is a communication channel between jobs.

QL /0O is performed through the IOSS using an I/O channel. The applications program opens a channel by
passing a device name to the I0SS, which returns a channel ID. The IOSS and the built-in device drivers
have the ability to recognise qualifiers appended to the actual name of the device which can direct the open
operation in particular ways, such as identifying a file name, or selecting some hardware option. The
program then uses the channel ID to identify to the IOSS which channel it wishes to access when performing
read or write operations on it. It can also close the channel, passing the channel ID to the 10SS. There may
be several channels open which use the same device driver, such as multiple screen windows, or Microdrive
files. For this reason, all the built-in drivers are re-entrant, as must user-defined drivers if they are to have the
same capability.

The QL ROM contains drivers for several devices such as screen windows, serial ports. pipes, microdrives,
and so on. The user can add his own device drivers for pieces of add-on hardware, or simply for additional
functions with the existing hardware.

Note that a channel ID is not the same thing as a S*Basic channel number (denoted by #expression): the
latter is the index of an entry in the S*Basic channel table which includes a channel ID. See Sections 18.4
and 18.7 for details of the channel table.

5.1. Serial I/O

All device drivers have, at the very least, the capability to perform serial I/O: that is, the operations of reading
bytes, writing bytes, and testing for pending input. Serial 1/0O is completely byte-oriented - unlike many
operating systems there is no inbuilt record structure, which means that the user is free to superpose his own
record maintenance in whatever form he wishes. 1/0 which is purely serial is completely redirectable: when
different devices are being used, the device name passed to the channel open trap is the only thing that
changes.

The 10SS supports one control character only, this being the newline character, which is ASCIl 10 ($0A).
Whilst this has the disadvantage that one cannot directly store files of graphics commands which can be
retrieved by a simple copy, it does have the advantage that files containing arbitrary sequences of bytes
cannot do irretrievable damage to the system by being copied to a device for which they were not intended.
The serial port driver has the option of supporting ASCII 13 as a newline, and ASCII 26 (CTRL-Z) as an end
of file marker.

All serial I/O calls support a time-out feature, which may be zero (return immediately), indefinite (wait until the
operation is complete), or finite (wait until the operation is complete, or for a set time, whichever is the
sooner). This last feature makes it very easy to write code which, for example, puts up a menu only if the
user hesitates.

The 10SS supports the following calls for serial 1/0O:

I0OA.OPEN opens a channel

I0OA.CLOS closes a channel

IOB.TEST tests for pending input

IOB.FBYT fetches a single byte

IOB.FLIN fetches a line of bytes terminated by newline (ASCII 10)
I0OB.FMUL fetches a string of bytes

I0B.SBYT sends a single byte

10B.SMUL sends a string of bytes

The fetch and send traps have several special meanings when used in conjunction with screen or console
channels: for a more detailed description of these, see Section 15 on I/O Traps.

For the fetch byte and fetch string traps, characters read from the keyboard are not echoed in the associated
window, and cursor handling is left to the applications program.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 -1

5.2. File 1/0

QDOS files appear to the applications program as arrays of bytes on a physical device, with an associated
file pointer which gives the "current position" in a file. A file also has a header, which is normally 64 bytes
long containing information about the file such as its name, length, etc.

Further details concerning the format of the file header are given in Section 7.0 on Directory Device Drivers.

The open call to a file system device supports several modes: old (exclusive), old (shared), or new
(exclusive). New (overwrite) mode has a slot allocated in the open keys, but is not currently supported for
Microdrives. In addition, a special open key indicates that it is desired to open the directory of the medium for
reading rather than a particular file; the directory cannot be explicitly written, but is maintained by the device
driver when open calls and deletions are made.

QDOS supports a system of slaving, whereby 512-byte blocks of data are buffered in the free memory area
(see Section 4.0): all unused memory being taken for this area. The filing system may return from a write
operation when that operation has only been performed on the slave block concerned; QDOS will later force
the system to convert that slave block into a true copy of the data on the physical device. As a result of this
mechanism, add-on filing devices normally support 512-byte logical blocks: however this blocking system is
transparent to the applications program. A single slave block table is shared by all the directory drivers which
want to use it to improve their performance.

In addition to the serial I/O operations described above, QDOS supports the following operations for file-
system devices:

IOA.FRMT formats a sectored medium
IOA.DELF deletes a file

IOF.CHEK checks all pending operations on a file
IOF.FLSH flushes buffers for a file

IOF.POSA positions the file pointer absolutely
IOF.POSR positions the file pointer relatively
IOF.MINF gets information about the mounted medium
IOF.SHDR sets the file header

IOF.RHDR reads the file header

IOF.LOAD loads a file into memory

IOF.SAVE saves a file from memory

The IOF.FLSH and IOF.CHEK commands are subtly different: IOF.FLSH ensures that all write operations
are complete, whereas IOF.CHEK ensures that all write and read operations (including pre-fetches) are
complete.

Not all drivers will implement this trap, e.g. for the SMSQ/E inbuilt ram disks, where this will just go to a
MOVEQ #0,D0 and an RTS.

SMSQ/E contains several additional operations for filing system devices. Most filing system devices under
SMSQ/E will allow these operations :

IOF.RNAM rename file

IOF.TRNC truncate file to current position
IOF.DATE set or get file dates
IOF.MKDR make directory

IOF.VERS set or get version

IOF .XINF get extended information

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-2

5.3. Screen and Console 1/0

The keyboard and screen devices are treated in a special way by QDOS, and have a large number of
functions in addition to those available for purely serial I/O devices. Two types of device are supported: scr
(for screen), which is a screen window, and con (for console), which is a screen window with an associated
keyboard channel. The three channels #0, #1 and #2 which are opened by S*Basic are all console channels.

5.3.1. Display Modes

The QL has two display modes (see the Concepts manual for details). The display mode can be set or read
using the SMS.DMOD trap, but as this trap clears all screen windows, it should be used with great care. A
program can also find out whether the user selected TV or monitor at switch-on by inspecting the value of the
system variable SYS_DTYP, which is unfortunately smashed by the MODE command on standard
QLs.

SMSQ/E has many more display modes, which ones can be displayed depends on the machine it is running
on.

There are two main coordinate systems used for screen I/O: these are the graphics coordinate system and
the pixel coordinate system (see the Concepts manual for details). Note that in 256-pixel mode (mode 8)
and for several commands in 512-pixel mode (mode 4), the least significant bit of a dimension in the x-
direction is ignored, so that a given pixel address refers to the same location in both modes. Some traps
refer to character coordinates: these are based on the pixel coordinate system but are scaled by the current
character spacing for the window.

5.3.2. Window Properties and Operations

A window is an area of screen which may be in any position on the screen, subject to the restriction that its x-
position must be an even number. A window may be of any size that does not run off the edge or bottom of
the screen, subject to the same restriction. Windows may overlap, but the system does not store or retrieve
the area of overlap, it being the user's responsibility to ensure that any information is not lost or garbled.
Under SMSQ/E, or under QDOS with the pointer environment, overlapping windows are restored by the
system.

Each window will have its own particular set of characteristics: a border width, a border colour, a paper
colour, a strip colour, an ink colour, a cursor position, a cursor increment, a flag which says whether the
cursor is suppressed, a pair of font pointers, information about newline treatment, and graphics information.
Details of the window definition block are given in Sections 18.7 to 18.10.

The special traps for dealing with windows are as follows:

IOW.PIXQ returns window information in pixel coordinates
IOW.CHRQ returns window information in character coordinates
IOW.DEFB set the border width and colour

IOW.DEFW redefines a window

IOW.ECUR enables the cursor

IOW.DCUR suppresses the cursor

IOW.SCRA scrolls a whole window

IOW.SCRT scrolls the top part of a window

IOW.SCRB scrolls the bottom part of a window

IOW.PANA pans a whole window

IOW.PANL pans the line the cursor is on

IOW.PANR pans the the right-hand end of the line the cursor is on

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section5-3

IOW.CLRA
IOW.CLRT
IOW.CLRB
IOW.CLRL
IOW.CLRR
IOW.RCLR
IOW.SPAP
IOW.SSTR
IOW.SINK

IOW.BLOK
IOW.SOVA

clears a whole window

clears the top part of a window

clears the bottom part of a window

clears the line the cursor is on

clears the right-hand end of the line the cursor is on
recolours a window

set the paper colour

set the strip colour

set the ink colour

fills a rectangular block in a window

set the character writing or plotting mode

SMSQ/E has many more window traps, some of these will also be available under QDOS with the pointer

environment:

IOW.PAPP
IOW.STRP
IOW.INKP
IOW.BORP
IOW.PAPT
IOW.STRT
IOW.INKT
IOW.BORT
IOW.PAPN
IOW.STRN
IOW.INKN
IOW.BORN
IOW.BLKP
IOW.BLKT
IOW.BLKN
IOW.PALQ
IOW.PALT
IOW.SALP

IOP.WPAP
IOP.FLIM
IOP.SVPW
IOP.RSPW
IOP.SLNK
IOP.PINF
IOP.RPTR
IOP.RPXL

EXTENDED COLOUR TRAPS
define paper colour (palette)
define strip colour (palette)
define ink colour (palette)
define border (palette)
define paper colour (24 bit)
define strip colour (24 bit)
define ink colour (24 bit)
define border (24 bit)
define paper colour (native)
define strip colour (native)
define ink colour (native)
define border (native)
draw block (palette)
draw block (24 bit)
draw block (native)
define QL colour palette
define 8 bit palette
set alpha blending weight

POINTER I/0 TRAP KEYS
define wallpaper
Find window LIMits
SaVe Part of Window
ReStore Part of Window
Set bytes in LiNKage block
pointer information
read pointer
read pixel

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 5-4

IOP.WBLB write blob

IOP.LBLB write line of blobs
IOP.WSPT write sprite
IOP.SPRY spray pixels
IOP.FILM fill within mask
IOP.SPLM set pointer limits
IOP.OUTL set window outline
IOP.SPTR set pointer position
IOP.PICK pick / bury window
IOP.SWDF set window definition
IOP.WSAV locate and save window
IOP.WRST restore window

5.3.3. Screen Character Output Operations

Newline characters receive slightly different treatment when bytes are being sent to a screen or console
channel rather than to any other device. In addition to being caused by a newline character, a newline is
automatically inserted when the cursor reaches the right-hand side of the window; when this happens during
an IOB.SBYT trap, the error code ERR.ORNG (for out of range) is also returned.

If the cursor is suppressed, the newline is held pending. It can be cleared by any call to position the cursor,
or activated by any of the following events: send another byte or string;

* changing the character size;
* activating the cursor;
* requesting the cursor position.

This features allows the right-hand character squares to be used without generating stray blank lines.

The following additional operations apply to screen character output:

IOW.FONT sets or resets the character fount

IOW.SFLA sets or resets hardware flash (256-pixel mode only)
IOW.SULA sets or resets underlining

IOW.SSIZ sets the character size and spacing

5.3.4. Graphics Operations

The QL can perform line, arc or ellipse drawing on a window basis in scaled coordinates. It also provides a
primitive area flood routine. The traps are as follows:

10G.DOT draws a point

IOG.LINE draws a line

I0OG.ARC draws an arc

IOG.ELIP draws an ellipse
I0OG.SCAL sets the scale

I0OG.SGCR moves the graphics cursor
I0G.FILL set or reset area filling

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section5-5

5.3.5. Special Properties of Console Channels

For the console device, the IOB.FLIN trap behaves in a particular fashion: the characters typed are echoed
in the console window, and the left and right cursor keys (with or without CTRL) are used to edit the line in
the standard way. In addition, the cursor is automatically enabled.

An additional trap, IOB.ELIN, is provided for console channels, which invokes the line editor on a pre-defined
string. The line-editor may be exited by typing ENTER, or by typing either the cursor-up or the cursor-down
character.

The user can temporarily suspend screen output to a console channel by typing the freeze screen character
(CTRL-F5). Output is resumed when any character is typed, but the character is ignored for all other
purposes. If a finite time-out has been set for the suspended operation, it may return non-complete if the
screen is frozen past the time-out period.

5.3.6. Special Keyboard Functions

Several console channels may be open at the same time. If they are used by different jobs, it may be that
more than one console channel is expecting input at a given time. When this occurs, the user may cycle
round the list of console channels currently expecting input by typing the change queue character on the
keyboard. The cursor in the console window to which keyboard input is currently directed will flash if it is
enabled. Any enabled cursors in other windows will be steady.

The change queue character is normally CTRL-C (ASCII 3). It can be changed by modifying the system
variable SYS_SWTC.

The keyboard maintains a type-ahead queue of seven characters in the 8049 processor which controls it. In
addition to this, there may be more type-ahead in the queue for each console channel.

The keyboard auto-repeats on all keys except the keyboard change queue character, CTRL-Space (the
S*Basic BREAK) or CTRL-F5 (the freeze screen character). However, auto-repeat will not occur unless the
type-ahead queue for the console channel to which input is currently directed is empty. The delay before
auto-repetition begins is held in the system variable SYS_RDEL, and the interval between repetitions is held
in SYS_RTIM (both in multiples of 1/50th or 1/60th of a second). These can be altered by a program.

When CAPSLOCK is pressed, the system will jump to a user-supplied routine whose absolute address is
held in the system variable SYS_CSUB if the value of this is non-zero. This routine should restore all
registers to their initial state before returning.

5.3.7. Extended Operations susas

A special trap IOW.XTOP is provided to allow a program to invoke a user-supplied routine using the same
environment that is passed to the routines in the screen driver. See the description in Section 15 (I/O Traps)
for a more detailed discussion of this trap.

5.3.8. Display (smsak

This section documents many of the enhancements to SMSQ/E v3.00 and following, mostly directed at
programmers.

5.3.8.1. New CON driver vectors

A new vector block has been introduced to provide direct access to new screen driver functions. To call one
of those functions, one first needs a pointer to the CON linkage block. This can either be obtained in the
traditional way or by reading the sys_clnk ($C4) system variable. It is planned that future PTR_GEN /
WMANSs for non-SMSQ/E version will also support this system variable. On current non-SMSQ/E systems its
value should be 0.

The pointer to the vector table itself is located in the new pt_vecs variable within the linkage block. A typical
call sequence can thus look like this:

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-6

moveq #sms.info, dO

trap #1 ;
move.l sys_clnk(a0),a3 ;
move.l pt_vecs(a3), a0 ;
jsr pv_fspr(a0) ;

get pointer to system variables in A0
pointer to CON linkage
vector table
actual call

All vectors expect A3 to be the pointer to the CON linkage block on entering the call. With the above code,
this is done automatically. The keys (e.g. the values of PV_PINF, PV_FSPR etc) are contained in the file

"dev8_keys_con".

Vector $00

Call parameters
D1
D2
D3

A0
A1
A2
A3 Pointer to CON Linkage Block

Error returns:

This routine always succeeds.

PV_PINF

Like IOP.PINF, but one doesn't need a channel to call this routine.

Return parameters

D1
D2
D3

A0
A1
A2
A3

Pointer Version Number
Preserved

Preserved

Preserved
Pointer to WMAN
Preserved

Preserved

Vector $06

display mode.

Call parameters
D1
D2
D3

AO Pointer to 1st Sprite

A1

A2

A3 Pointer to CON Linkage Block

Error returns:

This routine always succeeds.

PV_FSPR

Look in linked sprite list for the definition that would actually be used in the current

Return parameters

D1
D2
D3

A0
A1
A2
A3

Preserved
Preserved
Preserved

Pointer to Fitting Sprite
Pointer to WMAN
Preserved

Preserved

If no fitting sprite is found, a pointer to the arrow sprite is returned!

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section5-7

Vector $0C PV_SSPR

Set system sprites/Get system sprite address

Call parameters Return parameters
D1.W Sprite Number / -ve D1 Preserved /
Max Allowed | Max Current
D2 D2 Preserved
D3 D3 Preserved
AO AO Pointer to Fitting Sprite
A1 Pointer to Sprite / 0 A1 Preserved / Pointer to Sprite
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IPAR lllegal sprite number (set / get)

ITNF there are no system sprites !

This gets or sets a system sprite or returns the maximum number of system sprites

* If D1 is a negative number (-1 is suggested), then on return d1 contains:
maximum number of space in table for system sprites | highest number of current system sprite

else:

« IfA1=0,then
one gets the address of the system sprite the number of which is passed in D1. The address is
returned in a1. This address MAY be 0, in which case the system sprite requested does not
exist. This will only happen if somebody fiddled with the table contrary to recommendations

* If A1 <>then
it contains the address of a sprite that will be a system sprite, d1 contains the number of that
sprite. This sprite is not " copied to a safe place", it is the responsibility of the calling job to make
sure that the sprite doesn't just disappear

For a list of the system sprites defined thus far see KEYS_SYSSPR.

The sprite table has the following format:

-2 maximum number of sprites possible in table (word)
0 number of sprites currently in table (word)
2+ long word absolute pointers (i.e real addresses of sprites)

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-8

Vector $12 PV SIZE

Get shift sizes

Call parameters Return parameters

DO DO PT.SPXLW | PT.RPXLW
D1 D1+ Preserved

D2 D2 Preserved

D3 D3 Preserved

AO A0 Preserved

A1 A1 Preserved

A2 A2 Preserved

A3 Pointer to CON Linkage Block A3 Preserved

DO returns :

PT.SPXLW : shift pixels to long word
PT.RPXLW : round up pixels to long word

Error returns:

None, this vector always succeeds. The value in DO is not an error return

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-9

Vector $18

Moves a block of screen memory about

Call parameters

DO
D1
D2
D3
D4
D5

A2
A3
A4
A5

Size of Section to move
Old origin in source area

New origin in destination area

Row increment of source area
Row increment of destination area
Base address of source area

Base address of destination area

All other registers are preserved

Error returns:

PV_MBLK

Return parameters

DO
D1
D2
D3
D4
D5

A2
A3
A4
A5

Smashed (undefined)
Smashed
Smashed
Smashed
Smashed

Smashed

Smashed
Smashed
Smashed

Smashed

This routine always succeeds. The value in DO is not an error return

This moves a block of screen memory about, from source to destination. The X | Y size of the block, in
pixels, is contained in D1 on entry. Note: Do not mis-use this vector to move general memory about. The
size of the memory actually moved depends on the screen driver that is being used. Thus, if you move a
block of 10x20 pixels (x|y size) in modes 32 and 33, 400 bytes will be moved (1 pixel = 2 bytes). In modes 16
and 31, only 200 bytes will be moved (1 pixel = 1 byte) and in the QL modes, even less bytes will be moved.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 5- 10

Vector $1E PV_CURSP

Sets the per job cursor

Call parameters Return parameters

DO DO Error

D1 Job ID D1 Smashed

D2 Status Wished (0| 1) D2+ All preserved
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IJOB Wrong Job ID
NIMP Something went horribly wrong : no job table!

Please see the Section 5.3.9 : Cursor Sprite for further explanations on this vector.

Vector $24 PV BGCTL
Gets/sets the background 1/O status

Call parameters Return parameters
DO DO Standard Error Code
D1 -1 read D1 0 Disabled
0 disable >0 Enabled
1 enable
D2 D2 Preserved
D3 D3 Preserved
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IPAR D2isnot0
NIMP Operating System is not background I/O compatible

This sets or gets the background I/O status.

If D1 is negative on entry, the current background I/O status is returned, else the current background 1/O
status is set according to the value of D1 (any value other than 0 enables background 1/O).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 11

Vector $2A PV CMBBLK
Combines two blocks of (screen) memory with alpha blending and puts the
result into the destination block

Call parameters Return parameters

DO DO Smashed (undefined)
D1 Size of block to combine D1 Smashed

D2 Origin in source area 1 D2 Smashed

D3 New origin in destination area D3 Smashed

D4 Origin in source area 2 D4 Smashed

D5 D5 Smashed

D6 Alpha value D6 Preserved

D7 Row increment of source area 2 D7 Smashed

A1 Base address of source area2 A1 Smashed

A2 Row increment of source area 1 A2 Smashed

A3 Base address of source area1 A3 Smashed

A4 Pointer to CON Linkage Block A4 Smashed

A5 Base address of destination area A5 Smashed

All other registers are preserved

Error returns:

This routine always succeeds.

The value in DO is not an error return

This will combine the pixels of two blocks of screen memory with an alpha blending operation and put the
resulting block into the destination. The x|y size of the block, in pixels, is contained in D1 on entry. D6
contains the alpha value, from 1 (nearly transparent) to 255 (totally opaque), in the LSB.

NOTE 1: This vector is only implemented for screen modes where alpha blending actually makes sense,
i.e. modes 16, 32 and 33.

In other screen modes, such as the QL screen modes, or Atari mono modes, this vector is
redirected to vector PV_MBLK.

NOTE 2: Do not mis-use this vector to combine general memory.

The size of the memory actually combined depends on the screen driver that is being used.
Thus, if you combine a block of 10x20 pixels (x|y size), in mode 16, then 200 bytes will be
combined (1 pixel = 1 byte). But in modes 32 and 33, 200 words (400 bytes) will be combined (1
pixel = 2 bytes).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-12

Display Vectors

PV _BGCTL....coiiiiiiit ettt s aa e s aa s s aa e s s an e e e s aanna s 11
PV_CMBBLEK ..ottt saa e 12
PV _CURSP ...ttt aa e e e s aa s e e e s s aanas 11
PV _EFSPRu...ooi e 7
PV _MBLEK ..ottt a e e e e s a s e e e s aaaa e s 10
PV _PINE .ot s aa e s aa e s aaa e e e 7
PV _SIZE.....oo ittt saa e aa e aa s 9
PV _SSPRu.e e aa e 8

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5- 13

5.3.8.2. New (WMAN) colour format

The latest versions of WMAN, the Pointer Environment Window Manager ,contain the possibility to use new
colour format. Whilst, strictly speaking, this is a WMAN function, these colours can also be used in non-PE
programs under SMSQ/E. Hence the inclusion in this manual.

Colours for the new WMAN are always given as one word. The word may have any of the following formats:

%00000000cccccccc exactly as before
%00000001pppppppp palette
%00000010pppppppp system palette
%000000119g9gggggg gray scale

%00000100cco0tttd 3d border (border calls only!) see below

%OLSSXXXXXXYYYYYY palette stipple see below
%1rrrrrgggggbbbbb 15 bit RGB

5.3.8.2.1. Stipple Format

s = Stipple code (0 = dot, 1 = horizontal, 2 = vertical, 3 = checkers)
X = Stipple colour

y = Main colour

As x and y can only hold 6 bits, only the first 64 entries of the palette can be used for stippling. Due to the
design of the palette those entries alone still cover the whole colour range quite well.

5.3.8.2.2. 3D Border Format

d= Direction (0 =raised, 1 = lowered)
t= Type

c= Compatibility mode

To see what types are available have a look at this image:

DL compatible 1024 I l 1025

decimal walles

I1155 | I1219

1218 I I1154 I 1090 1026 I I 1027 1091
Iluzul |I1155I |1m;2 | 1028 10290 1003]115?' l1221 I
1038 1034 1036 1032 1033 1037 1035 1039
not 0L compatible 1020 I l 1031
0L compatible 400 I l 404 hex walues
]
4c2l l 482 I 442 402 I I 403 443 483 4C3
I|4c4I [|434I |444 | 404 405 445]435' l4c5 I
40E 404 40C 408 409 40D 40P 40F
not L compatible 4086 I l 407
QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 5 - 14

The compatibility modes are available on some border types and they tell how to squeeze a non-standard
border size into a QL border. Some modes paint areas with the current paper colour, therefore it is a wise
idea to always set the paper colour before the border. The WMAN routines have already been changed to

take this into account.

In case of a non-standard border width another border call on this window MUST be made through the
WMAN routines instead of the standard border calls (e.g. by caling WM.TRAP3). Otherwise the overall

window size will be altered.

The colours to paint the border are defined in the system palette (SP.3DDARK and SP.3DLIGHT).

Future versions may shade the paper colour, therefore it's again a good idea to set the paper colour before

the border call.

5.3.8.3. System palette entries

The keys for this are defined in the file dev8_keys_syspal.

Please note that you can configure SMSQ/E to set the palette(s) to your taste.

Name Number Meaning

SP.WINBD $0200 Window border

SP.WINBG $0201 Window background

SP.WINFG $0202 Window foreground

SP.WINMG $0203 Window middleground

SP.TITLEBG $0204 Title background

SP.TITLETEXTBG $0205 Title text background

SP.TITLEFG $0206 Title foreground

SP.LITEMHIGH $0207 Loose item highlight

SP.LITEMAVABG $0208 Loose item available background
SP.LITEMAVAFG $0209 Loose item available foreground
SP.LITEMSELBG $020a Loose item selected background
SP.LITEMSELFG $020b Loose item selected foreground
SP.LITEMUNABG $020c Loose item unavailable background
SP.LITEMUNAFG $020d Loose item unavailable foreground
SP.INFWINBD $020e Information window border

SP.INFWINBG $020f Information window background
SP.INFWINFG $0210 Information window foreground
SP.INFWINMG $0211 Information window middleground
SP.SUBINFBD $0212 Subsidiary information window border
SP.SUBINFBG $0213 Subsidiary information window background
SP.SUBINFFG $0214 Subsidiary information window foreground
SP.SUBINFMG $0215 Subsidiary information window middleground
SP.APPBD $0216 Application window border

SP.APPBG $0217 Application window background
SP.APPFG $0218 Application window foreground
SP.APPMG $0219 Application window middleground
SP.APPIHIGH $021a Application window item highlight
SP.APPIAVABG $021b Application window item available background

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 5- 15

SP.APPIAVAFG $021c Application window item available foreground
SP.APPISELBG $021d Application window item selected background
SP.APPISELFG $021e Application window item selected foreground
SP.APPIUNABG $021f Application window item unavailable background
SP.APPIUNAFG $0220 Application window item unavailable foreground
SP.SCRBAR $0221 Pan/scroll bar

SP.SCRBARSEC $0222 Pan/scroll bar Section (the Section not covered by the bar)
SP.SCRBARARR $0223 Pan/scroll bar arrow

SP.BUTHIGH $0224 Button highlight

SP.BUTBD $0225 Button border

SP.BUTBG $0226 Button background

SP.BUTFG $0227 Button foreground

SP.HINTBD $0228 Hint border

SP.HINTBG $0229 Hint background

SP.HINTFG $022a Hint foreground

SP.HINTMG $022b Hint middleground

SP.ERRBG $022¢ Error message background

SP.ERRFG $022d Error message foreground

SP.ERRMG $022e Error message middleground

SP.SHADED $022f Shaded area

SP.3DDARK $0230 Dark 3D border shade

SP.3DLIGHT $0231 Light 3D border shade

SP.VERTFILL $0232 Vertical area fill

SP.SUBTITBG $0233 Subtitle background

SP.SUBTITTXTBG $0234 Subtitle text background

SP.SUBTITFG $0235 Subtitle foreground

SP.MINDEXBG $0236 Menu index background

SP.MINDEXFG $0237 Menu index foreground

SP.SEPARATOR $0238 Seperator lines etc.

Some sort of design guide to help deciding what colour to use (or what some colour is supposed to mean
anyway) will hopefully be written at a later stage.

5.3.8.4. New Basic Keywords

There are a number of keywords for palette and colour handling:

5.3.8.4.1. Colours

The first of these are useful for colour handling. Their parameters are exactly the same as for the "normal”
commands. The same is true with their names, except for the 'WM_" prefix:

WM_PAPER [#channel],colour

Sets the colour which is a word as described above. It also sets the strip as is the case with the normal
PAPER command. But there is also the WM_STRIP [#channel],colour command to set the strip only. Further
commands are:

WM_INK [#channel],colour

WM_BORDER [#channel],width,colour

WM_BLOCK [#channel],xs,ys,xo,yo,colour

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 16

5.3.8.4.2. Palette handling

There are commands to set/get the system palette and commands to set/get the per job palettes.

5.3.8.4.2.1. System palette keywords

SP_RESET [#channel] [[number]
This resets the colour palette given in number to the original values (as configured). Default is number 0.
result% = SP_GETCOUNT()
Gets the number of elements contained in a system palette. Each system palette, of course, has the same
number of elements.
SP_GET [number,] address, first, count
This gets the colours from a system palette and puts them somewhere. The optional "number" parameter
tells us which system palette we want (0 to 3, default = 0). "address" is the address of the space for the
information, "first" is the number of the first system palette colour to get (starting from 0) and "count" is the

number of colours to get.

The space pointed to by "address" MUST have enough space for the number of colours! This is NOT
checked by the keyword and it is the programmer's responsibility to make sure that this is so.

As an example, you could use the following code to get ALL of the colours of a system palette:

REMark Get number of colours in system palette
totcol%= SP_GETCOUNT

REMark enough space for colours + security first=0
address= ALCHP(totcol%*2)+4
SP_GET #1,0,address, first, totcol%

SP_SET [#channel,] [number,] address, first, count

Sets the system palette entries, the address pointing to a space containing the colours. The parameters are
similar to those for SP_GET.

5.3.8.4.2.2. Job palette keywords

SP_JOBPAL [#channel], Job ID / Job_name, number

Set the system palette for the job given to the number. The job is given either as a string (e.g. "FiFi") or as a
standard Job ID number.

SP_JOBOWNPAL [#channel], Job ID / Job_name, pal_pointer

Set the job palette to the palette given in pal_pointer. Of course, the palette must have the format of a
standard system palette.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5-17

5.3.8.5. New Move modes

As of SMSQ/E v.3.01, new ways of moving a window about the screen have been added. Again, this is a
WMAN function but it was thought useful to add it here.

5.3.8.5.1. The move modes

There are now four ways for a window be moved:

0 -The old way: the pointer changes to the "move window" sprite which is moved about
the screen.

1 -"Outline™: click on the move icon with the MOUSE - KEEP HOLDING THE BUTTON
DOWN, an outline of the window appears which you can move around and position
where you want it. Release the mouse button and the window positions itself correctly.

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

2 -"Full window". This is the same as 1 above, but instead of an outline, the entire
window is moved. For Q40/Q60 users, switching on the cache is advisable...

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

3 -"Full window with transparency" (implemented in SMSQ/E v. 3.16). This is the same
as 2 above, but the window to be moved is made "transparent" : one can "see through"
it. This is done via "alpha blending". Alpha blending requires A LOT of computing
power. So, even if your machine can theoretically handle this type of move, in practice it
might not be feasible. For Q40/Q60 users, switching on the Cache is advisable...

This type of move is only implemented for display modes where alpha blending actually
makes sense, i.e. modes 16, 32 and 33. In other display modes, such as the QL screen
modes, or Atari mono modes, this will be redirected to move mode 2.

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

5.3.8.5.2. Configuring/setting the move mode

The move modes are configured on a system-wide basis - you cannot have one job moving in mode 0 and
the other in mode 1.

Thus, all jobs are affected by the move mode, even those written a long time ago (unless, such as
QLiberator, the job doesn't use the WMAN move routine).

The move mode can be changed in two ways:
1 - Configure SMSQ/E (WMAN) to a mode of your liking.
2 - Use the new WM_MOVEMODE keyword
This takes one parameter, an integer from 0 to 3:
WM_MOVEMODE 0 : the old way
WM_MOVEMODE 1 : the "outline" move
WM_MOVEMODE 2 : the "full window" move

WM_MOVEMODE 3 : the "full window with transparency" move

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 18

5.3.8.5.3. Configuring/setting the degree of transparency

You can set how transparent the window is supposed to be when being moved, from nearly totally
transparent to totally opaque. This is done by setting the "alpha value", from 1 (nearly transparent) to 255
(totally opaque).

The alpha value is configured on a system-wide basis - you cannot have one job moving with an alpha value
of 100 and the other with 200. Thus, all jobs are affected by this, even those written a long time ago (unless,
such as QLiberator, the job doesn't use the WMAN move routine).

The alpha value can be changed in two ways:

1. Configure SMSQ/E (WMAN) to a value of your liking.
2. Use the new WM_MOVEALPHA keyword

WM_MOVEALPHA : this new keyword defines the amount of transparency the window should have when
moved about, from 1 (nearly transparent) to 255 (totally opaque).

Please note that
1) no check is made on the value passed to this keyword, but only the lower byte is used.
2) avalue of 255 is actually equivalent to move mode 2.
3) avalue of 0 is allowed but, since this would make the window to be moved totally transparent when it
is moved (i.e. you would only ever see the background) this is considered to be an error and a value

of 255 will be used!

4) Moving with alpha blending requires a lot of computing power - it may be too slow on your machine.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 19

5.3.8.6. Graphics with alpha blending
(Introduced in SMSQ/E version 3.26)

All graphics operations to the screen, including printing text, can be done with alpha blending, where the
object to be drawn, including a single pixel or a text, will be blended in with the background.

To achieve this, set the alpha weight of a channel. This determines how much the object to be displayed is
blended into the existing background.

An alpha weight of 0 means that the object to be drawn will be practically totally translucent, i.e. it can't be
seen since it lets the background shine through entirely. An alpha weight of 255 means that the object to be
displayed is totally opaque, i.e. it covers the existing background.

There is a program called "dev8_extras_alpha_test_bas" in the SMSQ/E sources which can show you how
this works (in SBasic).

IMPORTANT NOTE: This call only really makes sense for 16 bit modes. In 8 bit Aurora mode, the trap tries
as well as it can, but don't expect miracles, there just are not enough colours. When in QL modes 4 or 8, or
in Atari monochrome mode, there simply is no alpha blending (note that being in QL modes 4 or 8 is not the
same as having used COLOUR_QL in 16 or 8 bit mode).

5.3.8.6.1. Machine code interface

Trap #3 D0=$62 IOW.SALP

Set the alpha blending weight for window

Call parameters Return parameters
D1.B alpha weight (0..255) D1 Preserved
D2. D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

ICHN channel not open

This call affects all following text and graphics output functions. To disable alpha blending set the weight to
255.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 20

5.3.8.6.2. S*Basic keywords

Use the ALPHA_BLEND command:
ALPHA_BLEND [#channel,] weight.

Sets the alpha weight for this channel. All further output to this channel will use this. To switch it off, set
weight to 255.

* Channel is the channel to which this applies, as usual, it defaults to 1.

* Weight is the alpha weight of future display operations: from O (translucent) to 255 (opaque).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 5 - 21

6. QDOS Device Drivers

A user-supplied QDOS device driver is a collection of routines which allow an application program to perform
IOSS functions on a user-supplied device in the same way as such functions are performed on the devices
built into the system. As these routines are linked into the system's lists in front of the corresponding system
routines, they may be used to replace the system routines.

At the very least, the device driver contains a set of routines for opening a channel, closing a channel, and
performing serial 1/0 on that channel: these routines are called via the 0SS as part of the job that is
performing the I/O. The driver may also include one or more tasks, that is, routines performed
asynchronously with the calling job, usually under interrupt.

Such tasks, which are known as the physical layer of the device driver, normally communicate with the rest
of the device driver, which is known as the access layer, using asynchronous queues. these queues are
usually polled by the task at regular intervals, either on every occasion the scheduler is entered, or on every
50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general, mechanism: this is described in
Section 7.

Both drivers and tasks are linked in to lists provided by the operating system.

The following traps are used to add items from those lists:

SMS.LEXI links in an external interrupt service task
SMS.LPOL links in a 50/60 Hz polling service task
SMS.LSHD links in a scheduler loop task

SMS.LIOD links in a device driver to the 1/0 system
SMS.LFSD links in a directory device driver to the file system

The following traps are used to remove items from those lists:

SMS.REXI unlinks in an external interrupt service task
SMS.RPOL unlinks in a 50/60 Hz polling service task
SMS.RSHD unlinks in a scheduler loop task

SMS.RIOD unlinks in a device driver to the I/O system
SMS.RFSD unlinks in a directory device driver to the file system

The operating system provides several utility routines which are useful for various actions commonly
performed in device drivers, such as decoding a device name, performing queue operations, etc.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 6 - 1

6.1. Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition block and the channel definition
block. The device driver definition block belongs to the driver itself, and is allocated by the code which sets
up the driver when it is initialised and linked into the various lists. The channel definition block belongs to
each 1/0O channel, and is allocated by the driver itself when a channel is opened. Various parts of the channel
definition block are thereafter used by the IOSS for its own purposes.

In theory, the access layer can allocate space on the heap at other times: in practice this is not usually
required. The whole system can be made re-entrant to allow several channels to be open with the same
device driver and the same device driver definition block, but with different channel definition blocks.

Note that the system will certainly crash if the area of a channel definition block is deallocated and used for
something else before the channel is closed, or if the area of a device driver definition block is deallocated
and used for something else before the device driver is removed from the system’s lists, for example if the
device driver definition block is in a transient program which is force-removed. This possibility can be
obviated by allocating the block in the common heap with a job number of zero, or by allocating it in the
resident procedure area.

Tasks must not allocate or release memory: this must be done for them by the access layer, or by the
device driver initialisation code.

6.2. Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the device driver definition block, usually
by allocating some space in the resident procedure area, although any of the normal memory allocation
mechanisms may be used.

The device driver definition block will normally have the following structure, assuming that A3 has been made
to point to it:

$00(A3) Link to next external interrupt routine
$04(A3) Address of external interrupt routine
$08(A3) Link to next poll interrupt routine
$0C(A3) Address of poll interrupt routine

$10(A3) Link to next scheduler loop routine
$14(A3) Address of scheduler loop routine
$18(A3) Link to access layer of next device driver
$1C(A3) Address of input/output routine

$20(A3) Address of channel open routine
$24(A3) Address of channel close routine
$28(A3) Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and I/O routines, together with those of
any of the routines for tasks that it will be employing. It should also fill in any preset data required in the
remainder of the workspace.

Finally, the link routines described above should be called to include the driver in the operating system lists.
Note that the structure of the first 24 bytes of the device driver definition block is not mandatory; however it is
desirable from the point of view of consistency that it be kept the same. The comments in later Sections

about the base of the device driver definition block being passed to the driver are only valid if the above
structure has been used.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 6 - 2

6.3. Physical Layer

The physical layer tasks are normally the ones which perform actual I/O under interrupt or polled control.
They usually take data out of queues or put data into queues, the other end of such queues being
maintained by the access layer.

When the operating system calls one of the tasks in the physical layer, it passes the task a standard set of
values in some of the registers. These values are as follows:

Task service routine

Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3 nr. of 50/60Hz Interrupts (sched only) D3 7?7

D4+ all preserved

A0-A2 preserved

A3 base of device driver definition block A3 preserved
A4-A5 preserved
A6 system variables A6 preserved

A7 supervisor stack (64 bytes may be used)

6.3.1. External Interrupt Tasks

An external interrupt task must check its own hardware to determine whether the interrupt was for itself or for
some other driver. It may also need to clear the source of the interrupt at that point. If the interrupt was not
for itself, it should return.

6.3.2. Polling Interrupt Tasks

Polling interrupt tasks should only be used when critical timing operations are required. In common with the
external interrupt tasks, they can interrupt atomic operations in the rest of the system, such as access layer
calls to the same driver, so they should be used with great care.

6.3.3. Scheduler Loop Tasks

Calls from the scheduler loop do not interrupt atomic tasks. This means that operations such as allocating or
releasing memory can be performed safely. Note that it is quite common for the same routine to be included
both in the scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/60Hz when the machine is busy, and more frequently if the
machine is idle.

All physical layer calls return with RTS.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 6 -3

6.4. The Access Layer

The access layer consists of three routines: the channel open, the channel close, and the Input/Output
routine. These routines are called for the appropriate driver by the IOSS in response to a user's trap
instruction. In the case of the channel open, the routine is called in turn for each device driver in the machine
until a driver's open routine returns correctly to indicate that it has recognised the device name. Due to this
mechanism, an incorrect open routine may crash the whole system when an open to any device is
attempted, whereas the other routines are only invoked in response to the particular device being used.

All access layer calls return using RTS.

6.4.1. The Channel Open Routine

When the channel open routine is called via the 10SS, the following registers are set:

Channel Open Routine for Device Drivers
Call parameters Return parameters
D1 D1 ?7?7?
D2 D2 ?2?7?
D3 access key (as per IOA.OPEN) D3 77
D4+ ?7?7?
A0 pointer to device name A0 channel definition block
A1-A2 7?7?77
A3 base of device driver definition block A3 77
A4-A5 A4-A5 ??7?
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)
Error returns:
Errors as defined below
0 for successful open

The open routine should perform the following operations:

First, decode the name; the utility IOU.DNAM, which is described in Section 16.0, will normally be used for
this purpose. Return with ERR.ITNF in DO if the name was not recognised by this driver, or with ERR.INAM if
the name was recognised, but some of the additional information was incorrect in value or format.

Then, if the device cannot be shared, check whether the device is in use and prevent another channel from
being opened to it. If the device is in use, return ERR.FDIU.

Finally, allocate some space for the channel definition block. Any buffers or working area required for each
channel are normally allocated in the common heap. Return with ERR.IMEM if there was not enough
memory to do this.

NOTE: A0 should not be amended by the open routine. DO must be set to the appropriate error code.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 6 - 4

6.4.2. The Channel Close Routine

When this routine is entered, in addition to the usual values of A3, A6 and A7, A0 points to the base of the

channel definition block.

Channel Close Routine

Call parameters Return parameters
D1-D3 D1-D3 ??7?

D4-D7 All preserved
A0 pointer to base of channel definition block A0 ??7?

A1-A2 ??7?
A3 pointer to base of device driver definition A3 ?2?7?

block

A4-A5 preserved
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)

Error returns:

Always 0, as this routine cannot fail

The function of the close routine is simply to release the memory taken up by the channel definition block
and to ensure that everything in the device driver definition block is tidy.

Under some circumstances, it may not be possible to close the channel immediately because there are bytes
waiting to be transmitted by the physical layer. In this case, the physical layer must contain a scheduler loop
task, and the close routine should set a flag for the physical layer to complete the release of the memory on
the next invocation of that task in which it is possible to do so. When this happens, it is usually necessary to
build in a special mechanism to cope with the undesirable event of a program closing a channel to a
particular device, and then re-opening it immediately only to receive an "in use" error because the closed

channel has not yet been cleared.

NOTE: On completion of the routine DO must be set to zero as it is assumed that CLOSE cannot fail.
Registers D4 to D7 and A4 to A6 must be set to their initial values before return.

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 6 -5

6.4.3. Input/Output Routine

The 1/0O routine is called once when an |/O call is made, and then, unless the time-out was set to zero, on
every subsequent scheduler loop until the operation is complete or the time-out has expired.

Input/Output Routine

Call parameters Return parameters
DO.b trap code passed to the IOSS
D1 additional information D1 updated parameter
D2 additional information D2 ?77?
D3 0 for first call, else -1 D3 ?77?
D4+ 27?7
AO pointer to base of channel definition block AO preserved
A1 additional information A1 updated parameter
A2 additional information A2 preserved
A3 pointer to base of device driver definition A3 preserved
block
A4-A5 preserved
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)

Error returns:

All returns defined by the 10 traps

The 1/0O routine should return ERR.NC (not complete) if it cannot complete the operation immediately. If a
string operation has been partially completed, the values in D1 and A1 (humber of bytes transferred and
buffer pointer) should be set appropriately so that the operation can continue on the next try. DO should be
zero on return if the operation has been completed correctly.

Since most of the code for handling serial I/O is common to all device drivers, the I/O routine usually calls
one of the utility routines 10U.SSQ or IOU.SSIO (which are described in Section 16.0). IOU.SSQ assumes
that the only function of the access layer is to move bytes in and out of a pair of queues pointed to by fixed
positions in the channel definition block, while IOU.SSIO assumes that the operations required of it can all be
made up out of three primitive routines for sending one byte, fetching one byte, and checking for pending
input, such routines being supplied by the writer of the device driver.

Note that channels are assumed to be bidirectional; it is the responsibility of the 1/O routine to trap an
operation in a direction that is not allowed. Note also that output operations which appear to the user as
complete have merely completed the access layer call correctly: there being no general way in which the
user can ascertain whether the physical layer has in fact completed the operation.

NOTE: On completion of the routine, registers A0, A2 to A6 (inclusive) should be reset to their initial values
before return.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 6 - 6

7. Directory Device Drivers

Drivers for devices which have a directory and form part of the filing system have a somewhat extended set of
functions. For directory device drivers, there are three blocks in which memory is allocated, rather than two:
these are the directory driver linkage block, the physical definition block and the channel definition block.

There is one directory driver linkage block for each directory driver: it is an extended form of the device driver
definition block as found in a non-directory device driver. The block contains information about how to use the
driver, together with the links in the operating system's lists.

Each directory driver may control up to 8 drives (numbered 1 to 8). Each drive has one physical definition block:
this contains the drive number and information about the medium.

For each I/O channel that is open, there is an open channel definition block.
The file system is assumed to be composed of 512-byte blocks: thus a byte within a file is addressed by the
IOSS by a block number and a byte number within that block. It is of course possible to have a different

physical block size, but the mapping of the IOSS structure onto the physical structure will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file is set to byte 64, not byte zero).
This header should be formatted as follows:

$00 long file length

$04 byte file access key (used by third parties software)
$05 byte file type

$06 8 bytes file type-dependent information

$0E 2+36 bytes file name

$34 long update date [EXT,DD2]

$38 word version number [DD2]

$3A word reserved

$3C long backup date [DD2]

The current file types allowed are: 2, which is a relocatable object file; 1, which is an executable program; and 0
which is anything else. In the case of file type 1, the first longword of type-dependent information holds the
default size of the data space for the program.

For level 2 and level 3 devices, a type of -1 (or 255 decimal) stands for a subdirectory.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 7 - 1

71.

Initialisation of a Directory Driver

The initialisation routine should first allocate room for the directory driver linkage block, and then write into it the
information about the driver routine addresses, the length of the physical definition block required for each
drive, and the drive name. Note that for directory drivers, the decoding of the device name is performed by the
IOSS, not by the open routine in the device driver as in non-directory drivers: the function of the open routine is
to search for the file name within the given drive. The linkage block may be allocated in the resident procedure
area if the driver is resident there, but will usually be in the common heap. The system will crash if the linkage
block is overwritten without the driver being unlinked.

When this has been done, the traps SMS.LEXI, SMS.LPOL, SMS.LSHD and SMS.LFSD can be called to link
the driver and any associated tasks into QDOS.

The format of the directory driver linkage block is as follows (assuming that A3 has been made to point to it):

IOD_XILK
IOD_XIAD
IOD_PLLK
IOD_PLAD
IOD_SHLK
IOD_SHAD
IOD_OLK
IOD_IOAD
IOD_OPEN
IOD_CLOS
IOD_IEND
IOD_FSLV
IOD_SPR1
IOD_CNAM
IOD_FRMT
IOD_PLEN
IOD_DNUS
IOD_DNAM

Note that a directory driver must have at least 40 bytes of RAM for the linkage block.

$00(A3)
$04(A3)
$08(A3)
$0C(A3)
$10(A3)
$14(A3)
$18(A3)
$1C(A3)
$20(A3)
$24(A3)

—

$28(A3)
$2C(A3)
$30(A3)
$34(A3)
$38(A3)
$3C(A3)
$42(A3)

link to next external interrupt routine
address of external interrupt routine
link to next 50/60 Hz interrupt routine
address of 50/60 Hz interrupt routine
link to next scheduler loop routine
address of scheduler loop routine
link to access layer of next directory driver
address of input/output routine
address of channel open routine
address of channel close routine

end of minimum device driver linkage
address of entry for forced slaving
reserved

address of set channel name [SMSQ]
address of entry to format medium
length of physical definition block

word-length of drive name, characters of drive name (e.g. MDV)

word-length of drive name, characters of drive name real name [SMSQ]

For additional SMSQ features please refer to Section 18.9

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 7 -2

7.2. Access Layer

The access layer of a directory driver contains five routines: the channel openf/file delete routine, the close
routine, the 1/O routine, the forced slaving routine and the format routine.

For all directory device driver access layer calls (including open), AO points to the base of the channel definition
block when each routine is called. However, the format of the block is somewhat different.

The first $18 bytes are reserved for the I0SS (heap entry header). The format of the block for microdrives is:

$18(A0) CHN_LINK long link to next file system channel

$1C(A0) CHN_ACCS byte access mode (D3 on open call, -ve on delete)

$1D(A0) CHN_DRID byte drive ID

$1E(A0) CHN_QDID word number of file on drive

$20(A0) CHN_FPOS word block number containing next byte

$22(A0) word next byte from block

$24(A0) CHN_EOF word block number containing byte after EOF

$26(A0) word byte after EOF

$28(A0) CHN_CSB long pointer to slave block table for current slave block which may hold
current/ next byte

$2C(A0) CHN_UPDT byte file updated

$32(A0) CHN_NAME 2+36 bytes file name

$58(A0) 72 bytes spare

Section 18.8 contains details of the block for other filing systems.
A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the I0SS (heap entry header).

$10(A1) FS_DRIVR long pointer to access layer link for driver
$14(A1) FS_DRIVN byte drive number

$16(A1) FS_MNAME 2+10 bytes medium name

$22(A1) FS_FILES byte number of files open on this medium

The physical format for the microdrive system can be found in Section 18.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section7 -3

7.21. The Channel Open/File Delete Routine

The function of the open routine depends on the access mode. This may have been passed to the IOSS in D3
if the open routine was called as a result of an IOA.OPEN trap, or it may be a negative number, which would be
the case if the routine has been entered as a result of an IOA.DELF trap.

In order to understand the open routine, it is necessary first to understand the way in which QDOS handles
device names. When a device name is passed to the IOSS as a result of an open or delete call, the IOSS looks
for a match in its lists of device drivers and directory device drivers.

The matching mechanism for non-directory device drivers is defined within the open routine for that driver. The
matching mechanism for directory device drivers is as follows. The first characters of the name are checked
against the driver name in the directory driver linkage block (which is put there when the driver is initialised) and
these are expected to be followed by a drive number between 1 and 8, followed by an underscore, followed
usually by the filename.

If a match is found, the file system looks to see if there is a physical definition block for that drive already in
existence. If there is not, a physical definition block is created in the system's table of physical definition blocks
(the drive ID in the channel definition block is an index to this table). Note that the file system has no knowledge
of whether a drive is actually connected, and will set up the definition block regardless.

The 10SS then checks to see if this is the second or subsequent open to a shared file: if this is the case it
generates the complete channel definition block itself, setting CHN_FPOS+2 to $40 (i.e. the first byte behind
header) and copies the remaining information from the channel definition block for the first open. The directory
driver's open routine is not called. Otherwise, the IOSS calls the open routine, passing it the file name in the
channel definition block.

Channel Open Routine for Directory Device Drivers
Call parameters Return parameters
D1 D1 ?7?7?
D2 D2 ?7?7?
D3 D3 ?7?7?
D4+ all preserved
A0 base of channel definition block A0 preserved
A1 base of physical definition block A1 preserved
A2 A2 ?7?7?
A3 base of device driver definition block A3 preserved
A4-A5 ??7?
A6 system variables A6 preserved
Error returns:
Errors as defined below
0 for successful open

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 7 -4

The channel and physical definition blocks are all set to zero except for the following, which are filled by the
IOSS:

CHN_LINK link to next file system channel

CHN_ACCS access mode

CHN_DRID drive ID

CHN_NAME file name

FS_DRIVR pointer to directory driver access layer

FS_FILES number of files open on this drive (maintained by IOSS)

In the case of a device with removable media, the open routine should find out the name of the medium and
install it in FS_MNAME. It should also look at the access mode to find out which operation is required. If the
required operation is delete, it should perform that operation and return, but if the required operation is another
sort of open, then it should fill in the appropriate portions of the channel definition block, namely CHN_QDID,
CHN_EOF, CHN_EOF+2, CHN_FPOS and CHN_FPOS+2. CHN_CSB is a pointer to the slave block table
which may be filled in as an indication to the I/O routine that the block it is looking for may be slaved there. The
I/0 routine must check this however, normally by searching the slave table.

The 10SS will free the channel definition block on exit from the open routine if the action was a delete or if the
open routine returns an error key in DO.

The maintenance of the directory structure of the medium is the responsibility of the open and close routines -
the 0SS plays no part in this. Equally, the open routine is responsible for understanding the meaning of the
access mode and reacting accordingly.

NOTE: A6 should be reset to its initial state before return.

7.2.2. The Channel Close Routine

As far as the 0SS is concerned, this routine behaves in the same way as for a non-directory device driver. It is
of course necessary for the close routine to maintain the directory structure of the medium, so its operation will
normally be rather more complicated.

The close routine for a directory device driver has two additional functions: it must unlink the channel from the
list of files open, and must decrement the FS_FILES field in the physical definition block, which gives the
number of files open on the medium. Suitable code for performing these operations and ending the close
routine is as follows:

* get address of physical definition block into A2

MOVEQ #0, DO top three bytes must be clear
MOVE.B CHN_DRID(AQ), DO get the drive ID
LSL.B #2,D0 convert it to a table offset
LEA.L SYS_FSDD(A6),A2 get base of PDB table
MOVE.L (A2,D0.W),A2 get address from (base+offset)
* now decrement the file count
SUBQ.B #1,FS_FILES(A2)
* now unlink the file
LEA CHN_LINK(AQ),A0 get address of link pointer...
LEA SYS_FSDT(A6),A1 ...and pointer to start of linked list
MOVE .W MEM.RLST, A4 routine to unlink an item
JSR (A4)
LEA -CHN_LINK(AO®),A® restore AO to base of channel definition
MOVE.W MEM.RCHP, A4 routine to release channel definition space
JMP (A4) call it, and exit from the close

The close routine must also initiate the process of tidying up any slave blocks remaining for that channel. It
need not force the slave blocks to be made into true copies itself, but it must be guaranteed that the copying
will happen without further intervention by the calling program.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section7 -5

7.2.3. The Input/ Output Routine

This routine also appears to the 0SS to be identical for both directory and non-directory device drivers, though
once again the routine is usually rather more complex for most normal file system devices. The main difference
is that the I/O routine for a random access file system device must take into account the current block and
position as provided by the IOSS, since these may have been updated by the IOSS as a result of a file pointer
positioning trap.

7.3. Slaving

The area of memory between SYS_FSBB and SYS_SBAB is used by the filing system as temporary storage
for file slave blocks and for the slave block table. A slave block is a block of 512 bytes of data. The slave block
table is a table of entries sized 8 bytes whose start point is held in the system variable SYS_SBTB and whose
top is held in the system variable SYS_SBTT; the system variable SYS_SBRP points to the most recently
allocated slave block table entry. The address of a slave block, relative to the base of system variables, is equal
to 512/8 times the offset of the corresponding entry in the slave block table from the beginning of that table.

Currently, only the first byte of each slave block table entry is used by QDOS itself: the remaining bytes are
available for use by the driver. This byte is divided into two four-bit nibbles. The most significant nibble contains
the drive identifier (0..15), and the least significant nibble is a code indicating the status of the block. The byte is
formatted as follows:

$00 unavailable to filing system

$01 empty block

$x3 block is true representation of file
$x7 block is updated, awaiting write
$x9 block is awaiting read

$xB block is awaiting verify

x is the drive ID for this file

For Microdrives, the remaining space in each slave block table entry is laid out as follows:

SBT_PRIO 01 byte available for slaving algorithms
SBT_SECT 02 word physical sector number *2
SBT_FILE 04 word file number

SBT_BLOK 06 word block number within the file

Section 18.6 contains details of table entries for other devices.

It is left to the device driver to decide what the slave blocks are used for but it must be prepared to release a
slave block if requested to do so by the memory manager.

This is done by calling the driver's forced slaving routine with the following parameters:

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 7 -6

Forced Slaving Routine

Call parameters Return parameters
D1 D1 ?7?
D2 D2 ?7??
D3 D3 ???

D4+ all preserved

A0 A0 2?7
A1 base of offending slave block A1 ??7?
A2 physical definition block A2 ??7?
A3 base of device driver definition block A3 preserved

A4+ preserved

This routine cannot fail.

Typically the slave blocks are used to buffer data being written to a device, the actual writing being carried out
by an asynchronous task.

Searching for an empty slave block involves performing a linear search through the slave block table, usually
starting from SYS_SBRP or SYS_SBTB. The status of each entry in the table must be checked and only those
blocks which are empty or true representations should be taken.

When a new block is allocated SYS_SBRP should be updated to point to the allocated block.

Allocating slave blocks is a form of memory allocation and should only be carried out by access layer or
scheduler loop calls.

This position in memory of a slave block which corresponds to a slave block table entry may be calculated
using the following code:

MOVE. L A4,DO A4 is pointer to slave block table entry

*
* form offset into slave block table, gives slave block no.*8
* entries are 8 bytes wide in table
*
SUB.L SYS_SBTB(A6), DO
LSL.L #6, D0 multiply by 64 (8*64=512)
MOVE. L DO, A5
ADD.L A6,A5 add offset to system variable base

* A5 now has base address of slave block

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section7 -7

7.4. The Format Routine

This routine is to a large extend independent of the other routines. It is called with the drive number in D1, a
pointer to the medium name in A1, and a pointer to the directory driver linkage block in A3.

Format routine
Call parameters Return parameters
D1 drive number D1 number of good sectors
D2 D2 total number of sectors
D3+ ?7?7?
AO A0 ?2?7?
A1 pointer to medium name A1 77
A2 A2 ?7?7?
A3 base of device driver definition A3 ?7?7?
block
A4-A5 ?77?
A6 system variables A6 preserved
Error returns:
FMTF format failed

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section7 -8

8. Built-in Device Drivers
The following devices are built in to the QL ROM:

CON_wXhAxXy_k Console /0,
window area "w" by "h" pixels, top left hand corner at pixel position "x", "y",
keyboard type-ahead buffer length "k" characters.

The size and position are defined in terms of pixels on a 512x256 display map
(position 256x128) is the centre of the screen in both display modes).

Default CON_448x200a32x16_128

SCR_wXhAxXy Screen output
window definition is as for CON.
Default SCR_448x200a32x16

SERnphz RS232 serial 110

port "n",
"p" indicates parity: E, O, M, S for even, odd, mark, or space parity,
"h" indicates handshaking, H to enable it, | if it is to be ignored
"z" indicates protocol:
R indicates raw data,
Zor C indicates that CTRL-Z is used as an EOF marker,

C indicates that ASCII 13 is to be exchanged with ASCII 10 on input
and vice versa on output.

Default SER1HR no parity.

NETI_nn Serial network input

link from node "nn"

NETO_nn Serial network output
link to node "nn"

PIPE_n Job connection and synchronisation

if "n" given it is an output pipe of length n bytes,
otherwise it is an input pipe connected to the channel ID passed in D3.

MDVn_name Microdrive file
MDV1 refers to Microdrive "1".

FLPn_name Floppy Disc file [EXT]
FLP1 refers to Floppy Disk "1".

Within device names, no distinction is made between upper and lower case letters.
Floppy Disks are supported in a standard way. The format and additional facilities of the floppy disk driver

are explained in Section 8.1 and 8.2. For the extended drivers of the QL Emulator, their additional
parameters and facilities, refer to the Emulator's manual.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 8 - 1

8.1. QL Floppy Disc Format exn

For ease of data transfer between different manufacturer's floppy disc systems, it is necessary to have a
common standard of disk formats. Clearly this only applies where the discs are physically compatible:
physical dimensions, recording method, recording density, track spacing and positioning must all match on
the source and destination machines. There is no requirement for the format for (e.g.) 5.25" and 8" discs to
be the same, however, for convenience, this standard is proposed not only for 5.25" drives, but also for
electrically compatible 3.5" and 3" drives. Similar formats may be derived for other standards. This standard
has been based on the original Sinclair Research proposals, and compatibility between different
manufacturers has already been established.

Floppy disks will be sectored in 512 byte sectors. 5.25" compatible disks will have 9 sectors per track (MFM
200ms rotation), for a 40 track drive, single sided, this gives 180k bytes and for an 80 track drive, double
sided, this gives 720k bytes capacity.

Tracks are numbered from 0, sectors on a track are numbered, by ones, from sector 1 immediately after the
index mark.

The physical format is basically IBM System 34 (8" MFM) with four changes. There is no index mark
recorded, the sector length flag is $02, the data record is 512 bytes long, and the write splice gap is
increased.

For IBM standard format on MFM recording with 256 bytes sectors, the write splice gap at the end of a data
record is 54 bytes. This is increased to 84 bytes allowing for a short term speed variation of + or - 4%. Using
this, each sector is recorded in 658 bytes, this sets the gap between sector 9 and 1 to approximately
6250-5922 (328) bytes, allowing a long term speed variation of + or - 2.75%.

Regardless of the physical characteristics, all floppy disks will have the same directory structure.

Track zero will hold the map of sector allocations (the FAT). The first block of the map will be in sector 1 side
0 track 0. Note that in QL parlance, a cluster is called a group.

The first 96 bytes of the sector map hold information about the format of the rest of the drive:

Q5A_ID $00 long format ID

Q5A.ID 'QL5A' ‘

QS5AX.ID '‘QL5B' as QL5A but no physical-logical translation

Q5A_MNAM $04 10*bytes medium name (space filled). Note: this is not a standard
QL string as there is no length word

Q5A_RAND $0e word random number set during format

Q5A_MUPD $10 long count of updates

Q5A_FREE $14 word free sectors

Q5A_GOOD $16 word good sectors

Q5A_TOTL $18 word total sectors (sectors*tracks)

Q5A_STRK $1a word sectors per track (normally <=9)

Q5A_SCYL $1c word sectors per cylinder (e.g. 9 or 18)

Q5A_TRAK $1e word number of tracks (cylinders)

Q5A_ALLC $20 word allocation size (sectors per allocation group)

Q5A_EODR $22 long current end of directory (block/byte format)

Q5A_SOFF $26 word sector offset

Q5A_LGPH $28 18 bytes logical to physical sector translate

Q5A_PHLG $3a 18 bytes physical to logical sector translate (standard)

Q5A_SPRO $4c 20 bytes $ff

Q5A_GMAP $60 3 byte entry map in form: (file id-1) / Group number

Q5A_MTOP $600 Max length

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 8 - 2

The map is always of a size to fill the first three (logical) sectors of the drive, being padded with 'non-existent'
sectors if necessary to fill the (512*3-96)/3=480 allocations allowed.

This is adequate for up to 720k bytes with a sector allocation size of 3 (3 groups per track per side), and a
sector allocation size of 6 for up to 1440k bytes.

For extended density disks, the number of entries in the map is 1600, therefore the size is 1600*3+96=6144.
The format ID is a 4 byte ID indicating that the format conforms to this standard.

The medium name, random number and update count are used to provide protection against media change.
In addition the update count allows detection of the case of a medium being removed, updated on another
machine or drive, and being re-inserted into the original drive.

The drive statistics are maintained in the map header for simplicity and speed of access, while the directory
EOF is maintained in the map to reduce the access overheads associated with directory handling.

Sectors are allocated to files in multiples of the allocation size. To ensure fast serial access, it is necessary to
space adjacent blocks of a file in such a way as to allow processing between those blocks. The translate
tables define the spacing. There is an additional overhead on accessing a sector on a new track, and so
there is an additional offset to be applied to the sector calculation for each track.

The logical sector is obtained from the sector map by the following calculation:

(sector in map * alloc size + sector in alloc group) MOD sectors per cylinder
In the logical to physical translate table, the MSB of the translate byte indicates the side number, while the
remaining 7 bits give the sector number (numbered from 0 to 8). In the physical to logical translate table the
first nine bytes correspond to sectors 0 to 8 on side 0, and the next 9 bytes to sectors 0 to 8 on side 1. (Note
that the internal numbering of sectors on a track starts at 0 for convenience in calculation: 1 is added to the

sector number immediately before recording or reading).

E.g. for a 1in 3 interleave, 18 sectors per cylinder, the tables will be:

00 03 06 80 83 86 01 04 07 81 84 87 02 0508 82 8588
00 06 Oc 01 07 0d 02 08 Oe 03 09 Of 04 0a 10 05 Ob 11

For each track there will be an additional offset to allow for steps between adjacent tracks. So the final
physical sector is calculated as

(translated sector + track * sector offset) MOD sectors per track

The EOF of a file is the position of the next byte after the end of the file. Thus for an empty file it is 0/40. The
block number starts at 0, the byte number is between 0 and $1ff inclusive.

The allocation map itself is a table giving the usage of each group of sectors. For each group there are three
bytes: the file number in the first 12 bits and in the second twelve bits, the numbers of the blocks of the file,
stored in the group, divided by the allocation size. Thus for file number 2, the first allocation of sectors is
identified in the map as 002000, the next allocation as 002001 and so on.

The file number is the index into the master directory. The file numbers are allocated as follows:

000 Master directory

001+ Normal files

F8x Sector map

Fdx Vacant sector group

Fex Bad sector group

Ffx Non existent sector group

The master directory is a table of file headers in standard format. The first 64 bytes of any file do not contain
any useful information.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 8 -3

8.2. Direct Sector Read/Write &xn

Most driver software includes provision for reading sectors of a disk using direct addressing. To do this a
special file is opened on the disk. The name is

FLPn_*Dsd where s is the sector length 0=128 bytes
1=256 bytes
2=512 bytes
3=1024 bytes

and d is the density D=double (MFM)

When opening a disk for direct sector read/write from S*Basic, the name should be enclosed in quotes (or
apostrophes).

OPEN #3,'flp1_*d2d'

When this file is open, no other file may be open on the drive. The only 10 calls supported for this type of file
are IOB.FMUL, IOB.SMUL, IOF.POSA and IOF.POSR (D0=%$03, $07, $42 or $43), to read or write complete
sectors or to set the position. The parameter (D1) to the POSR call is ignored, but the current position is
returned. Reading or writing a sector does not change the file position.

The position is a composite of the required sector, side and track:
sector number + side * 256 + track * 65536

To ensure compatibility with string I/O the length specified in the SMUL and FMUL calls may be one of three
values:

sector length the complete sector is read or written

2 returns the sector length (IOB.FMUL)
ignored (IOB.SMUL)

2 + sector length returns the sector length followed by the sector (IOB.FMUL)
skips the first two bytes, and writes the rest to the sector (IOB.SMUL)

This variety enables sectors to be read and written in S*Basic using the normal string I/O in the Super Toolkit
II, as well as by assembler programs.

For example, sector 1 of side 1 on track 2 may be read into the string A$ using the following command:
GET #n\1+256+2*65536, a$

Direct sector read/write calls can be used for a 40 track disk in an 80 track drive by multiplying the track
counter by two.

8.3. Additional Standard Device Drivers [ST] [EXT] [SMSQ/E]

In addition to the standard device drivers exist some other devices and directory devices which are defined
for a whole range of machines, including SMS2. Application software should allow these optional devices
whenever possible. As most device do not need special treatment, this should be no problem at all.

FLPn_name Floppy Disc file
FLP1 refers to Floppy Disk "1".

RAMn_name RAM Disc file
RAM1 refers to RAM Disk "1".

WINn_name Hard disk or Changeable Disk file
WIN1 refers to Hard disk "1".

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 8 - 4

The Serial and Parallel Port drivers accept additional parameters:

SERnpftce Serial Port receive and transmit

SRXnpftce Serial Port receive only

STXnpftce Serial Port transmit only

PARnNtce Parallel Port (transmit only)

PRT

NULF

NULZ

NULL

NULP

n - port number e.g. 1 or 2; default is 1
p - parity: O (7 bit + odd parity), E (7 bit + even parity),
M (7 bit + mark=1), S (7 bit + space=0); default is none
f - flow control: H (Hardware CTS/DTR), | (Ignore flow control),
X (XON/XOFF); default H
t - translate: D (direct output), T (translate), A (auto-CR)
c - <CR>: C (<CR> is end of line), R (no effect)
e -end of file: F (<FF> at end of file), Z (CTRL Z at end of file)

Printer Port (either SER or PAR)
Null device, emulating null file.
emulates a file filled with zeros.
emulates a file filled with null lines.

always returns "not complete".

Named pipes have been added to the unnamed type:

PIPE_name_n Job communication and synchronisation

if "n" given it is an output pipe.

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 8 -5

9. Interfacing to S*Basic

When writing S*Basic procedures or functions in machine code, there are several things that an applications
programmer may want to do: he may wish to look at or modify the information held in S*Basic variables and
arrays, he may wish to access or modify the S*Basic list of I/O channels, and he may wish to reserve and
use space on the arithmetic stack. He will also, of course, wish to access the list of parameters passed to the
routine and return values either to those parameters or in a function return. In order to do this, it is necessary
to understand the data structures used by the interpreter and to emulate the interpreter's techniques for
manipulating them.

9.1. Memory Organisation within the S*Basic Area

The S*Basic area contains twelve distinct areas:

the job header,

the S*Basic work areas,
the name table,

the name list,

the variable values area,
the channel table,

the arithmetic stack,

the token list,

the line number table,
the program file,

the return list,

the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the S*Basic area, and looks just like other job header (see Section
18.5). Immediately above this is the S*Basic work area; this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are pointers to the other areas: the interpreter
can not only shuffle these areas around, but may also ask QDOS to change the size of the whole S*Basic
area.

The organisation of this area is shown in Section 18.3. Throughout normal operation of the interpreter, A6
points to the base of the S*Basic work area, the whole of which may move between instructions, with a
corresponding change in A6. All the pointers are, of course, relative to A6, so that their values need not be
changed when the S*Basic area is moved.

The name table, the name list and the variable values area are required by the applications programmer in
order to access and/or modify S*Basic variables and parameters. The channel table is required in order to
access S*Basic I/0O channels, and the arithmetic stack (usually abbreviated to RI stack) is a convenient area
in which to reserve storage, and is also where parameters are passed. The remaining areas are not
described in this document.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 9 - 1

9.2. The Name Table

All variables, procedure names, parameters and even expressions are handled through the name table. This
is a regular table of eight byte entries, but the entries hold different information according to the type of entry.

The entries may be as follows:

Bytes 7-4 Bytes 3-2 Bytes 1-0 Type

Value pointer Name pointer $0001 Unset string

Value pointer Name pointer $0002 Unset floating point number
Value pointer Name pointer $0003 Unset integer

pointer to RI stack -1 $0101 String expression

pointer to RI stack -1 $0102 Floating point expression
pointer to RI stack -1 $0103 Integer expression

Value pointer Name pointer $0201 String

Value pointer Name pointer $0202 Floating point number
Value pointer Name pointer $0203 Integer

Value pointer -1 $0300 Substring

Value pointer Name pointer $0301 String array

Value pointer Name pointer $0302 Floating point array

Value pointer Name pointer $0303 Integer array

Line no in msw Name pointer $0400 S*Basic procedure

Line no in msw Name pointer $0501 S*Basic string function

Line no in msw Name pointer $0502 S*Basic f.p. function

Line no in msw Name pointer $0503 S*Basic integer function
Value pointer Name pointer $0602 REPeat loop index — floating point
Value pointer Name pointer $0603 REPeat loop index - integer
Value pointer Name pointer $0702 FOR loop index — floating point
Value pointer Name pointer $0703 FOR loop index - integer
Abs. address Name pointer $0800 Machine code procedure
Abs. address Name pointer $0900 Machine code function

Byte 0 of the name table has an additional usage during parameter passing: see Section 9.8.

The Name pointer is a pointer to an entry in the name list (see the following Section). A name pointer of -1
indicates a nameless item such as the value of an expression; any other negative pointer indicates a pointer
to another entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see Section 9.4). A value pointer of -1
indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets from the base of each area. For
the RI stack, the base is at the high address; for the others it is at the bottom.

Note that functions written in S*Basic are typed according to whether the name ends in %, $ or neither.
Functions written in machine code, in common with procedures written in S*Basic or machine code, have no

type.

The entries for expressions and substrings are for use within the expression evaluator: the applications
programmer would not normally use them.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 9 -2

9.3. Name List

The names in the name list are stored as a byte character count followed by the characters of the name.
Note that this format is different from all the other uses of strings in QDOS in which a word character count is
used.

9.4. Variable Values Area

This area is a heap in which the values are stored. The format for each type of data item is given in the
following Sections.

9.5. Storage Formats

9.5.1. Integer Storage

An integer is a 16-bit two's complement word.

9.5.2. Floating Point Storage

A floating point number is stored as a two-byte exponent followed by a four-byte mantissa.

The most significant four bits of the exponent are zero, whilst the remaining twelve bits are an offset from -
$800. The mantissa is two's complement and fractional, with bit 31 of the mantissa representing -1, and bit

30 of the mantissa representing +1/2. There are no implicit bits in the mantissa, so either bit 31 or bit 30 will
be set for a normalised number, except in the special case of zero.

The value of the number is thus mantissa*2 to the power (exponent-$800). If the mantissa is viewed as two's
complement absolute (as opposed to fractional), the value of the number is given by: mantissa*2 to the
power (exponent-$81F). The $1F corresponds to 31 decimal: the length of the mantissa minus one.

Examples of floating point storage are as follows:

Hex Decimal value
0804 50000000 10.00

0801 40000000 1.00

07FF 40000000 0.25

07FF 80000000 -0.50

0800 80000000 -1.00

0000 00000000 0

9.5.3. String Storage

A string is stored as a word character count, followed by the characters of the string. The string storage
always takes a multiple of two bytes. Examples are as follows:

Hex String

0004 41424344 "ABCD"

0003 414243xx "ABC"

0000 " (empty string)

9.5.4. Array Storage

An array descriptor has a header which consists of a longword offset of the array values from the base of the
variable value area, followed by the number of dimensions (word), followed by a pair of words for each
dimension. The first word is the maximum index, the second word is the index multiplier for this dimension.

The storage of floating point and integer arrays is entirely regular. A floating point array takes 6 bytes per
element, an integer array 2 bytes per element.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section9-3

A string array is stored as an array of characters; except that the zeroth element of the final dimension is a
word containing the string length. The final dimension defines the maximum length of the string. This is
always rounded up to the nearest even number.

A substring is the result of internal slicing operations; this is a regular array of characters; the base of the
indexing is one rather than zero.

Examples of Floating Point Storage
Floating point variables (in hex)

0000 0000 0000 0.0
0801 4000 0000 1.0
0800 8000 0000 -1.0
0804 5000 0000 10.0

Floating point arrays
base,2,3,3,2,1 DIM A(3,2)

Examples of string storage (numbers in decimal)
String variable

4,65,66,67,68 "ABCD"
String array

base,2,3,12,10,1 DIM A$(3,10)

4:;65,66,67,78,X,X,X,X,X,X "ABCD"

9;49,50,51,52,53,54,55,56,57 ,x "123456789"

0;%,%,X,X,X,X,X,X,X,X "
1:32,%,%,X,%,X,X,X,X,X "

Substring array

base,1,3,1 A$(0,1 TO 3) as above
65,66,67 "ABC"
9.6. Code Restrictions

There is a simple set of rules for writing procedures in machine code for S*Basic:

1. As the S*Basic program area is liable to move at any time while the execution is in user mode, all
references to this area must be indexed by A6 or A7. This is not true for SMSQ/E.

A6 and A7 must never be saved, used in arithmetic or address calculations, and must never be
altered, except by pushing or popping the A7 stack. In extreme circumstances it is possible to enter
supervisor mode (TRAP #0) to make the following action atomic. If this is done, A6 and the user
stack pointer must not be saved or manipulated before entering supervisor mode, and they must be
restored before exiting.

2. Not more than 128 bytes must be used on the user stack.

3. DO must be returned as an error code (long).

4. D1 to D7 and A0 to A5 inclusive may be treated as volatile.

9.7. Linking in New Procedures and Functions

New S*Basic procedures and functions written in machine code may be linked into the name table using the
vectored routine SB.INIPR (see Section 16). When the procedures and functions are in a ROM in the
suitable format (see Section 11.4), SB.INIPR is called automatically. If the procedures and functions are to

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 9 -4

be stored in RAM, they should be loaded into the resident procedure area as, once added, they may not be
removed except by re-booting the machine. It is usually convenient to load the code for calling SB.INIPR to
make the linkage into the same area, although this is not necessary.

9.8. Parameter Passing

The S*Basic interpreter passes parameters using a substitution mechanism, which operates as follows. The
interpreter first evaluates any of the parameters that are expressions. A new entry is then created at the top
of the name table for each actual parameter. In the case of a procedure or function written in S*Basic, this is
followed by a null entry for any formal parameter that is missing from the actual parameter list. The
interpreter then swaps the new name table entries with the old name table entries corresponding to the
actual parameters. In the case of a procedure or function written in machine code, the code is then called
with A3 pointing to the name table entry for the first parameter in the list, and A5 pointing to the last ((A5-
A3)/8 is the number of parameters).

If a local statement is encountered, the entry in the name table is copied to a new position at the top of the
table, and an empty entry put in its place.

At the end of a S*Basic procedure or function, the parameter entries are copied back and local variables are
removed. The parameter entries in the name table together with any temporary storage in the variable value
table are then removed for all procedures and functions.

Byte 0 of the name table entry for a parameter has an additional meaning to that associated with a normal
name table entry. The bottom four bits have the usual indication of type (0=null, 1=string etc.), but the top
four bits are used to indicate the separator that was present after the parameter in the actual parameter list,
together with information as to whether the actual parameter was preceded by a hash (#).

Thus the format of byte 0 is as follows:

h sss tttt
tttt: type: 0=null, 1=string, 2=floating point, 3=integer

sss: type of following separator: 0=none, 1=comma, 2=semi-colon, 3=backslash,

4=exclamation mark, 5=TO

h: 1 if the parameter was preceded by hash, otherwise 0

Note that byte 0 of the name table is located at 1(a3) as it is part of a word (see Section 9.2).

The name pointer of a parameter (if it is not an expression or substring) is the index of the name table entry
of the item from which it is copied. Thus the parameter "name" can be obtained from the name list entry of
that item (see also Section 9.9). The index must be multiplied by the entry size (8) to get the pointer.

9.9. Getting the Values of Actual Parameters

For the purpose of using scalar (as opposed to array) parameters locally in the same way as "call by value"
parameters in other high-level languages, it is expedient to use one of a set of four vectored routines which
place the values of actual parameters on the arithmetic stack. Each routine assumes that all the parameters
will be of the same type. It is passed the values of A3 and A5 which point to the name table entries for the
parameters; it returns the number parameters fetched in the least significant word of D3, and the values
themselves in order on the arithmetic stack with the first parameter at the top (lowest address) of the stack.
These routines smash the separator flags. They are as follows: SB.GTINT gets 16-bit integers, SB.GTFP
gets floating point numbers, SB.GTSTR gets strings, and SB.GTLIN gets floating point numbers but converts
them to 32-bit long integers.

These routines may still be used when processing parameters of mixed type or when wishing to inspect the
separators. To begin with, the values of A3 and A5 should be saved; then, for each parameter in the
succession, the separator flags are inspected, and the appropriate routine is called with A3 pointing to the
parameter and A5 equal to A3+8, thus getting one parameter.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section9-5

These routines smash D1, D2, D4, D6, A0 and A2. The error codes are returned in DO and the condition
codes.

A special technique is provided for use in those routines in which it is necessary for the user to be able to
type in a string without quotes, as it's required for S*Basic commands involving device names. Firstly, the
name is inspected to see if it is a valid set string variable. If it is, the string is fetched using SB.GTSTR; if it is
not, the parameter's name itself is fetched from the name list, and converted to string form by changing its
word count from byte to word, realigning the string if necessary. If a string is to be input without quotes, it
must of course follow the rules for S*Basic names, as described in the Concepts manual.

9.10. The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by A1. Space may be allocated on the stack by calling
the vectored routine QA.RESRI: the number of bytes required is given in D1.L; DO to D3 are smashed by the
call. Since both the stack within the S*Basic area and the S*Basic area itself may move during a call, the
stack pointer should be saved in BV_RIP(A6) before the call, and restored from BV_RIP(A6) after the call
has been completed. The routine ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the arithmetic stack.
The arithmetic stack is automatically tidied up both after procedures, and after errors in functions.

To make a good return from a function, the returned value should be at the top (lowest address) of the stack
with nothing below it (that is with both (A6,A1.L) and BV_RIP(A6) pointing to it) when the routine is exited.
The type of the returned value should be in D4 (1=string, 2=floating point, 3=integer). Since S*Basic has no
long integer type, long integers must be converted to floating point before returning.

Values can also be returned to parameters or, indeed, global variables, by putting the value on the arithmetic
stack in the same way, pointing A3 to the appropriate name table entry and calling the vectored routine
SB.PUTP. DO is an error return, and D1, D2, D3, A0, A1 and A2 are smashed. If the actual parameter was
an expression, no error will be given, but the value returned will be lost. The type of the returned parameter
is determined by the name table entry, and the information on the arithmetic stack must be in the correct
form.

As functions do not tidy up the arithmetic stack automatically unless an error occurred, it is very important to
make sure that the stack does not grow on function returns, especially if strings have been passed and
returned. Also, the routine QA.RESRI does not update A1 (return value undefined!) or move the stack, it just
makes sure that enough memory is available so that the arithmetic stack may grow downwards.

Note that strings must be aligned on the arithmetic stack so that the character count is on a word boundary.
All entries on the stack must be even length, so that a string of odd length has one byte at the end which
contains no information.

9.11. The Channel Table

A channel number (#n) is an index to an entry in the S*Basic channel table. This is a table of items which are
each of length CH.LENCH (currently $28) bytes. The base of the table is at BV_CHBAS(A6), and the top is
at BV_CHP(A®6); thus the base of the entry for channel #n is given by:

(n*CH.LENCH+BV_CHBAS(A6))(A6)
The format of each table entry is as follows:

$00 long the channel ID

$04 float current graphics cursor (x)

$0A float current graphics cursor (y)

$10 float turtle angle (degrees)

$16 byte pen status (0 is up, 1 is down)

$20 word character position on line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel ID is negative, there is no channel open
to that # number.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 9-6

10. Hardware-related Programming

10.1. Memory Map au

The 68008 has one megabyte of address space. Although an unexpanded QL uses only the bottom 256 Kb
of this, the allocation for the remainder is determined and should be adhered to when designing add-on
hardware.

This is how it is made up:

$FFFFF

Add-on ROM (up to 128 Kb)
$E0000

Add-on peripherals (8 slots of up to 16 kbytes each)
$C0000

Add-on RAM (up to 512 kbytes)
$40000

On-board user RAM (96 kbytes)
$28000

Screen RAM (32 kbytes)
$20000

On-board I/O (Partially decoded)
$10000

Plug-in ROM cartridge (16 kbytes)
$0C000

On-board ROM (48 kbytes)
$00000

The registers in the on-board I/O area are partially decoded: the details of this decode may vary according to
different versions of the QL hardware - some versions will recognise any address in the entire area.

However, the address map normally used is the same for all QLs:

Address (hex) Function (read) Function (write)

$18023 Microdrive data (track 2) Display control

$18022 Microdrive data (track 1) Microdrive/RS232-C data
$18021 Interrupt/IPC link status Interrupt control

$18020 Microdrive/RS232-C status Microdrive control
$18003 Real-time clock byte 3 IPC link control

$18002 Real-time clock byte 2 Transmit control

$18001 Real-time clock byte 1 Real-time clock step
$18000 Real-time clock byte 0 Real-time clock reset

The display control registers are in the ZX8301 "Master chip", and the others are in the ZX8302

"Peripheral chip". The details of the QL hardware are rather obscure, and it is strongly recommended that
these registers should not be used by applications programs, and should only be accessed via QDOS traps
or vectored routines.

For other hardware, e.g. the Miracle Gold card or the QL-Emulator for the ATARI ST or other machines
running SMSQ/E, the area from $C0000 is filled up with continuous memory (up to $3FFFFF or beyond).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 - 1

10.2. Display Control

The display format in memory is explained below: this format is specific to the QL and may change on future
Sinclair products. It is, therefore, strongly advised that screen output be performed using only the standard
screen driver, together with the SMS.DMOD trap. It notably is different on machines running SMSQ/E in
higher display modes.

In 512-pixel mode, two bits per pixel are used, and the GREEN and BLUE signals are tied together, giving a
choice of four colours: black, white, green and red. On a monochrome screen, this will translate as a four-
level grey-scale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green and Blue, and one bit for
flashing. The flash bit operates as a toggle: when set for the first time, it freezes the background colour at the
value set by R, G and B, and starts flashing at the next bit in the line; when set for the second time, it stops
flashing. Flashing is always cleared at the beginning of a raster line.

Addressing for display memory starts at the bottom of dynamic RAM and progresses in the order of the
raster scan - from left to right and from top to bottom of the picture. Each word in display memory is
formatted as follows:

High byte (A0=0) Low Byte (A0=1)

Bit D7 D6 D5 D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 D1 DO Mode
G7 G6 G5 G4 G3 G2 G1 GO R7 R6 R5 R4 R3R2 R1 R0 512-pixel
G3 F3 G2 F2 G1 F1 GO FO R3 B3 R2 B2 R1 B1 R0 BO 256-pixel

R, G, B and F in the above refer to Red, Green, Blue and Flash. The numbering is such that a binary word
appears written as it will appear on the display: i.e. RO is the value of Red for the rightmost pixel, that is the
last pixel to be shifted out onto the raster.

In 8 bit (aurora or palette) modes, there is one byte per pixel. In 16 bit modes, there are two bytes per pixel.
The 16 bit QPC/QXL/SMSQmulator format is as follows:

G2 G1G0B4B3B2B1B0 R4R5R2R1 R0 G5 G4 G3

The 16 bit Q40/Q60 format is as follows:

G4G3G2G1GOR4R3R2 R1R0OB4B3B2B1BOW

10.3. Display Control Register

This is a write-only register, which is at $18063 in the QL.

One of its bits is available through the QDOS SMS.DMOD trap: bit 3, which is 0 for 512-pixel mode and 1 for
256-pixel mode.

The other two bits of the display control register are not supported by QDOS, these being bit 1 of the display
control register, which can be used to blank the display completely, and bit 7, which can be used to switch
the base of screen memory from $20000 to $28000. Future versions of QDOS may allow the system
variables to be initialised at at $30000 to take advantage of this dual-screen feature: the present version
does not.

Bits 0, 2, 4, 5 and 6 of the display control register should never be set to anything other than zero, as they
are reserved and may have unpredictable results in future versions of the QL hardware.

10.4. Keyboard and Sound Control

The keyboard and loudspeaker are controlled by the QL's second processor, which is an 8049single-chip
microcomputer: this is known in the QL as the Intelligent Peripheral Controller, or IPC. The SMS.HDOP trap
provides a set of commands that the CPU can send to the IPC over the serial link that connects them. This
trap is discussed in greater detail in Section 13.0.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -2

When the keyboard is accessed via the console driver, the usual functions of de-bounce and conversion to
ASCII are performed, in addition to the functions described in Section 15.0. The other way of accessing the
keyboard is to use the SMS.HDOP trap to monitor the instantaneous state of the keys directly: this is the only
way of detecting multiple key presses (necessary for joystick input), or of detecting the state of the SHIFT,
CTRL and ALT keys when no other key has been depressed. See the S*Basic Keywords entry on the
KEYROW function for an example of the use of this technique.

The same trap, with different parameters, is used for sound generation.

10.5. Serial I/0

The QL's serial 1/0 should only be accessed via the serial driver, except for setting the baud rate, which is
performed by the SMS.COMM trap. The only other function that can safely be performed by the user
independently of the operating system is the checking of the transmit handshake lines (DTR on channel 1
and CTS on channel 2), which can be looked at by monitoring bits 4 and 5 of the microdrive status register
respectively. Note that if the connector is rewired to use these pins as data lines, this function could be used
to perform RS232-C reception entirely in software, which would make it possible to perform XON-XOFF
handshaking or split baud rate operation.

10.6. Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps SMS.RRTC, SMS.SRTC and
SMS.ARTC are used to read, set and adjust the clock. The vectored routines CV.ILDAT and CV.ILDAY are
used to convert the time obtained to a string.

10.7. Network

This should not be accessed other than by the built-in device driver.

10.8. Microdrives

Normally, these should not be accessed other than by the built-in device driver. However, it is possible to
write routines to access microdrive sectors directly in order to perform such functions as fast medium-to-
medium copying or recovery of data from a damaged medium.

There are four vectored routines provided for this purpose: MD.READ, MD.WRITE, MD.VERIF and
MD.RDHDR. Use of these routines requires a detailed understanding of the microdrive hardware and format,
and is probably beyond the scope of most users.

However, to use these routines ,the following example shows how a microdrive is selected or de-selected:

sys_wser
move.b do, -(sp) ; save operation
wait subqg.w #1,sys_tmot(a0) ; decrement timeout
blt.s set_mode ; done?
move.w #(20000*15-82)/36,d0 ; time=18*n+42 cycles
delay1l
dbra do, delayl ; delay
bra.s wait ; repeat until timeout expires
set_mode
clr.w sys_tmot (a0 ; clear wait
and.b #pc.notmd, sys_tmod(a®) ; not RS232
move.b (sp)+,do
or.b do, sys_tmod(a0) ; either mdv or net
and.b #$ff-pc.maskt,sys_qlir(a0@); disable transmit interrupt
exit
move.b sys_tmod(a@),pc_tctrl ; set PC
rts
sys_rser
bclr #pc..serb,sys_tmod(a®) ; set RS232 mode
or.b #pc.maskt, sys_qlir(a@) ; enable transmit intertupt
bra.s exit

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -3

md_desel

; clock in deselect bit first

; clock in select bit first
; and clock it through n times

; clock high

; time=2*n+20 cycles

; clock low

; ... clocks d2.0 into first drive

; time=2*n+20 cycles

; clock high - deselect bit next

moveq #pc.desel, d2
moveq #7,d1 ; deselect all
bra.s sedes

md_selec
moveq #pc.selec,d2
subg.w #1,d1

sedes

clk_loop
move.b d2, (a3)
moveq #(18*15-40)/4,do
ror.1l do, de
bclr #pc..sclk,d2
move.b d2, (a3)
moveq #(18*15-40)/4,d0
ror.1l do, de
moveq #pc.desel, d2
dbra d1,clk_loop
rts

drive

bsr.s startup
bsr.s wind_dwn
rts

Entry Exit

D1 D1 smashed

D2 D2 smashed

D3.L number of microdrive
AO AO SYS_BASE

A3 A3 mdctrl (=$18020)

Error returns:

) N= N= Ne N2 Ns Ns NsNsNsNsNsS-

Routine to start up a microdrive
RETURNS IN SUPERVISOR MODE (if D3=1 to 8)

D3 preserved

orng microdrive out of range

tartup

cmp.1l #1,d3 ; legal microdrive?
blt.s i1l drve ; jump if not
cmp.w #8,d3 ; legal microdrive?
bgt.s i1l drve ; jump if not
move.l (sp)+,as ; A3=return address
moveq #sms.info, do ; get system variables
trap #do.sms2 ; get system variables
trap #0 ; supervisor mode
move.l a3, -(sp) ; 'return' the return address
moveq #3$10, dO ; microdrive mode
bsr sys_wser ; wait for RS232 to complete
or.w #$0700, sr ; shut out rest of world
move.1l d3, d1 ; d1 is microdrive to be started
move.1l #pc_mctrl, a3 ; control register
bsr md_selec ; start it up
moveq #0,do ; no problems
rts ; return

i1l drve
moveq #err.orng,de ; error!
rts

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 - 4

Routine to wind down (all!!!) microdrives
MUST BE CALLED IN SUPERVISOR MODE

Entry Exit

D1 D1 smashed
D2 D2 smashed
AO AO SYS_BASE

S Ns Ns NsNs N NsNe N

A3 A3 pointer to instruction after call to here
ind_dwn

moveq #sms.info, dO

trap #do.sms2 ; get system variables

move.l #pc.mctrl, a3 ; control register

bsr.s md_desel ; wind it down

bsr sys_rser ; re-enable RS232

move.l (sp)+,as ; A3=return address

move .w #0,sr ; enable interrupts, exit SV-mode

move.l a3, -(sp) ; return address

rts ; return

10.9. User and Supervisor Mode st

Motorola has implemented function code lines into their processors to allow for hardware memory protection.
This has never been used on a QL, and for the first two QL-Emulators for the ATARI's the machines had to
be modified to ignore the function code line which says whether an access is done in supervisor mode or
user mode - the hardware always thought the access is in supervisor mode. Generally, allowing accesses to
the system addresses in supervisor mode only is a good idea. This traps a program which tries to destroy
some vectors or modify the hardware settings by mistake or due to a programming fault.

Accesses to the system vectors ($000 to $400) have to be done in supervisor mode, otherwise the system
will generate a bus error. The only exception is an access to a QL utility vector which may be accessed in
both modes, e.g.

MOVE . W RI.EXEC, A2
JSR (A2)

Hardware registers should be modified by the supervisor only, therefore any access to ST hardware registers
($FFxxxxxx to $SFFFFFFFF) are allowed in supervisor mode only - no exception!

Again, doing it in user mode results in a bus error. The same applies for accesses to non-existent hardware -
a bus error is generated.

In general there should be no need to access non-existent hardware, as the facilities of the system can be
discovered by looking at system variables or the thing list, if a thing does not exist, then the hardware is
simply not available on this machine.

If a hardware address has to be accessed and it is not known whether the machine supports it or not, the
following routine could be used to do it.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -5

Call routine with own bus error handler ©1992 Jochen Merz

Call a user-supplied routine to access hardware addresses

and ignore internal bus error handler to find out if routine succeeds.
This routine must be called in supervisor mode!

The routine which is to be called must not modify d3-d4 and a3, but

it should reset dO on success or return any other error!

Entry Exit
D1 call parameter return parameter
D2 call parameter return parameter

D3+ preserved

A0 routine to be called return parameter
Al call parameter return parameter
A2+ preserved

Error returns: ERR.NIMP if bus error occured
any error returned by supplied routine

" N N® N® Ns N® Ns= N® Ns N= N= NE Ns N= N= NE N= N= N= Na

l4

cbus_reg reg d3-d4/a3-a4

ut_chuser
movem. 1 cbus_reg, -(sp)
move.w sr,d3 ; keep SR
or.w #$0700, sr ; no interrupts allowed
move.l sp, a3 ; keep SSP
move.1l $0008, d4 ; get standard bus error
lea buserr, a4
move.l a4, $0008 ; and insert new one
moveq #err.nimp, dO ; assume bus error
jsr (a0) ; call routine
buserr
move.1l a3, sp ; restore stack
move.1l d4, $0008 ; restore bus error
move .w d3, sr ; restore SR
movem. 1 (sp)+,cbus_reg
tst.1l do
rts

The routine at (A0) should first access the hardware register which is to be tested. If this fails, the routine is
left immediately. If not, it can do whatever it wants and return with an RTS.

10.10. The Interrupt System s

All I/O on the ATARI is done under interrupt. This means, disabling the interrupts for a longer period of time
should be avoided. At present, there are two different interrupt systems implemented: one for the old ST
models, which uses the VBLANK interrupt for calling the Poll loop. The disadvantage is, that it is unknown
whether the poll is called at 50, 60 or even 71 Hz, because this depends on the monitor which is connected.

On STE and TT models the poll is a steady 50 Hz interrupt, not related to the VBLANK. It is derived from a
200 Hz interrupt which generates a software level 1 interrupt.

The general rules are: try to avoid disabling the interrupts at all. If you have to, don't stay long in this mode
(Sometimes you have to, e.g. for accesses to the sound chip - there must be no interrupt between register
select and register read/write)! Never modify the interrupt system! Do not modify the masks in the SCU!

If you need a timer, the system may provide a timer. Check for a thing named "Timer" by trying to use it. If it
is in use, someone else is using the timer. If it is not found, the timer is not available at all. If it is successful
(it should be, generally spoken) then the Timer B of the MFP is yours. The Thing itself does nothing but
making sure that only one job can use the timer at a time, and it also disables the interrupt on force remove.
The server routine for the timer interrupt has to be inserted at $1A0. The timer can be programmed to any
rate which is possible, but you should refer to other documentation which gives detailed description of the
MFP.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -6

10.11. The MIDI Interrupt server isn

The MIDI interrupt server is invoked through the keyboard server. To locate the keyboard server, scan
through the polling linked list looking for 'ASTK' iod_pllk (8) bytes below the polling link (i.e. the base of a
standard linkage block). Then put the base address of the midi linkage at $a8 in the keyboard linkage and
the address of the MIDI server at $ac.

The MIDI server is called with A3 pointing to the MIDI linkage and DO0.b holding the contents of the MIDI
status register. (D0.b will always be negative - i.e. the interrupt bit will be set.) The server may smash
D0/D1/A0/A2/A3 and should return with RTE. Due to an error in old keyboard drivers, A3 is not saved on a
MIDI call. This means, that when you look for the 'ASTK' flag, this address should be kept and A3 should be
set to this linkage address just before the MIDI server returns with RTE.

10.12. Different Processors [STI[SMSQ/E]

You can find out which processor is running the system by having a look at the system variable SYS _PTYP
($A1). The high nibble contains the processor type, which gives a byte value of $0x for a 68000, $1x for a
68010, $2x, $3x and $4x for 68020, 68030 and 68040, respectively. It is a good idea to write a branch by
looking at this register for time-critical routines which could be improved by using the extended 68020+
register set.

The low nibble is reserved to show the presence of MMUs and Floating Point Coprocessors. It is, at present,
usually 0.

The different processors differ a bit in user-mode handling of some instructions. QDOS programs had a
number of privilege violation problems, but these are emulated now. The most common problem is the entry
to Supervisor mode, which is usually something like

move.w SR,Dx ; save previous processor mode
trap #0 ; into supervisor mode

supervisor mode code
move.w Dx,SR ; back to previous mode

Processors other than 68000s will generate a Privilege Violation exception on the first command, as it is not
allowed to read the status register in user mode! Therefore, all reads of the status register are emulated. As
all the other privilege violation cases will definitely lead to a program malfunction, the program loops in an
endless loop, waiting to be removed from the system. If you set a debugger on this program and display the
memory after the PC, then you will see a message "Priv V at (A0)". The offending instruction can be found at
the address to which AQO points.

10.13. Different Machines s, swsa

It might be very helpful to know on which machine the current programs are running. They all differ in
hardware, and behave different in some ways. The standard application usually does not need to know on
which machine it is running, but it could be very useful for some special applications to use hardware if it
exists to speed up things on some machines. In addition, it could be helpful to know which type of emulator is
installed in the machine. The system variable SYS_MTYP ($A7) gives details about the machine. At present,
the definition is as follows: Bits 4 to 0 contains the machine type, bits 7 to 5 the display type:

0 for all ordinary ST's without realtime-clock.
2 for Mega ST or ST's with realtime clock.
4 for Stacy.

6 for ordinary STE.

8 for Mega STE.

10 for GoldCard.

12 for SuperGoldCard.

16 for the Falcon 030.

17 for the Q40/Q60.

20 for SMSQmulator.

24 forthe TT.

28 for the QXL.

30 for QPC.

In addition, bit O is set if the machine contains a Blitter chip (ATARIs only) or a Hermes (QL).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -7

The display types are:

%00000000 Standard QL or the Futura emulator (we cannot tell whether it gives real MODES or not)
%01000000 The Extended 4 Emulator.

%10000000 The QVME emulator card.

%00100000 ATARI monochrome mode.

%11000000 VGA mode (e.g. QXL) or QL mode LCD.

%10100000 Aurora.

10.14. The ATARI DMA sn

The DMA is used to handle the floppy disk system and the ACSI port. You may gain access to the DMA by
trying to TAS the system variable SYS_DMIU ($A6). If this is set, you may use the DMA (e.g. to provide new
device drivers for streamers or CD ROMs connected to the ACSI port).

You should clear this flag as soon as possible.

As SMSQ supports more than one type of RAM, a key has been added to allow for the controlled allocation
of specific RAM. The ATARI TT may have Fast RAM in addition of the standard ST compatible RAM. This
Fast RAM cannot be used for Floppy Disk DMA and DMA from and to devices connected to the ACSI port
(this includes the ATARI LaserPrinter SLM 804 and SLM605).

It is possible to pass the characters "ACSI" in D3 on the SMS.ACHP call to make sure that only the type of
RAM is allocated wich supports direct memory access to the ACSI port.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 10 -8

11. Adding Peripheral Cards to the QL

Peripheral cards may be plugged into the expansion connector on the left-hand side of the QL.

There are two general categories of peripheral card for the QL: pure add-on memory cards, and other
peripheral cards. It is intended that only one pure add-on RAM card be plugged into the machine at any one
time.

It is allocated the address area between $40000 and $BFFFF; the add-on memory should be contiguous
from $40000 upwards. This allows for an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128kbytes, which is allocated the addresses $E0000 to
$FFFFF.

Other peripheral cards contain electronics for the devices being added, a small ROM containing the drivers
for the devices being added together with a code allowing the QL to detect that the card is present, and a 4-
bit comparator which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is to append the letter "L" to the
end of the signal name, as in DTACKL, VPAL etc. This takes the place of the overbar indication used in the
data sheets from most vendors.

11.1. Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL. Details of the connections
available at the connector may be found in the QL Concepts manual.

The connector inside the QL is a 64-way male DIN-41612 indirect edge connector, as found on standard
Eurocard modules. The connector on each add-on card should be the inverse version of this.

The VIN supply is in the region of +9V DC: the trough never falling below 7V. Up to 500 mA may be drawn
from this to power the card.

No add-on card should load any pin on the edge connector by more than two LSTTL loads. All add-on card
data bus output drivers should be a 74LS245 or equivalent, in terms of drive ability, and being tri-state.

11.2. CPU Interface

The CPU interface is totally memory-mapped onto the 68008's bus, control of the bus for use with the video
display controller being obtained by using the DTACKL signal to arbitrate the bus.

Memory access is entirely controlled by DSL, with ASL left unused. ASL should not be used to gate any add-
on hardware.

An unexpanded QL does not look at address lines A19 and A18. In peripheral cards which are to be added
to the QL, it is necessary for each card to disable the circuitry on the QL itself when that peripheral card
recognises its own address.

This is achieved by pulling signal DSMCL high before DSL goes low including buffering times. This is done
typically by using a fast NPN switching transistor (such as an MPS2369) connected as an emitter follower
with the emitter connected to DSMCL, the collector to +5V and the base to a logic signal. Note that the timing
for this operation is the most critical in most hardware interfaces to the QL, especially when the necessary
signals have been buffered.

Add-on cards must supply DTACKL or VPAL as required, to notify the CPU that they have recognised their
address.

All 68008 signals are available on the expansion connector to allow expansion to include coprocessors or
other peripherals.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 11 - 1

The following signals are outputs only: A0-A19, RDWL, ASL, DSL, BGL, CLKCPU, E, RED, BLUE, GREEN,
CSYNCL, ,VSYNCH, ROMOEH, FC0-2, RESETCPUL.

The following lines are inputs only, and should only be driven from open collector outputs: DTACKL, BRL,
VPAL, IPLOL, IPL1L, BERRL, EXTINTL, DBGL.

The data bus, DO-D7, is bidirectional.

The EXTINTL pin may be used to generate a level 2 external interrupt, which can be linked to a user task
(see Section 6.3). Note that the EXTINTL pin must not be negated until the QDOS startup mechanism is
complete, or there is a risk of the system hanging up.

11.3. Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards) are allocated the address space between $C0000
and $DFFFF. Each peripheral card, when selected, must disable DSMCL and assert VPAL or DTACKL as
required, for its own use. This address pace is split into eight slots of 16kbytes each; each peripheral card
should normally take only one block if a full set of eight peripheral cards is to be allowed to operate
concurrently.

There is a set of four select lines, SP0-SP3, appearing on the edge connector. The first card in an expansion
module, or a single card directly plugged into the QL, receives a value of zero on these four lines. Each slot
in an expansion module has a value one different from that in the other slots: this means that each card is
allocated 16kbytes of address space. The card select logic compares the values on A17-A14 against the
number coming in on the select lines in order to determine whether that card is selected. For the card to be
selected it must be the case that A14=SP0, A15=SP1, A16=SP2 and A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should sit in the bottom addresses of the
16kbyte block. The format of the lowest part of this ROM is specified in the next Section.

11.4. Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in ROM drivers by looking for the
characteristic Longword flag $4AFB0001 at the base of each location in which a ROM might be present. The
beginning of a plug-in ROM should be in the following format:

00 $4AFB0001 (flag to indicate ROM is present)

04 pointer to list of BASIC procedures and functions
06 pointer to initialisation routine

08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero then there will be no attempt to link
routines into S*Basic.

The list of BASIC procedures and functions is in the form used by SB.INIPR (see Section 16).

At start-up the machine will link in the additional BASIC procedures from the ROM, then call the initialisation
routine (in user mode) which must not modify A6, and finally must restore AO (the initial window ID), and A3,
the pointer to the ROM, on exit. Up to 128 bytes may be used on the user stack.

The description should be in the form of a character count (word) followed by the ASCII characters of the
device description(s) ending with the newline character (ASCII 10). It is recommended that the number of
characters should be limited to 36.

All code for device drivers must be position independent, since the addresses of the ROM and the

devices on the card will be dependent upon the position at which it has been plugged into a QL expansion
module. This allows multiple copies of the same add-on card to be used simultaneously.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 11 -2

12. Non-English Systems

There are three areas in which non-English QLs may differ from English QLs: the video, the keyboard, and
the character set for serial communications.

The version codes for non-English QLs are adjusted appropriately to contain a character identifying the
country. In the version code returned by SMS.INFO, this character replaces the decimal point; in the string
returned by the S*Basic VERS$ function, the character is added on at the end, producing a string three
characters long for non-English QLs. Example:

1G13 MGG

12.1. Video

This is different for countries where the television system is NTSC, which permits the use of fewer raster
lines than PAL. In QLs for such countries, the following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used; this is the same system as is used on
the English QL. The full 512x256 pixel display is available, and the default windows and character size are
the same as for the monitor mode on an English QL.

For TV operation, a 60Hz 524-line non-interlaced system is used in which the number of raster lines
available is limited to 192. In order to ease the task of software conversion, an alternate display font is
provided which allows a 6x8 character square instead of the usual 6x10. This ensures approximately the
same number of visible rows of text on both PAL and NTSC QLs, at the cost of true descenders and reduced
vertical spacing. The default windows and graphics scaling for TV operation are different from those of the
English QL.

12.2. Non-English-language Keyboards

The keyboard layout for most European countries will be different from the English layout. This difference
should be largely transparent to applications software, since the "QL ASCII" codes contain all the characters
necessary for the European countries in question, and the codes generated are independent of the keyboard
layout and hence of the actual key depressions required to generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which draws pictures of keys in certain places will certainly produce an incorrect drawing
if the location of those keys has changed between countries.

2. The keyrow function (or SMS.HDOP trap) refers to the physical position of the keys, not to their
logical meaning. For example, a test on an English QL for the letter "Q" using keyrow will turn into a
test for the letter "A" on a French QL which has an AZERTY keyboard.

3. An instruction to "hit any key" will not be strictly accurate for a country which employs non-spacing
diacriticals, where the keypress of an accent character does not generate a code until the character
to be accented is pressed. The length of the type-ahead buffer in the IPC will be apparently reduced
in such cases.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 12 - 1

12.3. Character Set ot sms2] [smsq]

The English character set is available in all countries. However, in non-English countries, the character set
for serial communications may (optionally) be translated into a "local" character set.

A further option allows the user to specify his own translation table, since it is anticipated that a number of
countries will have several standards (i.e., no standards at all).

The trap SMS.TRNS is used to set up user-supplied translation tables for the serial communications (serial
and parallel printer ports). In addition, a language-dependant table for the error-messages may be supplied.

The simple translation exchanges a character code against another one. The character may optionally be
replaced by three characters, using a second table.

The format of the translation table is as follows:

base of table

word $4AFB flag

word table1-base_of table relative pointer to first table

word table2-base_of table relative pointer to second table
table1

256 bytes 1 to 1 character translation
table2 byte number of translations or 0

for every translation ...:
byte character to be translated

3 bytes three replacement characters

If the first pointer is zero, no translation is being performed. The second table is only used for output.

The message table, which may be optionally supplied, has to be in the following format:

base
word $4AFB flag
word err_nc-base rel. pointer to 'not-complete' message
word err_ijob-base rel. pointer to 'invalid job' message

all error messages

word err_isyn-base rel. pointer to 'bad line' message
word atline-base * message 'At line'
word sectors-base message ' sectors'
word F1_F2-base message 'F1 .. monitor'
'F2.. TV
word copyright-base * message 'C1983 Sinclair Research Ltd'
word dur_when-base message 'during WHEN processing'
word procclr-base message 'PROC/FN cleared'
word days-base * days 'SunMonTueWedThuFriSat'
word months-base * months 'JanFebMar .." etc

All messages except the days and months have to be in standard string format.
All messages except those marked with * should end with newline (ASCII 10).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 12 - 2

12.4. Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic, etc., require special treatment.
No general scheme has been devised for making software transportable to these countries, and the
implementation means will be specific to each country.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 12 -3

13. System Traps

Trap #1 D0=$18 SMS.ACHP

Allocate common heap area

Call parameters Return parameters

D1.L Number of bytes required D1.L Nr. of bytes allocated *
D2.L Ownerjobid D2 ?77?

D3 0 or "acsi" D3 7?77

D4+ All preserved

AO AO Base address of area
A1 A1 7??
A2 A2 7??
A3 A3 7??

A4+ All preserved

Error returns (Z flag is not always set correctly):
IMEM Out of memory

IJOB Job does not exist

This trap is a specific example of the general heap allocation mechanism described in Section 4.1 and
accessible using SMS.ALHP.

ATARI TT (or similar machines with ST RAM and Fast RAM) only: If D3 is passed as "ACSI", then memory is
allocated in ST compatible RAM, not in Fast RAM [SMSQ].

* The number of bytes allocated as returned in D1 includes the bytes necessary for the heap header. It does

not correspond to the number of bytes that may be used in the heap (which is smaller than the number
returned in D1).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 - 1

Trap #1 D0=$0A SMS.ACJB
Activate job

Call parameters Return parameters

D1.L Jobid D1.L Jobid

D2.B Priority D2 Preserved

D3 Timeout (0 or -1) D3 Preserved
D4+ All preserved

AO AO Base of job ctrl area

A1 A1 Preserved

A2 A2 Preserved

A3 A3 Preserved if d3=0
A4+ All preserved

Error returns:

IJOB Job does not exist

NC Job already active

This trap activates a job in the transient area. Execution commences at the start address defined when the
job was created.

If the timeout is zero then the execution of the current job continues, otherwise the current job will be

suspended until the job activated is completed. The trap will then return with the error code (if any) from that
job.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 -2

Trap #1 D0=$0C SMS.ALHP

Allocate an area in a heap

Call parameters Return parameters
D1.L Length required D1.L Length allocated
D2 D2 ?77?

D3 D3 ?77?

D4+ All preserved

A0 pointer to pointer to free space A0 Base of area allocated
A1 A1 ?77?

A2 A2 ?77?

A3 A3 ???

A6 Base address A6 Preserved

Error returns:

IMEM No free space large enough

Two trap entries are provided for user heap management where this is required to be atomic. A6 is used as a
base address for both this call and for SMS.REHP so that A0 (and A1) is an address relative to A6. See
section 4.1 for details of the heap mechanism.

Trap #1 D0=$16 SMS.AMPA
Allocate BASIC program area

Call parameters Return parameters

D1.L Number of bytes required D1.L Number. of bytes allocated
D2 D2 ???

D3 D3 ??7?

D4+ All preserved

AO AO ?77?
A1 A1 ?77?
A2 A2 ???
A3 A3 ??7?
A6 Base address A6 New base address
A7 User stack pointer A7 New stack pointer

Error returns:

IMEM Out of memory

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13-3

Trap #1 D0=$0E SMS.ARPA

Allocate resident procedure area

Call parameters Return parameters
D1.L Number of bytes required D1 ?77?
D2 D2 ?77?
D3 D3 2?7

D4+ All preserved

AO AO Base address of area
A1 A1 ?77?
A2 A2 ?77?
A3 A3 ??7?

A4+ All preserved

Error returns:
IMEM Out of memory

NC Unable to allocate (TRNSP area not empty)

This trap should only be invoked when the transient program area is empty.

Trap #1 D0=$15 SMS.ARTC

Adjust Real-Time clock

Call parameters Return parameters
D1.L Adjustment in seconds D1.L Time in seconds
D2 D2 ?77?

D3 D3 ??7?

D4+ All preserved

A0 A0 ?7??
A1 A1 Preserved
A2 A2 Preserved

A3+ All preserved

As setting the clock takes a significant time, no adjustment is made if a call is made to adjust the clock and
D1=0.

Time starts at 00:00:00, 1. January 1961.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13-4

Trap #1 D0=$2F SMS.CACH (susq

Turn Cache on or off

Call parameters Return parameters
D1.L 1 for Cache on D1 1 = Cache on,
0 for Cache off 0 = Cache off

-1 to read current cache setting

Error returns:

Always okay

No other value than 0 or 1 should be used to set the cache, to allow for future cache control strategies.
To read the current cache setting, use -1.

For Motorola 68000 processors, it always returns 0.

Trap #1 D0=$12 SMS.COMM
Set the Baud rate

Call parameters Return parameters
D1.W Baud rate D1 ?77?

D2 D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 Preserved

A1 A1 Preserved
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

IPAR Non recognised baud rate

For a standard QL, the baud rate supplied in D1 is applied to both serial ports.

For extended Systems (e.g. Hermes) refer to the specific documentation supplied with the extension.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13-5

Trap #1 D0=$01 SMS.CRJB

Create a job in transient program area

Call parameters Return parameters
D1.L Owner Job ID D1.L JobID

D2.L Length of code (bytes) D2 Preserved
D3.L Length of data space D3 Preserved

D4+ All preserved

A0 A0 Base of area allocated
A1 Start address or 0 A1 Preserved
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:
IMEM Out of memory

IJOB Noroom in job table or d1 is not a job

This trap allocates space in the transient program area, and sets up a job entry in the scheduler tables. This
does not invoke the job and the only initialisation is that two words of 0 are put on the stack.

The program itself would normally be loaded, by another job, into the space allocated, after this system call.
The stack pointer saved in the job control area points to two zero words on the stack (at the highest
addresses in the job's data area); if channels are to be opened for the job, or a command string is to be

passed to the job then this can be done before the job is activated.

If D1 is O (i.e. owned by the system), the new job is independent, if D1 is negative, it is owned by the calling
job.

In QDOS and in versions of SMSQ/E before 3.24, care should be taken that the parameters passed in D2
and D3 are both even before calling this trap. If they are not, the resulting job will most likely crash.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 -6

Trap #1 D0=$10

Set or read the display mode

Call parameters

D1.B key: -1read mode

0 mode is 4 colour
2 mode is 2 colour [SMS]
8 mode is 8 colour

Return parameters

D1.B

12 mode is 16 colour [Thor XVI]

D2.B key: -1 read display

0 monitor
1625-line TV
2 525-line TV

D3

A0

A1

A2

A3

D2.B

D3
D4+

A0
A1
A2
A3
A4

Display mode

Display type

Preserved
All preserved

?7?7?
Preserved
Preserved

Preserved
?7?7?

SMS.DMOD

This call is used to set or read the current display mode.

It is treated as a manager trap as it affects all the displayed windows.

If a call is made to set the screen mode, then all the windows on the screen are cleared and the character

sizes may be adjusted.

Obviously, there are serious risks involved in calling this trap to set the mode when there are jobs in the

machine accessing the screen.

For a SMS machine or Extended4-Emulator, this trap only clears the windows of the calling job, so that the

windows of other jobs are not affected.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13 -7

Trap #1 D0=$07 SMS.EVX

Set the per-job pointer to trap vectors

Call parameters Return parameters
D1.L JobID D1.L JobID

D2 D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 A0 Base of job
A1 Pointer to table A1 ?77?

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

When a routine in the table is entered as a result of an exception, the CPU is in supervisor mode.
The routine should return with an RTE command (not RTS).

Any registers used must be saved and restored.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 -8

Trap #1 D0=$35 SMS.FPRM (smsq;
Find Preferred Module

Trap #1 D0=$31 SMS.LENQ smsq
Language Enquiry

Trap #1 D0=$30 SMS.LLDM [SMSQ]
Link in Language Dependent Module

Trap #1 D0=$32 SMS.LSET (susq
Language Set

Trap #1 D0=$34 SMS.MPTR [SMSQ]
Find Message Pointer

Trap #1 D0=$33 SMS.PSET [SMSQ]
Set Printer Translate

For details on these trap calls, please refer to Section 19 "Language handling in SMSQ".

Trap #1 D0=$05 SMS.FRJB

Force-remove job from transient program area

Call parameters Return parameters
D1.L JobID D1 7?7
D2 D2 ??7?
D3.L Error code D3 7

D4+ All preserved

A0 A0 ???
A1 A1 ?7??
A2 A2 ?7??
A3 A3 7?7

A4+ All preserved

Error returns:
IJOB Job does not exist

This trap inactivates a complete job tree and deletes all jobs in it. If D1 is set to -1 then the current job is
removed.

Neither of the traps SMS.FRJB or SMS.RMJB to remove jobs can remove job 0. Neither of these traps are
guaranteed to be atomic.

If there is a job waiting on completion of any job removed, this is released with DO set to the error code (see
SMS.ACJB D0=$0A).

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13-9

Trap #1 D0=$06 SMS.FRTP

Find largest contiguous free space that may be allocated in transient program area

Call parameters Return parameters

D1 D1.L Length of space found
D2 D2 ?77?

D3 D3 2?7

D4+ All preserved

A0 AO 7?7
A1 A1 ?77?
A2 A2 ?77?
A3 A3 ???

A4+ All preserved

Trap #1 D0=$11 SMS.HDOP

Send a command to the IPC

Call parameters Return parameters
D1 D1.B Return parameter
D2 D2.L Preserved
D3 D3 Preserved
D5 2?7
D7 ??7?
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to command A3 Preserved

A4+ All preserved

This trap sends a command to the IPC.

A command sent to the IPC is a nibble (4 bits of a byte) followed by a stream of nibbles or bytes being the
parameters of the command; some information may then be returned from the IPC.

The command format for SMS.HDOP is a header describing the command to be sent, followed by the
parameters to be sent, followed by a byte indicating whether a reply is expected.

The IPC communication is completely unprotected and the command must not contain any errors or else the
entire machine will hang up. IPC communications is a very slow process and excessive use of the IPC, for
example: polling all rows of the keyboard - the cursor keys have been organised to all be in one row, will
cause very high processor overheads.

The command format allows 0, 4 or 8 bits to be transferred from each byte in the parameter block.
This is encoded in 2 bits:

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 -10

00 Send least significant 4 bits
01 Send nothing
10 Send all 8 bits
11 Send nothing.

The complete command format is:

1 byte The IPC command nibble in the Is 4 bits
1 byte The number of parameter bytes to follow
1 long word Containing the codes for the amount of each parameter byte to be sent in reverse order:

Bits 1,0 the amount of first byte to send

Bits 3,2 the amount of the second byte etc...
n bytes The parameter bytes
1 byte Length of reply encoded in bits 1,0

Most of the IPC commands are for use by the operating system and any attempt by application programs to
use these is liable to cause loss of data or worse.

There are three commands for the IPC which may be used by applications programs:

$09 Read a row of the keyboard, 1 parameter
4 bits The row number
8 bits Reply

$0A Initiate sound, 8 parameters

8 bits Pitch1

8 bits Pitch2

16 bits Interval between steps

16 bits Duration

8 bits Top 4 bits: Step in pitch

Lower 4 bits: Wrap

8 bits Top 4 bits: Randomness of step
Lower 4 bits: Fuzziness

No reply

$0B Kill sound, no parameters, no reply.

An example of initiate sound is the following line, which is the data for a "siren-type" sound:

sirene
DC.B $%a ; command nibble
DC.B 8 ; number of parameter bytes
DC.L $0000aaaa ; parameters all 8 bit
DC.B $01,$14, $c8, $00, $ff, $7f, $10,0 ; parameters
DC.B 1 ; no reply

This is equivalent to the S*Basic command:

BEEP HEX('7FFF'),1,HEX('14'),HEX('00C8'),1,0,0,0

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 - 11

Trap #1 D0=$00

System information

Call parameters
D1
D2
D3

A0
A1
A2
A3

Return parameters

D1.L Current Job ID

D2.L ASCII OS version (n.nn)
D3 Preserved

D4+ All preserved

AO Pointer to system Variables

A1 Preserved
A2 Preserved
A3 Preserved
A4+ All preserved

SMS.INFO

This trap should always be used as a means of obtaining the base address of the system variables as well
as ensuring that the operating system version supports the features you wish to use. This trap always

succeeds.

Trap #1 D0=$02

Information on a job

Call parameters

D1.L Jobid

D2.L Job at top of tree
D3

A0
A1
A2
A3

Error returns:
IJOB Job does not exist

Return parameters

D1.L Nextjob in tree

D2.L Owner job

D3.L MSB -ve if suspended
LSB priority

D4+ All preserved

A0 Base address of job
A1 7?7?

A2 Preserved

A3 Preserved

A4+ All preserved

SMS.INJB

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs.

On each call D2 should be the ID of the job at the top of the tree; to scan a complete tree, the trap is made
with D1 being the return value of the previous call. When the tree has been completely scanned D1 is

returned equal to zero.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13 -12

Trap #1 D0=$2E
Set IO Priority

Call parameters
D1
D2.W priority to set

Error returns

Always okay

Return parameters

D1
D2

preserved

preserved

SMS.IOPR (susq;

The I/O priority sets the priority of the 1/O retry operations.

In effect, this sets a limit on the time spent by the scheduler retrying 1/O operations.

A priority of one sets the I/O retry scheduling policy to the same as QDOS, thus giving a similar level of

response but with a higher crude performance.

A priority of:
2 will give QDOS levels of response, better response under load.
10 for example, will give a much better response under load but degraded performance.

32767 will give maximum response, the performance depends on the number of jobs waiting for input

(default SMSQ setting).

Call parameters

D0=$1E Link a scheduler loop task

D0=$20 Link an 1O device driver

Return parameters

Trap #1 DO0=$1A Link an external interrupt service routine

D0=$1C Link a polling 50/60 Hz service routine

SMS.LEXI
SMS.LPOL
SMS.LSHD
SMS.LIOD

D0=$22 Link a directory device driver into the operating system SMS.LFSD

D1 D1 Preserved
D2 D2 Preserved
D3 D3 Preserved
D4+ All preserved

AO Address of link AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3 Preserved
A6 A6 Preserved

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 - 13

Trap #1 D0=$19 SMS.RCHP
Release common heap area
Call parameters Return parameters
D1.L D1 ?77?
D2.L D2 ???
D3 D3 ??7?
D4+ All preserved
A0 Base of area to be freed A0 ?77?
A1 A1 ?77?
A2 A2 ???
A3 A3 ??7?
A4+ All preserved
Please refer to Section 2.1.4 for an explanation of the common heap.
Trap #1 D0=$0D SMS.REHP

Link a free space (back) into a heap

Call parameters

D1.L Length to link in
D2

D3

AQ Base of new space

A1 Pointer to Pointer to free space
A2

A3

A6 Base address

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3
A6

?7??
?7??
7?7

All preserved

???
?7??
?7??
7?7

Preserved

A6 is used as a base address for this call and for SMS.ALHP, so that A0 (and A1) is an address relative to

AG.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13 - 14

Trap D0=$1B Remove an external interrupt service routine SMS.REXI
#1
D0=$1D Remove a polling 50/60 Hz service routine SMS.RPOL
D0=$1F Remove a scheduler loop task SMS.RFSD
D0=%21 Remove an 10 device driver SMS.RIOD
D0=$23 Remove a directory device driver from the operating system SMS.RFSD

Call parameters

Return parameters

D1 D1 Preserved

D2 D2 Preserved

D3 D3+ All preserved
A0 Address of link A0 Preserved

A1 A1 ?77??

A2 A2 Preserved

A3 A3 Preserved

Trap #1 D0=$04 SMS.RMJB

Remove job from transient program area

Call parameters
D1.L Jobid
D2

D3.L Error code

A0
A1
A2
A3

Error returns:
IJOB Job does not exist

NC Job not inactive

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3
Ad+

?77?
?77?
?77?

All preserved

?77?
?77?
?77?
?77?

All preserved

This trap removes a job (and its subsidiaries) from the transient program area.

Only inactive jobs may be removed.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13- 15

Trap #1 D0=$17

Release BASIC program area

Call parameters

D1.L Number of bytes to release
D2

D3

A0
A1
A2
A3
A6 Base address

A7 User stack pointer

SMS.RMPA

Return parameters

D1.L
D2
D3
D4+

A0
A1
A2
A3
A6
A7

Number of bytes released
?77?
???

All preserved

?2??
?2?7?
?2??
2?7
New base address
New stack pointer

Trap #1 D0=%$13

Read real-time-clock

Call parameters
D1
D2
D3

AO
A1
A2

SMS.RRTC

Return parameters

D1.L
D2
D3
D4+

A0
A1
A2
A3+

Time in seconds
?7??
Preserved

All preserved

?7??
Preserved
Preserved

All preserved

The time returned in D1 is the number of seconds since 00:00 1 January 1961.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13- 16

Trap #1 D0=$38

Shrink allocation in common heap

Call parameters

D1.L New size required
D2

D3

AO Base address of area
A1
A2
A3

SMS.SCHP susq;

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3
Ad+

Error returns (z flag is not always set correctly):

IJOB Job does not exist

New size retained
27?7
7?7

All preserved

Base address of area
??7?
?2?7?
??7?

All preserved

This trap can be used to link part of a heap allocation back into the free space list.

The first part of the area, starting from the base address, stays the same and the following space which is

not required anymore is released.

This trap can be used to avoid unnecessary re-allocation and copying, in case too much memory is taken.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13 - 17

Trap #1 D0=$0B SMS.SPJB
Change job priority

Call parameters Return parameters
D1.L Jobid D1.L Jobid

D2.B Priority (0 to 127) D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 A0 Smashed
A1 A1 Preserved

A2+ Preserved

Error returns:
IJOB Job does not exist

This call is used to change the priority of a job. If D1 is a negative word it will change the priority of the
current job.

Setting the priority to 0 will cause inactivation.
This call re-enters the scheduler and so a job setting its own priority to zero will be immediately inactivated.

Warning: Contrary to other QDOS documentation, AO is smashed - it does not return the base of the job
control area.

Trap #1 DO=$3A SMS.SEVT
Send Event to Job

Call parameters Return parameters
D1 Destination job id D1.I Destination job id
D2.B Event(s) to notify D2.b Preserved

D3+ All preserved

A0+ All preserved

Error returns:
IJOB Job does not exist

The events in D2 are sent the the destination job.

If the job is waiting for one of these events, the job is released, otherwise the all the events are pended.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13- 18

Trap #1 D0=$14

Set Real-Time-Clock

Call parameters

D1.L Time in seconds
D2

D3

AO
A1
A2

SMS.SRTC

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3+

Time in seconds
27?7
7?7

All preserved

???
Preserved
Preserved

All preserved

The value in D1 has to be the number of seconds since 00:00 1 January 1961 to set the new time and date.

Trap #1 D0=$08

Suspend a job

Call parameters

D1.L JobID

D2

D3.W Timeout period

A0
A1 Address of flag byte or 0
A2
A3

Error returns:

IJOB job does not exist

SMS.SSJB

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3
Ad+

Job ID
Preserved
Preserved

All preserved

Base of job ctrl area
Preserved
Preserved
Preserved

All preserved

A job may be suspended for an indefinite period, or until a given time has elapsed. The timeout period is up
to ($7FFF times the frame time). If the timeout period is specified as -1, then the suspension is indefinite; no

other negative value should be used.

If the Job ID is a negative word, then the current job is suspended.

The flag byte is cleared when the job is released. If there is no flag byte, then A1 should be 0.

If the job is already suspended, the suspension will be reset. All jobs are rescheduled.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13- 19

Trap #1 D0=$24

Set translation table and error messages

Call parameters

SMS.TRANS (1ot sms2

Return parameters

D1 Pointer to translation table, -1 or 0 (or 1) D1 7?7

D2.L Pointer to message table, -1 or 0
D3

A0
A1
A2
A3

Error returns:
IPAR

D2 ??7?
D3 ?7??
D4+ All preserved

A0 ???
A1 ???
A2 27?7
A3 ?7??

A4+ All preserved

table has invalid format or is on odd address

This trap is supported from QDOS V1.10 onwards. If D1 or D2 are 0, then no translation is used and the
standard error messages are used. -1 leaves the values as it has been defined previously. If D1=1 then a
local translation table is used, depending on the language of the ROM (not in UK or US ROMs).

[SMSQ]: If D2 is not zero and it points to a message table with language code $4AFB, this address is used
for message group 0. The printer translate tables are then set according to the value in D1 (see SMS.PSET).

Trap #1 D0=$09

Release a job

Call parameters
D1.L JoblID
D2

D3

A0
A1
A2
A3

Error returns:

IJOB job does not exist

SMS.USJB

Return parameters
D1.L JobID
D2 Preserved

D3+ All preserved

A0 Base of job control area
A1 Preserved

A2 Preserved

A3+ All Preserved

After this call all jobs are rescheduled. The activity of jobs can be controlled by activation or by modification

of the priority levels. A job at priority level O is inactive, at any other priority level it is active.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 13 - 20

Trap #1 D0=$3B SMS.WEVT [smsq;

Wait for Event
Call parameters Return parameters
D2.B Event(s) to wait for D2.B Event(s) causing return
D3.W Timeout (-1 is forever) D3.W Preserved

D4+ All preserved

AO+ All preserved

Error returns: None

The job waits for one or more of the events in D2 or the timeout.

The events returned in D2 are removed from the job's pending event vector (event accumulator).

Trap #1 D0=%25 SMS.XTOP [SMSQ]

External Operation

The code which follows the TRAP #1 is executed as if it was part of a system call.

When this TRAP #1 is encountered, the registers are changed to A6 pointing to the system variables, A5
pointing to the stack frame (which contains D7.l, previous A5, previous A6) and the code is executed in
Supervisor mode.

The routine must finish in an RTS, which brings it back to user mode on return. It continues with the next
program line after the RTS.

CRJB

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 13 - 21

13.1.

Trap 1 Keys - numerical order with page reference

(Clicking on the page number will send you there)

SMS.INFO
SMS.CRJB
SMS.INJB
SMS.RMJB
SMS.FRJB
SMS.FRTP
SMS.EXV
SMS.SSJB
SMS.USJB
SMS.ACJB
SMS.SPJB
SMS.ALHP
SMS.REHP
SMS.ARPA
SMS.DMOD
SMS.HDOP
SMS.COMM
SMS.RRTC
SMS.SRTC
SMS.ARTC
SMS.AMPA
SMS.RMPA
SMS.ACHP
SMS.RCHP
SMS.LEXI
SMS.REXI
SMS.LPOL
SMS.RPOL
SMS.LSHD
SMS.RSHD
SMS.LIOD
SMS.RIOD
SMS.LFSD
SMS.RFSD
SMS.TRNS
SMS.XTOP
SMS.IOPR
SMS.CACH
SMS.LLDM

QDOS/SMS Reference Manual v. 4.8

$00
$01
$02
$04
$05
$06
$07
$08
$09
$0a
$0b
$0c
$0d
$0e
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1a
$1b
$1c
$1d
$1e
$1f
$20
$21
$22
$23
$24
$25
$2e
$2f
$30

get INFOrmation on SMS

CReate Job

get INformation on JoB

ReMove JoB

Forced Remove JoB

find largest FRee space in Tpa

set EXception Vector

SuSpend a JoB

UnSuspend a JoB

ACtivate a JoB

Set Priority of JoB

Allocate in HeaP

RElease to HeaP

Allocate in Resident Procedure Area
set or read the Display MODe

do a Hardware Dependent Operation
set COMMuncation baud rate etc.
Read Real Time Clock

Set Real Time Clock

Adjust Real Time Clock

Allocate space in S*Basic area
Release space in S*Basic area
Allocate space in Common HeaP
Release space in Common HeaP
Link in EXternal Interrupt action
Remove EXternal Interrupt action
Link in POLIed action

Remove POLled action

Link in ScHeDuler action

Remove ScHeDuler action

Link in 10 Device driver

Remove |O Device driver

Link in Filing System Device driver
Remove Filing System Device driver
Set translation and error messages
eXTernal Operation [SMSQ]

IO PRiority [SMSQ]

CACHe handling [SMSQ]

Link in Language Dependent Module [SMSQ]

31.01.2024

12
6
12
15
9
10
8
19
20
2
18
3
14
4
4
10
5
16
19
4
3
16
1
14
13
15
13
15
13
15
13
15
13
15
20
21
13
5
9/ Section 19

Section 13 - 22

SMS.LENQ
SMS.LSET
SMS.PSET
SMS.MPTR
SMS.FPRM
SMS.SCHP
SMS.SEVT
SMS.WEVT

$31
$32
$33
$34
$35
$38
$3a
$3b

Language ENQuiry [SMSQ]

Language SET [SMSQ]

Printer translate SET [SMSQ]

find a Message PoinTeR [SMSQ]

Find PReferred Module [SMSQ]

Shrink alloaction in common heap [SMSQ]
Send event to job [SMSQ]

Wait for event [SMSQ]

QDOS/SMS Reference Manual v. 4.8 31.01.2024

9/ Section 19
9/ Section 19
9/ Section 19
9/ Section 19
9/ Section 19
17
18
21

Section 13 - 23

14. /O Management Traps

Trap #2 D0=$02 IOA.CLOS

Close a channel

Call parameters Return parameters
D1 D1+ All preserved
A0 Channel id A0 ?77?
A1 A1 ???
A2 A2+ All preserved

Error returns:

ICHN channel not open

Trap #2 D0=$06 IOA.CNAM smsq

Fetch channel name

Call parameters Return parameters
D1 D1 Preserved
D2.W Max length of string D2 Preserved

D3+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to buffer A1 Device name (QDOS-string)
A2 A2 Preserved

A3+ All preserved

Error returns:
ICHN Channel not open
IPAR Buffer too small

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 14 - 1

Trap #2 D0=$04

Delete a file

Call parameters

D1.L Job ID (as file openl!!)
D2

D3

A0 Pointer to file name
A1
A2

Error returns:

IMEM Out of memory
FDNF File or device not found

INAM Bad file or device name

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3+

ICHN Not opened - too many channels open

?7?

Preserved
?7?7?

All preserved

?77?
77?
?7??

All preserved

IOA.DELF

A0 should point to a standard QDOS string containing the full name of the device and file.

NOTE: not all device drivers/OSes support this TRAP#2 call. In this case, an IOA.OPEN call with D3 set to -1

should be used.

SMSQ/E checks whether a device driver is specially marked as being compatible with the IOA.DELF
TRAP#2 call, if not it will use the IOA.OPEN call with D3 set to -1. DV3 drivers linked in via the standard
dv3_link subroutine and a standard table of values, will be marked as being compatible with the IOA.DELF
TRAP#2 call, and the deletion will be handled internally by SMSQ/E, without the device driver specifically

having to take care of this.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 14 - 2

Trap #2 D0=$03

Format a sectored medium

Call parameters
D1
D2
D3

A0 Pointer to medium name
A1
A2

Error returns:

IMEM out of memory
FDNF drive not found
FDIU drive in use
FMTF format failed

Return parameters

D1.W Number of good sectors
D2.W Total number of sectors

D3
D4+

AO
A1
A2+

Preserved
All preserved

?77?
?77?

All preserved

IOA.FRMT

The medium name is in the form of a character count (word) followed by the ASCII characters of the drive

name.

The drive number, underscore then up to 10 characters for the medium name.

For example,

dcw 13
dc.b 'FLP1_November'

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 14 -3

Trap #2 D0=$01 IOA.OPEN

Open a channel

Call parameters Return parameters
D1.L Jobid D1.L Jobid

D2 D2 Preserved
D3.L Open-key D3 Preserved

0 Old (exclusive) file or device

1 Old (shared) file

2 New (exclusive) file

3 New (overwrite) file

4 Open directory

-1 Delete file
AOQ Pointer to file name AOQ Channel id
A1 A1 ?2?7?
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

ICHN Not opened - too many channels open
IJOB Job does not exist

IMEM Out of memory

FDNF File or device not found

FEX File already exists

FDIU Drive in use

INAM Bad file or device name

IPAR Invalid open-key

If the Job ID is passed as a negative word (for example -1) then the channel will be associated with the
current job.

The file or device name should be a string of ASCII characters. This string is preceded by a character count
(word), AO should point to this word (on a word boundary).

The error return "INAM" indicates that the name of the device has been recognised but that the additional
information is incorrect, for example CON_512y240.

The open-key is usually ignored for access to any non-shared device: in practice, this is anything other than
a file store. If the error code is non-zero then no channel has been opened.

In order to open an input pipe, D3.L must hold the output pipe channel ID instead of an open key. Note that
New (overwrite) is not currently supported for Microdrive files on all versions of QDOS.

Note also that most device drivers, when requested to open a directory will, if no such directory exists, open
the next existing higher level directory. Most QL software expects this behaviour.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 14 -4

Trap #2 D0=$05

Set new owner of open channel

Call parameters
D1.L New owner job-id
D2

A0 Channel id

Error returns:
ICHN Channel not open
IJOB Job does not exist

Return parameters
D1 Preserved
D2 Preserved
D3+ All preserved

A0 Preserved

A1 + all preserved

IOA.SOWN ssq;

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 14 -5

14.1. Trap 2 Keys - numerical order with page reference

IOA.OPEN $01 OPEN IOSS channel
IOA.CLOS $02 CLOSe I0SS channel
IOA.FRMT $03 FoRMaT medium on device
IOA.DELF $04 DELete file from device
IOA.SOWN $05 Set OWNer of channel [SMSQ]
IOA.CNAM $06 fetch Channel NAMe [SMSQ]

= N W =~ b

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 14 - 6

15. /O Access Traps

Every I/O trap which is not supported by the system (e.g. IOF.XINF without level 2 device drivers) returns the
error IPAR.

Trap #3 D0=$04 IOB.ELIN

Edit a line of characters (console driver only)

Call parameters Return parameters

D1 Cursor/line length D1 Cursor/line length
D2.W Length of buffer D2 Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to end of line A1 Pointer to end of line
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:
NC not complete
ICHN channel not open
OVFL buffer overflow

This is similar to the fetch line trap, except that the pointer A1 is always to the end of the line, D1 contains
the current cursor position in the MSW and the length of the line in the LSW and the line (from the current
cursor position) is written out to the console when the call is made.

The line should not have a terminating character when the trap is made, but the terminating character will be
included in the character count on return.

Enter (ASCII 10), cursor up or cursor down are all acceptable terminating characters.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 1

Trap #3 D0=$01 IOB.FBYT
Fetch a byte
Call parameters Return parameters
D1 D1.B Byte fetched
D2 D2 Preserved
D3.W Timeout D3.L Preserved
D4+ All preserved
AOQ Channel id AO Preserved
A1 A1 ??7?
A2 A2 Preserved
A3 A3 Preserved
A4+ All preserved
Error returns:
NC not complete
ICHN channel not open
EOF end of file
QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 -2

Trap #3 D0=$02 Fetch a line of characters terminated by ASCII <LF>* |OB.FLIN

D0=$03 Fetch a string of bytes IOB.FMUL
Call parameters Return parameters
D1 D1.W Number of bytes fetched
D2.W Length of buffer (+ve word) D2 Preserved but upper word 0
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel id AO Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3+ Preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

BFFL Buffer full

The character count of a fetch a line trap includes the linefeed character ASCII $0A, if found. The length in
D2 must be a positive word (i.e. no more that $7FFF). NOTE : if no LF can be found within the length of the
buffer, the trap should return error ERR.BFFL (not OVFL as previously mentioned). Whilst the number of
bytes fetched is returned in D1.W, the upper word of D1 is NOT preserved.

* Note : For IOB.FLIN, many SMSQ/E level 3 device drivers (mostly WIN and FLP) will convert a <CR><LF>
to a simple <LF>.

Trap #3 D0=$05 IOB.SBYT
Send a byte

Call parameters Return parameters

D1.B Byte to be sent D1 ?77??

D2 D2 Preserved

D3.W Timeout D3 + All preserved

A0 Channel ID A0 Preserved

A1 A1 ?7??

A2 A2 Preserved

A3 A3 Preserved

A4+ All preserved
Error returns:
NC Not complete
ICHN Channel not open
DVFL Drive full
ORNG Off window/paper etc.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-3

Trap #3 D0=$07 I0B.SMUL
Send a string of bytes

Call parameters Return parameters

D1 D1.W Number of bytes sent
D2.W Number of bytes to be sent (+ve word) D2.W Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

AQ Channel ID AQ Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
DVFL Drive full

Please refer to Section 5.3.3 for details of the special treatment afforded to newlines on the console or
screen device. Note: the size of the number of bytes to be sent in D2 should be a positive word, i.e. no larger
than $7FFF. Whilst the number of bytes sent is returned in D1.W, the upper word of D1 is NOT preserved.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 -4

Trap #3 D0=$06 IOB.SUML [susarg

Send a string of untranslated bytes

Call parameters Return parameters

D1 D1.W Number of bytes sent
D2.W Number of bytes to be sent D2.W Preserved

D3 Timeout D3.L Preserved

D4+ All preserved

AO Channel id AO Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:
NC Not Complete
ICHN Channel not open

DVFL Drive full

Please refer to Section 5.3.3 for details of the special treatment afforded to newlines on the console or
screen device.

This trap is similar to IOB.SMUL ($07) but it does not translate the characters. Therefore, the setting of
translation tables is ignored as well as the parameter in the device open call (e.g. SERd, SERt, PARd,
PARt). A safe way of sending graphics data or control codes to the printer, as they will never be translated
into other byte patterns.

This trap is only available on SMSQ/E.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-5

Trap #3 D0=$00

Check for pending input

Call parameters Return parameters
D1 D1 ??7?

D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+

AO Channel ID AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

IOB.TEST

This trap is used to check for pending input on a channel. It does not read any data or modify the input

channel in any way.

This only works on a console device if D3=0 and the keyboard queue is already connected to the console.

Trap #3 D0=%$40

Check all pending operations on a file

Call parameters Return parameters
D1 D1 ?7?7?

D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 ?7?7?

A2 A2 Preserved
A3 A3+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

IOB.CHEK

This trap is used to check whether all of the pending operations have completed.

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 15-6

Trap #3 D0=$4C IOF.DATE (exmiipp2)

Set or read file date

Call parameters Return parameters
D1L -1 Read date D1.L Date set
0 Set date Date read
Date
D2B 0 Update date D2 Preserved
2 Backup date
D3.W Timeout D3 Preserved
AO Channel id AO Preserved
A1 A1 Preserved

Error returns:

Any I/O sub system errors

The update date of a file is usually set when a file which has been modified (including new copies of files) is
closed (or flushed for the first time).

To read the appropriate date of a file, the trap should be called with the long word value -1 in D1.

To set either the update date, or the backup date, of a file to the current date, the trap should be called with
the value 0 in d1.

A specific date may be set by calling the trap with required date in D1.

If the update date has been set by this trap, then the update date will not be re-set when the file is closed.
The backup date is not stored in the file itself, and may be updated even if the file is open for read only.
The date is a long word giving the date and time in seconds from the start of 1961.

This trap is not supported on native QLs without Toolkit Il and it is partially supported on earlier floppy disc
drivers. It should not be used on any other than Level 2 or 3 devices.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-7

Trap #3 D0=$41 IOF.FLSH
Flush buffer for this file

Call parameters Return parameters
D1 D1 7?7

D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

NC Not complete

ICHN Channel not open

When a write operation to a file is complete, the data written may still be in the slave blocks rather than on
the file.

For further details please see Section 5.2 on File I/O.

This call may be used to check that a file is in a known state.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-8

Trap #3 D0=$48 IOF.LOAD

Load a file into memory

Call parameters Return parameters

D1 D1 ?7??

D2.L Length of file D2 Preserved

D3.W Timeout (should be -1) D3+ All preserved

A0 Channel ID A0 Preserved

A1 Base address for load A1 Top address after load
A2 A2 Preserved

A3 A3 Preserved

A4+ All preserved
Error returns:

ICHN Channel not open

Files may be loaded into memory in their entirety with the file load trap. If the transient program area is used
for this, a Trap #1 must have been invoked to reserve the space before the file load trap is invoked. D3
should be set to -1 before this trap and the base address in A1 must be even.

Trap #3 D0=$45 IOF.MINF

Get information about medium

Call parameters Return parameters

D1 D1.L Empty / Good sectors
D2 D2 Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to 10 byte buffer A1

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

NC Not complete

ICHN Channel not open

The name of the medium, its capacity, and the available space may be obtained for a file or directory that is
open. The medium name is 10 bytes long and left justified. Any remaining bytes are filled with the space
character ($20).

The number of empty sectors is in the most significant word (MSW) of D1, the total available on the medium
is in the least significant word (LSW). A sector is 512 bytes.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-9

Trap #3 D0=$4D IOF.MKDR pp2;
Make directory

Call parameters Return parameters
D1L O D1 Preserved
D2 D2 Preserved
D3.W Timeout should be -1 D3 Preserved
A0 Channel ID A0 Preserved
A1 A1 Preserved

Error returns:

Any I/O sub system errors

The IOF.MKDR trap is called to convert the file into a directory.

The file itself should be empty. Any existing files which would, by virtue of their name, belong in the new
directory, are transferred into the directory. The trap will return a 'bad parameter' error if the file is not empty.

The file must have been opened with a READ/WRITE access key (OLD, NEW or OVER); after this call the
access mode of the file is changed to IOA.KDIR.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-10

Trap #3 D0=$42 IOF.POSA

Position file pointer absolute

Call parameters Return parameters
D1.L File position D1.L New file position
D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ?7?7?
A2 A2+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

If the position file pointer call is made for a direct sector access channel, a "special” file position flag can be
specified in D1:
IOFP.OFF $FOFFFOFF Returns the sector offset of the first physical sector of the current partition on
multiple-partition devices [SMSQ V2.77+], otherwise returns D1 unchanged

Trap #3 D0=$43 IOF.POSR

Position file pointer relative

Call parameters Return parameters
D1.L Offset to file pointer D1.L New file position
D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 7?7?
A2 A2+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

If a file positioning trap returns an off file limits error, then the pointer is set to the nearest limit, this being 0 or
end of file. The relative file positioning may, of course, be used to read the current file position.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 11

Trap #3

D0=$47

Read file header

Call parameters

D1
D2.W
D3.W

A0
A1
A2

Error re
NC
ICHN
OVFL

Buffer length

Timeout

Channel ID

Base of read buffer

turns:
Not complete
Channel not open

Buffer overflow

Return parameters
D1.W Length of header read

D2
D3.L
D4+

A0
A1
A2+

Preserved
Preserved

All preserved

Preserved
Top of read buffer
All preserved

IOF.RHDR

The read header call is provided so that a job can allocate the space for a load call as well as determining
the characteristics of a file. The buffer provided must be at least 14 bytes long, but should be minimum 16 for
Level 2 drivers. In the case of a trap to a pure serial device, the length of the header returned in D1 will be
spurious. The file pointer is such that position zero is the first byte after the header. Thus block boundaries
on standard directory driver files are at position 512*n-64.

Section 7 contains details about the format of a file header.

D1
D2
D3.W

AO
A1

Any I/O

Trap #3 D0=$4A

Rename file

Call parameters

Timeout

Channel id

Pointer to new filename (string)

Error returns:

sub system errors

IOF.RNAM exmjipp2;

Return parameters

D1
D2
D3

A0
A1

7?7?
Preserved
Preserved

Preserved
?7?7?

This call renames a file. The name should include the drive name:

e.g. 'FLP1_NE

W_NAME'

This trap does not work on every device, especially not on MDV on an unexpanded QL.

QDOS/SMS R

eference Manual v. 4.8

31.01.2024

Section 15-12

Trap #3 D0=%$49

Save an entire file

Call parameters

D1

D2. Length of file

D3.W Timeout (should be -1)

AO Channel ID

A1 Base address of file
A2

A3

Error returns:
ICHN Channel not open
DRFL Drive full

IOF.SAVE

Return parameters

D1
D2
D3.L
D4+

AQ
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved

Top address of file
Preserved
Preserved

All preserved

D3 should be set to -1 before this trap, and IOF.LOAD, and the base address in A1 must be even.

Trap #3 D0=%$46

Set file header

Call parameters
D1

D2

D3.W Timeout

A0 Channel ID

A1 Base of header definition
A2

A3

Error returns:

NC Not complete

ICHN Channel not open

IOF.SHDR

Return parameters
D1.W Length of header set

D2
D3.
D4+

A0
A1
A2
A3
Ad+

Preserved
Preserved
All preserved

Preserved
End of header definition
Preserved
Preserved

All preserved

This call sets the first 14 bytes of the file_header. The length of file will normally be overwritten by the filing
system. When a header is sent over a pure serial device, the 14 bytes of the header are preceded by a byte

$FF.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 15-13

Trap #3 D0=$4B IOF.TRNC (exmjop2;

Truncate file

Call parameters Return parameters
D1 D1 ??7?

D2 D2 Preserved
D3.W Timeout D3 Preserved
AO Channel ID AO Preserved
A1 A1 ??7?

Error returns:

Any I/O sub system errors

This call truncates a file to the current byte position. This trap does not work on every device, especially not
on MDV on an unexpanded QL.

Trap #3 DO=$4E IOF.VERS pp2

Set or read file version

Call parameters Return parameters
D1.L Read: -1 D1.L File version
Set: 0

Version: 1 to 65535

D2 D2 Preserved
D3.W Timeout D3 Preserved
A0 Channel ID A0 Preserved
A1 A1 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:
Any 1/O sub system errors

To read the file version number, this trap should be called with the long word value -1 in D1.
To preserve the file version number, this trap should be called with the value 0 in D1.

To set a specific version number the trap should be called with the version number 1 to 65535 as a long
word value in D1.

If this trap is called to set the version number, the version number will not be incremented when the file is
closed or flushed.

This trap is supported on Level 2 and 3 devices only.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15- 14

Trap #3 D0:$4F IOF.XINF [DD2]

Get extended information

Call parameters Return parameters
D1 0 D1 Preserved
D2 D2 Preserved
D3.W Timeout D3 Preserved
AO Channel ID AO Preserved
A1 Pointer to info buffer A1 Preserved

Error returns:

Any /O sub system errors

This call fetches extended filing system information in a block 64 bytes long.

IOI_NAME $00 String Up to 20 character medium name (null filled)
IOI_DNAM $16 String Up to 4 character long device name (e.g. Win)
I0l_DNUM $1C Byte Drive number

I0I_RDON $1D Byte Non zero if read only

IOI_ALLC $1E Word Allocation unit size (in bytes)

IOI_TOTL $20 Long Total medium size (in allocation units)
IOI_FREE $24 Long Free space on medium (in allocation units)
IOI_HDRL $28 Long File header length (per file storage overhead)
IOL_FTYP $2C Byte Format type (1=gdos, 2=msdos etc)
IOI_STYP $2D Byte Format sub-type

IOI_DENS $2E Byte Density

IOI_MTYP $2F Byte Medium type (ram=0, flp=1, hd=2, cd=3)
IOI_REMV $30 Byte Set if removable

I01_XXXX $31 $OF Bytes Set to -1

The number of allocation units required to store a file may be calculated as:
(file + header length + alloc unit size - 1) / (alloc unit size)
This trap is supported on Level 2 device drivers.

It should be called to find out whether the current device is Level 2 or not and to check which operations are
supported.

If this trap succeeds, all other filing system traps will be available.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-15

Trap #3 D0=$30

D0=$31
D0=$32
D0=$33
D0=$34
D0=$36

Call parameters

Draw dot

Draw line

Draw arc

Draw ellipse

Set graphics scale

Set graphics cursor position

Return parameters

D1 D1 ?7??

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Arithmetic stack pointer A1 2?7

A2 A2 Preserved
A3 A3 Preserved

Error returns:

NC

A4+ All preserved

Not complete

ICHN Channel not open

10G.DOT
IOG.LINE
I0G.ARC
I0G.ELIP
I0G.SCAL
I0G.SGCR

Plot a point, line, arc, ellipse, set scale or graphics cursor position. Expects parameters on the arithmetic
stack pointed to by (A1).

The first four traps (I0G.DOT, IOG.LINE, IOG.ARC and IOG.ELIP) draw various lines and arcs in the given

window. Any point on these lines which fall outside the window will not be plotted.

All six traps expect parameters on the arithmetic stack pointed to by (A1). The format of the parameters
required is as follows:

10G.DOT

IOG.LINE

$00(A1)
$06(A1)

$00(A1)
$06(A1)
$0C(A1)
$12(A1)

y-coordinate

x-coordinate

y-coord of finish of line
x-coord of finish of line
y-coord of start of line

x-coord of start of line

QDOS/SMS Reference Manual v. 4.8 31.01.2024

Section 15- 16

I0OG.ARC $00(A1) angle subtended by arc
$06(A1) y-coord of finish of line
$0C(A1) x-coord of finish of line
$12(A1) y-coord of start of line
$18(A1) x-coord of start of line

IOG.ELIP $00(A1) rotation angle
$06(A1) radius of ellipse
$0C(A1) eccentricity of ellipse
$12(A1) y-coord of centre
$18(A1) x-coord of centre

IOG.SCAL $00(A1) vy position of bottom line of window
$06(A1) x position of left hand pixel of window
$0C(A1) length of Y axis (height of window)

IOG.SGCR $00(A1) graphics x-coordinate
$06(A1) graphics y-coordinate
$0C(A1) pixel offset to right
$12(A1) pixel offset down

For all the graphics traps, the parameters on the A1 stack are floating point and the coordinates are specified
in relation to an arbitrary origin (default is 0,0) with an arbitrary scale.

The default is: height of window = 100 units.

The calling program must allocate at least 240 bytes on the A1 stack.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-17

Trap #3 D0=$35

Turn area flood on and off

Call parameters

Return parameters

I0G.FILL

D1.L Key: 0=end flood D1 ??7?
1=start or restart flood

D2 D2.L Preserved

D3.W Timeout D3.L Preserved
D4+ All preserved

AO Channel ID AO Preserved

A1 A1 ??7?

A2 A2 Preserved

A3 A3 Preserved
A4+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15- 18

Trap #3 DO=$2E IOW.BLOK

D0=$5C (8 bit palette) IOW.BLKP swvsas
D0=$5D (24 bit) IOW.BLKT iswsar
DO=$5E (native) IOW.BLKN swvsas

Fill rectangular block in window

Call parameters Return parameters
D1 Colour D1 7

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Base of block definition A1 ?27?7?
A2 A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

ORNG Block falls outside window

This trap fills a rectangular block of a window with the current ink colour, taking into account the mode set by
IOW.SOVA. The block definition is in the same form as a window definition. It is 4 words long: width, height,
X-origin and Y-origin. The origin is in relation to the window origin in which the block is to be drawn. This is a
fast way of drawing horizontal or vertical lines.

The colour to be set is in D1, the actual amount used depends on the mode : a byte for iow.blok and in
palette mode, the lower 3 bytes in 24 bit mode and a variable amount in native mode.

Note: The last three traps are only available under SMSQ/E.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15-19

Trap #3 D0=$0B IOW.CHRQ

Return the current window size and cursor position in character coordinates

Call parameters Return parameters
D1 D1 ?7??

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 Base of enquiry block A1 ?77?
A2 A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

The window size (X,Y) and cursor position (X,Y) are put into a 4 word enquiry block. The top left hand corner
of the window is cursor position 0,0. This trap activates the newline if pending in the window.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 20

Trap #3 D0=$20 Clear all of window IOW.CLRA

D0=$21 Clear top of window IOW.CLRT
D0=%$22 Clear bottom of window IOW.CLRB
D0=%$23 Clear cursor line IOW.CLRL
D0=$24 Clear right hand end of cursor line IOW.CLRR

Call parameters Return parameters

D1 D1 7??

D2 D2.L Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ???

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:
NC Not complete
ICHN Channel not open

The clear window traps can clear all or part of a window.

To clear a part of a window the cursor is used as a reference.

The clear operation consists of overwriting all the pixels in the designated area with paper colour.
The division between the top of the window and the bottom of the window is the cursor line.

The cursor line is neither the top nor the bottom of the window.

The cursor line is the whole height of the current character fount (either 10 or 20 rows).

The right hand end includes the character at the current cursor position.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 21

Trap #3 D0=$0F

Disable the cursor

Call parameters
D1
D2
D3.W Timeout

A0 Channel ID
A1
A2

Error returns:

NC Not complete

ICHN Channel not open

IOW.DCUR

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2+

?7??
Preserved
Preserved

All preserved

Preserved
?7?7?

All preserved

The call to suppress the cursor does not return an error if the cursor is already suppressed, as it merely

ensures that the cursor is in the desired state.

Trap #3 D0=$0C

Set the border width and colour

Call parameters
D1.B Colour
D2.W Width
D3.W Timeout

A0 Channel ID
A1
A2

Error returns:

NC Not complete

ICHN Channel not open

IOW.DEFB

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2 +

7?7?
Preserved
Preserved

All preserved

Preserved
?7?7?

All preserved

This call redefines the border of a window. By default this is of no width. The width of the border is doubled

on the vertical edges. The border is inside the window limits.

All subsequent screen traps (except this one) use the reduced window size for defining cursor position and

window limits.

As a special case, the colour $80 defines a transparent border so that the border contents are not altered by

the trap.

If the call changes the width of the border, then the cursor is reset to the home position (top left hand corner).

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 15 - 22

Trap #3 D0=$0D IOW.DEFW

Redefine a window

Call parameters Return parameters
D1.B Border colour D1 7

D2.W Border width D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Base of window block A1 ?7?7?
A2 A2+ All preserved

Error returns:
NC Not complete
ICHN Channel not open

ORNG Window does not fit on screen

This call redefines the shape or position of a window: the contents are not moved or modified, but the cursor
is repositioned at the top left hand corner of the new window. The window block is 4 words long representing
the width, height, X origin and Y origin.

Trap #3 D0=$2E IOW.DONL

Do a pending newline

Call parameters Return parameters
D1 D1 7?7

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ?7?7?
A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

This trap forces a newline pending in a window to be carried out. This is normally where something has been
printed at the bottom of a window, but the newline has not been performed as this would cause the window
to scroll upwards. If a newline is not pending in the window, then the routine will return without affecting the
display, otherwise the screen is scrolled upwards SD_YINC pixels (if necessary) and the cursor is placed at
the start of the next line.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 23

Trap #3 D0=$0E

Enable the cursor

Call parameters
D1
D2
D3.W Timeout

AO Channel ID
A1
A2
A3

Error returns:

NC Not complete

ICHN Channel not open

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved
???
Preserved
Preserved
All preserved

IOW.ECUR

The call to enable the cursor does not return an error if the cursor is already enabled, as it merely ensures

that the cursor is in the desired state.

QDOS/SMS Reference Manual v. 4.8

31.01.2024

Section 15-24

Trap #3 D0=$25 IOW.FONT

Set or reset the fount

Call parameters Return parameters
D1 D1 ?7??

D2 0 (or "DEFF” [SMSQ/E]) D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 Base of fount A1 ?77?

A2 Base of second fount A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

The fount is a 5x9 array of pixels in a 6x10 rectangle.
A default fount and a second fount are built into the ROM, although alternative founts may be selected.
If either fount address is given as zero, the relevant default fount will be used.

The structure of a fount assumes that up to a certain value characters are invalid (default $1E), from the next
value (default $1F) a known number of characters are valid (default $61).

Thus the structure is as follows:

$00 lowest valid character (byte)

$01 number of valid characters-1 (byte)

$02 to $0A 9 bytes of pixels for the first valid character
$0B to $13 etc.

Each byte of pixels has the pixels in bit 6 to 2 (inclusive) of the byte.
The top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in the first fount, it is written using the second
fount. If it is also invalid in the second fount, then the lowest valid character of the second fount is used.

The default fount extends from $20 to $7F.
[sMSQ/E] In SMSQ, this sets or resets the default system font. Each of the two fount addresses can either be
the address of a newly supplied fount, or -1 to keep the current setting, or 0 to select the default font which is

inbuilt into the system. Moreover, an optional parameter can be specified in D2. If it contains the ASCII string
"DEFF", then this call sets the default system fount used by any subsequently opened channels.

QDOS/SMS Reference Manual v. 4.8 31.01.2024 Section 15 - 25

Trap #3 D0=$60 Define QL colour palette IOW.PALQ ismsae

D0=$61 Define 8-bit colour palette IOW.PALT 1swsag
Call parameters Return parameters
D1.W Start entry in palette D1 ??7?
D2.W Number of entries to chang