QDOS / SMS / SMSQ/E

Reference Guide

Version 4.9

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.1

Foreword

This is the 4th edition of the QDOS/SMS Reference Manual, a guide and manual for programming the QL as
well as QDOS and its many descendants, including especially SMSQ/E. The purpose of this is to have an
up-to-date guide to the facilities offered by QDOS and SMSQ/E. This text is based on the original 3rd edition
of the manual, as it was published by Jochen Merz and Marcel Kilgus, and then scanned in by Derek
Stewart. Except to make changes for error corrections and new insertions, | left much of the original text
untouched, even where it was mostly outdated.

Of course, all of this was made possible by the original writers of the original texts (Tony Tebby, Jochen
Merz, Marcel Kilgus), and thanks go to them.

As to the amendments made in this text, | did correct all errors | was able to spot. | also continued to point
out the differences between the plain QDOS variety of things and those for SMSQ/E, where appropriate.
Included in this edition are the updates for SMSQ/E as they stand now. It is true that this text now contains
much information that is specific to SMSQ/E, but this is due to the fact that SMSQ/E is still being developed,
whilst the other OSes aren’t. Thus, there are now sections on the HOME thing, the SMSQ/E style guide etc.

In this manual, S*Basic means the QL's SuperBASIC and SMSQ/E's SBasic. SMSQDOS means something
is applicable to SMSQ/E and QDOS. Sometimes you will find reference to assembler key files (e.g.
keys_qdos_io). These refer to the keys files as found in the “keys” subdirectory in the SMSQ/E sources.

The page numbers in each section and indexes thereto refer to the page numbers of that section.
Unfortunately, whilst the initial table of content is “ clickable” (CTRL + left mouse click on a section to go
there), this is not true for the indexes.

Much care has gone into trying to make sure that the information herein is correct. All remaining
errors/omissions are mine.

Ideas, corrections and / or suggestions are always welcome. After version 4.0, this manual is maintained by

W. Lenerz only. Per Witte has pointed out numerous improvements/errors.

Wolfgang Lenerz
Derek Stewart

Versions of this manual as of v. 4.1 (all by WL)
v. 4.9 Really correct examples for IOU.SSIO (use vector $EA and not $E8). Correct name for SMS.RSHD

(thanks to Derek for pointing these errors out). Warning for SMS.SSJB amended. New System Variable
sys_qgx0c ($EE) used for Qx0 machines.

v. 4.8 Some typos (6-2, 6-4, 16-7, 13-1). Removed reference to system variable sys_10i (was at $00c2). A
value of -1 in D3 is “delete” in IOA.OPEN. Some explanation on |OA.DELF in SMSQ/E. Correct examples for
vector 10U.SSI0O. Typos/error corrections and additions in Appendix A. Vector MEM.ALHP: the condition
code is not cleared on success on all QDOS ROM versions (it is on SMSQ/E). Added order of keyboard
tables.

v. 4.7 Better explanation of the value returned in D1 by SMS ACHP and of how literal numbers are stored
in S*Basic. Included the table for SMSQ/E Sbasic variables.

v.4.6 The length word in D2 for |IOB.FLIN and IOB.FMUL is a positive word. SBasic arithmetic operation
qa.flong renamed to ga.fltli to keep in sync with the keys_qglv keys file. Correct reference to language
handling for trap#1 with sms.ldmm and following. CV.DATIL is available on SMSQ/E machines only;
IOB.EDLIN is really called |IOB.ELIN.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

v.4.5 Typos, added keys/information about standard hard disk format, SBasic name table additions for
integer REPeat and FOR loop indexes, warning for device driver linkage blocks, IOB.FLIN under SMSQ/E
level 3 drivers may convert <CR><LF> to <LF>.

v.4.4 Wrong label for SMS.LSHD corrected in trap description. MEM.ACHP does not modify A3 in
SMSQ/E. Entry regs to vector $11C corrected. Correct registers for vector SB.GTINT and following shown.
Current thing parameters completed and some keys don’t exist. On SMSQ/E it is not necessary to have the
maths stack pointer in A1 before calling vector QA.RESRI. Spurious content of D2 & D3 removed from
CV.ILDAT and CV.ILDAY.

v. 4.3 Added some hyperlinks. IOU.DNAM: corrected spelling of some examples. Explained that opening a
directory will open the next higher directory if not found. Typo corrections in the hardware keys section.
Added keys for pointer device.

v. 4.2 Corrected wrong register on entry to SB.PUTP (was A1, is now A3). IOB.SMUL: the buffer size is a
positive word; D1 upper word is destroyed. IOB.FLIN/IOB.SMUM: error return if no LF found corrected, must
be ERR.BFFL and not ERR.OVFL; D1 upper word is destroyed. IOU.DNAM correct title for trap.
RCNT GARJ, RCNT_GALL, RCNT_GALJ: return description, parameter description and examples
corrected.

v. 4.1 Corrected missing source & destination registers when restoring SR in section 10.9 example.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.3

The page numbers in this clickable table of contents refer to the page numbers within each section.
CTRL+Left Click goes to the entries.

Table of contents

0. Why this book? (Original foreword by Jochen Merz)............ccccccimmimmeeemnnscnnsnsnnnnnnnns 1
1. About this GUIdE..........ceeeiiiiiiiiiiiccrcreee s n e e e 1
2. Introduction to QDOS / SMS / SMSQUE........ccccoirrrrrrrrrrrrsssssssssss s 1
2 I Y/ =T 0 g T Y 1 = T o J PRSP 1
2 O I T T o] =S EERR 2
2.1.2. System Variables.........ooiiiiieeee e 2
2.1.3. System Management TabIes..........coooiiiiiiiiiiiiiiiii s 2
2.1.4. ComMMON HEAP ArCa.......cooiiiiii ettt e e e e e et eeeaaeeens 2
2.1.5. Free Memory Ar€a........coooi i 2
Nt G TS R = =] o= T Y T 3
2.1.7. Transient Program Ar€a..........oooi oo 3
2.1.8. Resident Procedure Area...........oouuuuuuiiiii e 3

2.2. Calling QDOS/SMS ROULINES......uuuiiiiiiiiiiiiiiiiiieie et 3
0 T I =T o1 TR 3
2.2.2. Vectored ROULINES........ouuieiiiiiie e et e e e e e e e e e 4
2.2.3. ALOMIC ACHIONS. ... e e ettt e e e e e e eeeeeaen 5

2.3. EXCePLiON ProCESSING.....ccii ittt e e e e e e e e e e e e e e e e e e e aaaaaaaas 5
S 7= o U o J TR 6
3. Machine Code Programming........ccccccrriiiiinisisssssssnnnnsnnsnsnssnsssnssss s 1
K TRt BN [o1 PP PRRRP 1
3. 1.1, NOrMaAl JODS......ee e 1
3.1.2. SPECIAl ProgramsS.........uuuieiiieeiei ettt e e e e e e e e e 3
3.1.3. Job Control Enhancements [SMSQV/E].........ccouuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 4

3.2. S*Basic Procedures and FUNCLIONS............oooooiiiiiiiiii e 5

B R T I T 5
3.4. Operating System EXtENSIONS........ccovimiiiiiii e 5
4. Memory AllOCAtioN..... ..o s r s s nnnnnnnnn e 1
S I o 1= Vo TNV =Yl F= T < o PSR 1
5. Input/ Output on the QL............erreieeeccccccerrrr s e snnn e e e e s s e e nnnnns 1
ST TS 1= - | 1 TP 1
5.2, FHlE 10 ettt e 2
5.3. Screen and ConSOIEe 1/O........cooo e e e e e e e e eaae 3
5.3.1. Display MOAES.........ooiiiiiiieiii ettt e e e e e aaae 3
5.3.2. Window Properties and Operations.............ccuuuiiiiiiiiiiiiiiiee e 3
5.3.3. Screen Character Output Operations................uiiiiiiiiiiiiiieccceee e, 5
5.3.4. Graphics OpPerationS.........ccuiiieeiiiiiiiiieie e e e e e e eeean s 5
5.3.5. Special Properties of Console Channels..............ccccooeeiiiiiiiiiiiiiiiciciee e, 6
5.3.6. Special Keyboard FUNCLONS. ..o 6
5.3.7. Extended OperationS [SMSQUE].-«««««««««xssssssrmnnmnmnmmnnes 6
5.3.8. Dlsplay [SMSQ/E]« # + v+ v sanssssssanuannssssssssansssssssssnnssssssssansssssssssannssssssssnnsesssssssnnsessssssnnnes 6
5.3.8.1. New CON driver VECIOrS.........cccoeiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 6
5.3.8.2. New (WMAN) COlOUr fOrMat..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieeeeeeeaneenaeees 14
5.3.8.2.1. Stipple FOrmat.........ccooiiiiiiiie e 14

5.3.8.2.2. 3D Border FOrmat.........oooouiueiiiiiieeiieeee e 14

5.3.8.3. System palette entries........cccoeiiiiiiiiiiii i 15

5.3.8.4. New BasiC KeYWOrdS...........ccooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 16

5. 3.8, COlOUIS. e e 16

5.3.8.4.2. Palette handling.........coouviiiiiii s 17
5.3.8.4.2.1. System palette kKeywords.............cooooriiiiiiiiiiiiciieee e, 17
5.3.8.4.2.2. Job palette keywords...........oooiiiiiiiiiii 17

5.3.8.5. NEeW MOVE MOUES.......ccoiiiiiiiiiiiie e 18

5.3.8.5.1. The MOVE MOUES.......ccoieiiiiiiiii e 18

5.3.8.5.2. Configuring/setting the move mode..........cccccceeeiiiiiiiiiiiiieee, 18

5.3.8.5.3. Configuring/setting the degree of transparency................ccceeveennnnnn.. 19

5.3.8.6. Graphics with alpha blending...........cccoooiiiiiiii e 20

5.3.8.6.1. Machine code interface..............ceiiiiiieiiiiiii e 20

5.3.8.6.2. S*BasiC KEYWOIrdS.........ccoeviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 21

6. QDOS DeViICE DIIVEIS.....cceieeeeeeiiiisiirirrr s s ssssm s s s s s e s s s s nmmn s ssssnnnnnnns 1
6.1. Device Driver Memory AllOCatioN..............ii i 2
6.2. Device Driver Initialisation........... ... 2
B.3. PRYSICAl LAYEI......ei et e e e e e e e e e 3
6.3.1. External Interrupt TasKS..... ... e 3
6.3.2. Polling INterrupt TasKS.........oiiiiiiie e 3
6.3.3. Scheduler LOOP Tasks......coouuuiiiieeiieee e 3

B.4. The ACCESS LAYETt e e et e e e e e eaaan e e e e eeees 4
6.4.1. The Channel Open ROULINE..........cooiiiiii e 4
6.4.2. The Channel Close ROULINE...........cooiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 5
6.4.3. Input/OUtPUt ROULINE......ooiiii e 6

7. Directory Device DriVers........cccciiieeemeiiininiiiirrsnssssssss s s nnsssssses 1
7.1. Initialisation of @ DIreCtOry DIIVET..........uuuuiiiiiiiiiiiiiieeeeeeeeeeeee e e 2
7.2, ACCESS LAY ...ttt ettt et ettt e aaaaaas 3
7.2.1. The Channel Open/File Delete RoUtine................uuvuiiiiiiiiiiiieiie e 4
7.2.2. The Channel Close ROULINE...........coiiiiiiiiiiee e 5
7.2.3. The Input/ Output ROULINE.........cccieeeeee e 6

7.3 SlAVING. . 6
7.4. The FOrmat ROULINE. 8
8. BUIlt-in DeVICe DIVErS. ...t r s s s s s s s s s s s s s s emn s s e e nmn s s e e nmnsnnsennnn 1
8.1. QL Floppy Disc FOrmat [EXT].....uuueiiiiiieie e 2
8.2. Direct Sector Read/Write [EXT]...cceeeieiiiiii ittt e e eeeeeees 4
8.3. Additional Standard Device Drivers [ST] [EXT] [SMSQ/E]......ccceevvmmiiiiiiiiiiieeeeeees 4
9. Interfacing to S*BasiC........ccccerriiiiiiiiiiii i ——————————————————————— 1
9.1. Memory Organisation within the S*BasiC Area..............oouvviiieiiiiiiiiieeeecee e 1
9.2. The NamMe TabI@.........uuieeei e e e e e e e e e e e e e eeeeeannnnes 2

S R T =0 0 = I o PTP 3
9.4. Variable ValUES Ar€a.......cccooe i i ettt ettt a e e e e e e e e e e e eeeeeeeennnnnns 3
9.5, StOrage FOrMALS.......uueeeiiiiee et e e e e e e 3
SRS I [0] (=Te [T g3 o] = To [T PP PP PPPPPPPPPPP 3
9.5.2. Floating PoiNt StOrage...........uuuuuiiiiii it 3
9.5.3. StrNG STOrage.....cooooeiiiie 3

S IR T N =)V (o] = o [YU PRPPPTRPPRNt 3

9.6. Code RESIICHONS.uiiiiiiie e e e e e e e e e e e e eeeeeenes 4
9.7. Linking in New Procedures and FUNCLIONS............coouuiiiiiiiiiiiiie e, 4
9.8. Parameter PasSiNg............uuuuiiiiiiiiiiiiiiiiiiiii ettt 5
9.9. Getting the Values of Actual Parameters............ccooooiiiiiiiiiiii i 5
9.10. The Arithmetic Stack Returned Values.............ccoooeiiiiiiiii e 6
9.11. The Channel TabIE...........uuuiiiiiiiiiiiiiiieeeeeeeeee e 6
10. Hardware-related Programming.........ccccceeemmimimimmiiiissssnnns 1
10.1. MemOry Map [QL....uuueiiiiiiiiiieiiei e 1
10.2. DiSPlay CONIIOL.......uiiiiiiiiiiiiiee e 2
10.3. Display Control REGISIEN.........ouvuiiiiiie e 2

10.4. Keyboard and Sound Control.............ccoouiiiiiiiiiiiiiiiiieeeeeeeeee 2

TO.5. SEIHAI IO e 3

10.6. ReAI-tIME CIOCK..... oo e e e e e e e e e e e eeeennnnes 3
F0.7. INEIWOTK. ..ottt ettt e e e e e e e e e ettt e e e e e e e eenennes 3
(IR TR 1Y/ o7 o o 4 1Y U 3
10.9. User and SupervisOr Mode [ST]...ouuuuuiiiii i 5
10.10. The Interrupt SYStem [ST]. .. oo 6
10.11. The MIDI Interrupt SErVer [ST]. .. oo 7
10.12. Different Processors [STI[SMSQU/E]........ccouuiiiiiiiieeiiieiiieiiiieniiisse e 7
10.13. Different Machines [ST, SMSQ].......uuuuuuumuiiiiiirrrr e e 7
10.14. The ATARI DIMA [ST] iiiiiiiiiiiiiiiiiieiiiiieieeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeseeeseeeeeeseeeeeseseneenenes 8
11. Adding Peripheral Cards to the QL...........ccoorrr 1
11.1. EXPanSion CONNECON.......coooiiieeiiie et e e e e e e e e eeeeeennnnns 1
L2 O U I] (= =T P 1
11.3. Peripheral Card AdAreSSiNg.........uu i uuu e 2
11.4. Add-0n Card ROMS..... .ottt e e e e e e e e e e e e e aaaaeeeas 2
12. Non-English Systems..........coooi oo 1
P25 IV o =T J USRS 1
12.2. Non-English-language Keyboards.............ooooiiiiiiiiiiiiieiec e 1
12.3. Character Set [NOt SMS2] [SIMSQ] s s s s s ssssnnnnnsessssssnnnsesssssssnsssssssssanssssssssssnssessssssnnssssssssnnnnes 2
12.4. Special AIPhabets.........uuuiiiiiiiiiiieeeee e e e e 3
13. SyYStem Traps.....ccceiiimimiiiiiiiii s 1
13.1. Trap 1 Keys - numerical order with page reference...............ccccoveeeeeiiiiiieieeeennnn. 22
14. 1/0 Management Traps.......ccccurmemeerriiinrirrrrnnesssss s s ssssssss s s s s s s s s nnssssssssssssssasnnnnnnns 1
14.1. Trap 2 Keys - numerical order with page reference............ccccovviiiiiiiii e 6
T 1L X o= I - T o =3 1
15.1. Trap 3 Keys - numerical order with page reference............cccccciiiiiiiiiiiienine, 38
16. Vectored ROULINES.......cooieeeeeiiiiiii s 1
16.1. Vectored Routines - numerical order with page reference.............cc.ccooeeivieennnns 22
17. Thlngs [EXTI[SMSQ/E]s s snnsssnssansssnsnnsssnsssnssssssnssssssssssssssnssssssssssssssnssssssssssnsssnsssnssssssnsssnsnnnsnnnsnns 1
171, TRING STUCTUIES.......eiiiiiiiiie et e e e e e e e e e e e e e e e e 2
17.1.1. Thing INkage format..........ccccooiiiiiiiiieeee e 2
17.1.2. Thing header format...........oooo e 2
17.1.3. List of ThiNgS HEAAEN..........oeeeieeeeee e 2
17.1.4. Executable Thing Header ... 3
17.1.5. Extension Thing Header.............ooi i 3
17.2. Different sorts of ThiNG.......ccouviiiiiiiiiiiiie e 3
L TR N 11 0T /=] (o] = R 4
17.4. Thing ENtry POINtS.......eeiiiiiiiii e 11
17.4.1. TH_ENTRY oottt e e e e e e eeeeeeeneeees 11
17.4.2. TH EXEC ... o et e e e e e e e e e e e e e e e e e aaaaaaaaaaaeeaeaeeeeees 11
17.4.3. Example of entries to the Thing Vector system............ccccviiiiiiiiiiiiiiiiinnn. 11
17.5. EXIENSION ThINGS. ..ottt e e e e e e e e e e e e e e e e aaeas 14
17.5.1. Extension Thing Header.............oi i 14
17.5.2. Level 1 Extension Thing Parameter Definition................ccciiiiiiiiiiiiiiiiiiinnnes 14
17.5.3. Call Values and KEYS........ccccoeiiiiiiiiiee et 15
17.5.4. Pointer Parameter USAge.............uuuiiiiiiiiiiiiiiiiieiaeee e 15
17.5.5. Optional Parameter..........ccoooo i 16
17.5.6. Array Parameter............oooiiiiiiiiiiiiii e 16
17.5.7. Parameter TYPES. .. .ccoeiiiiii i ei ettt e et e e e e e et e e e e e eara e e eeeeees 16
17.5.8. Example Parameter Definitions.............uueiiiiiiiiiiiice e 16
17.5.9. Parameter LiSt........cooo e 17
17.5.10. Defining EXtension ThiNGS...........uuuiuiiiiii e 17
17.5.11. Accessing Extension ThiNgS..........cooviiiiiiiiiii e, 17

17.5.12. When to Use Extension Things...........oooiiiiiiiiiiiiiii e 17

18, K OY S nnnnna 1
L T = (ol =) TSRO 1
18.2. System variables............ooo 2
18.3. SuperBasic Variables..............oouiiiiiiii e 7
18.4. SBasic Variables [SMSQ/E].......uuuuuuuuiiiiaeieaeee e e e e e e e e e e e e e aaaaaaaaaeeeeees 10
18.5. Basic channel definitions and tOKeNS................uuiiiiiiiiiiiiiii e 12

18.5.1. Offsets on BASIC Channel Definitions...........oouuiiiiii i, 12
18.5.2. BASIC TOKEN VAIUES.......uueiiiiiiieee e 12
18.6. Job Header and Save Area Definitions..........ccoooo oo 15
18.7. Slave Memory Block Table Definitions...........ccoooiiiiiiiiiiiiie e 16
18.8. Channel DefiNitioNS........... e 17
18.9. File System Definition BIOCKS...........coiiiiiiiiiiiiccee e 18
18.9.1. 18.Standard channel block for filing system............cccci e 18
18.9.2. The common part of a physical definition block..............cccccceeiiiiiiiiiiiienns 18
18.9.3. Microdrive Physical Definition BIOCK (@u..«« eeeeeeeeeemmiiaaieeeeeeeeiiicie e 19
18.9.4. Other Filing System Physical Definition BIOCK [sMsQiexT.eeveeveeeererrrrineeeriernnnnnn. 19
18.10. Device Driver Linkage BIOCK............oooiiiiiii e 20
18.10.1. Screen Driver Data Block Definition..............ccccoooiiiiiiiiie 21
18.10.2. Serial Channel Definition BIOCK [auj..eevvuueeereeiiiiieeeeieeeie e 22
18.10.3. Network Channel Definition BIOCK [auj...vvveeeeeeiiiiiiieiiieeeiecie e 22
18.11. Queue Header DefinitioNS...........coi i 22
18.12. Arithmetical Interpreter Operation Codes...........ccoovviiiiiiiiiiiiiiiiice e, 23
18.13. IPC LinK COMMANGS.......coiiiiiiiiiie e e e e et e e e e e e eeeene e e e e eeeas 24
18.14. HArdware KEYS. ... oo e e et e e e e et e e e e ennnanas 25
1815, TrAP KBYS. ..ttt e 27
18.15.1. Trap 1 Keys (SYStem TrapsS).....ccuuuueiiiieiiiiiieieie e eeeenees 27
18.15.2. Trap 2 Keys (I/O AllOCAtioN Traps).........ccooouumu e 28
18.15.3. Trap 3 Keys (I/0 TrapsS)...uuuuceee ittt e e 29
18.16. List of Vectored ROULINES..........oooiiiiiii e 31
18.17. KeYS fOr ThINGS....uuiii it e e e e e e e e e e e eeeeenes 33
18.18. Keys for HOTKEY Thing.......ccoooiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeet s 36
18.19. Keys for format of pointer device driver definition block.............cccccccceeiiiirennnnn. 37
18.20. Hard disk format: QLWAo 41

L TR 1 5 O 1

19.1. Language handling in SMSQ..........cooi i 1
I TR S T o T T o] 1= U SRPPRPRN 1
19.1.2. Classification of Language Dependent Modules.................ouuvieeieeeieininninnnnnnnns 1

19.1.2.1. Printer Translate Tables...........uuuiiiiiiiii e 1
19.1.2.2. Keyboard TabIes..... ... 1
19.1.2.3. MeSSAQE TaADIES......oeeiiiiiiiiii e 2
Language Preference Tables. ..o 2
19.1.3. Language Dependent Module Structure............cccooooiiiiiiiiiiiiiiciecee e, 3
19.1.4. Language SpecCifiCation...........cooeiiiiiiiii i 3
19.1.5. IMPIemMeEntation.........coi i 3
19.1.6. System Variables...........ooooviiiiiiiiiieeeeeeeeeeeeeeeee e 3
19.1.7. Additional Trap #1 CallS.......cccoiii i e e e e eeeeanes 4

19.2. Additional Trap #3 CallS......ccovviiiiiiiieeieeeeeeeeeeeee e 7

19.3. SMSQ Cache HandliNg...........uuuuuuuuiiiiiiiiiiiiiii e eeeseeeeneennannees 7
19.3.1. PrINCIPIES. ... e e e e e e e e e e e eeenens 7

19.3.1.1. MOECBBO20........coeieieieieeeeeeeeeeeeee ettt ettt e et e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeees 7
(S TR Tt I /(@ 1 11 O 8
19.3.1.3. MOECBBOZO0........ooeiiieeeeieeeeeeeeeeeee ettt ettt eeeees 8
(S TR T 0 S /(@ 1 0 O 9

19.3.2. Cache Manipulations..........cccooiiiiiiiiiiie e 10

19.3.3. Encoding the Cache Operations...............oouuviiiiiiiiiiiiice e, 11

19.3.4. Using The Cache Operations............oooiiiiiiiiiiiiii e 12
19.3.4.1. CINVB....oeeieeeeeeeeeee e 12
19.3.4.2. CINVD ...t e e e e e e e e 12
19.3.4.3. CINV L.ttt s sssssnsssnnnnnnen 12
19.3.4.4. CDISBi.....oeeeeiieeeeeeeeeeeeeeeee et —————— 12
RS TR T T O 1] RPN 12
19.3.4.6. CENADB. ... ————— 12
19.3.4.7. CENAL ..o 13
19.3.4.8. System Variables..........coooiiiiiiii e 13

20. The HOTKEY SyStem Il [Exre.euuuueusuusuusnnnnnsssssssssssnssnns 1
20.1.1. The HOTKEY HeM. .o 6
20.1.2. HOKEY VECLOIS. ... e e e 6

21. The Button Frame [EXT]....ccce s 1

22. The HOME Thlng [EXT] [SMSQ/E]e s sannuannusssasssannasssassassssssassssssssssasssessssssasssessasssasssasnasssassannnnns 1

22.1. Purpose and facilities............uiiiiiiiiiicc e 1

2211, HOME AIFECIONY.ccciiiiiiiiiiiee e 1

22.1.2. HOME FIleName..... .o e eeeeees 1

22.1.3. CUIrent DIrECIOIY...ccoeiiiiiiiie e 1

22.1.4. Default Directory for named jODS............uuuuuiiiiiiiiiiiiieceee e 1

22.2. The HOME Thing under SMSQ/E and QDOS............ooiiiiiiiiiiiiiiiiieee e, 2

A TS 1V S T 2
22.2.1.1. The EX(eC) etC COMMANTS.......uuuuumiiiiei e 2
22.2.1.2. QPAC Il and other file managers..........ccccoceeieiiiiiiiiiieeeeeeeee e 2
22.2.1.3. FleINfO. ... e 2
22.2. 0.4, BaASICu. i e 2

22.2.2. QDOS.....coeeeeeeeeee e e e e e e e e e e e e e aaaaaaaaaa et aaaaaaar——— 2

22.3. Using the HOME ThiNgG....ccccooiiiiecie et 3

P T I o (o] 0 ST = - 1= oS 3
22.3.1.1. Getthe home dir€CtOry.......c.cooiimiiiiiii e 3
22.3.1.2. Getthe home filename............oooommiiiiiiiiii e 3
22.3.1.3. Getthe current dir€CtOry.........ccooeeiiiiiiiiieie e 3
22.3.1.4. Default NamMES........cooeeieeieee e 3
22.3.1.5. Get the version of the HOME Thing...........oceiiiiiiiiiiiiiccc e, 3

22.3.2. From maching COAE..........uuuiiiieiiiiiiiiee et e e e et e e e eeeeeees 4

22.4. Settingup @ahome dir€CtOry.........oovvueiiiiieeee e 6
P S I (o] 0 Sl = 7= T [6
22.4.2. From Maching COdE...........uuuuiiiiiiiiiiiieiieee et a e e e e e 6

23. The RECENT Thlng [SMSQU/E] = s sueunasssasnnsnnsssssssssssssssssmssssssssssssssssssssssesnssssastsesnasssasssennnnnnans 1

D22 T I 0o To=Y o) - TS URPPPRRPPNt 1

P22 Tt 0t T I 1= 1 3OS OROSSPP 1

2302, JOD IDS. . ettt a e e e e e e e e e e e e e e e e e e e aaaaaaas 2

23.1.3. BUEIS . 2

23.2. The Thing interface in ASSEMDIEI.........ccoooiiiiiiie e 3
23.2.1. JobIDs and Name POINter........coooo o 4
23.2.2. The @XIENSIONS.ottt e e e ettt e e e e e e e e eeeeeene 4

23.3. SBaASIC KEYWOITS.....ccoiiiiiiiiiiiieeeee e e e e 14

23.4. CoNfIQUIAtiON......ueeeeee e e e e e e e e e 21

23.5. Performance Penalty........... ... 21

24. Appendix A Compiling SMSQE with SMSQEMake............cooeecciivimmmmerrrernnnnnseccccanns 1

24.1. Compiling the SOUICE COE...........uuuuiiiiiiiiiiiiiiiiiie ettt 1

P S S U= To U 1T =T 0 g T=T o | (RPN 1
Pt T 1= I I L VAo = T = 1
24.2.2. TE @SSEMDIETottt e e e eeeenae 2

24.2.3. The linker, cctf and make programs and how to use them................cccceeeeee. 2

24.2.3.1. The MaKe Program..........cooo it

P T I 1= 1T] (Y SRR
A T T O O I PP
24.3. HOW to use SMSQEMAKE.........oouiiiiiiiiieeie e e e e
24.3.1. Setting up the environment.............cooooiiiiiiiii e
24.3.2. Description of the program..............eeeiiiii i
24.3.2.1. The e DA ..o e
24.3.2.2. TE tArgel MOW......uuuiiiiiiiiiiiiiiie ettt
24.3.2.3. The link filesS WINAOW.......ccooeiiiiieeeeeeeeeeeeeeeeeee e
24.3.2.4. The "All" M. .o —————
24.3.2.5. The "OK" EIM...eiiiiiiiiiiiiiiieeeeee ettt e e e e eeeeeeees
24.3.2.6. The DEL IfeM..ciiiiiiiieeeeeee e
24.3.2.7. The "MaKe" ItEM......cooiiii e
24.3.3. Command line parameters..........oouuuuuiiiiii e
24.3.4. A proposed Way Of WOTKING......cooeeeiiiiiiiiiiee e e e e e eenenes
PG TR T = o]l (=Y 0o i P
24 .4. Recompiling or changing SMSQEMaKE..........cccooiiiiiiiiiiiiiiieeeee
24.5. Additional ProgramiS.........oooiiiiiiiiiiiiiiii et

25. Appendix B Official SMSQJ/E style guide...........ccccoiiiiiiiniiiininiinnsssssnnnnes
25.1. GeNeriC reqQUIrEMENTS. et e e e e e e e e e e e eeaennn e e e eeeeeas
25.1.1. Development SYSIEM.........i e
25,02, ASSEMDIETo aan
P24 Tt G TR 01 T= T = Tox (= 1= SR

A T S I = 2= (o o 1T
25.2. ASSEMDIET flES... .t
25.2.1. GENErIC file STTUCIUIE... ... e s
DI o 1= Vo 1= < TN
DS R T O - 1T 3
A T T 7o 210 0 [=Y o1
25.2.5. LADEIS.... e
25.2.6. References to include and other files...........coooviiiiiiiiii e,

0. Why this book? (Original foreword by Jochen Merz)

First of all, many people asked for documentation about QDOS. The QL Technical Guide is out of print for
some years, and it is impossible to get. The information is not up-to-date, and many things are missing. The
Thing System documentation and the HOTKEY System Il won't be modified too much in the future, so it
makes sense now to explain how to use it. So that's why | thought it could be useful to make a new
'Operating System Guide'.

It took weeks to get this text typed in, and it took even more time to format everything, update the keys and
text, and make sure that the text is as bug-free as possible. There will be typing-errors in the text, I'm sure,
and if you find any serious mistake, please write. But, please make sure it is not a problem of your way of
machine-code programming (QMON is quite helpfull). If you have serious questions and you cannot find an
answer, please do NOT write, just call! If you really discovered a typing-bug, then you can write to

Jochen Merz Software Tel. 0203/502011

Im stillen Winkel 12 Fax 0203/502012
47169 Duisburg Mailbox 0203/502013
Germany

Also, if you have written a useful application pointer-program of larger size and use, and you would like to
see it distributed, then please send a copy of it to us. If it is a kind of program which is really worth marketing
and selling, we could probably do it.

| take the chance and write some lines for those people who always find fault with the price, so I'm telling the
story about Qptr: It was not half as hard to get the Qptr manual in a printable form; the text files from QJUMP
were in ASCIIl-format with control codes embedded. Still, it took many, many days to get it converted into
Text87 format, updated and printed. The update price (including a new 160 page manual with binder) is
£13.50 (less than just a disc-update price of most other suppliers of computer software!), which leaves me
about £6 after the costs for the printing, binder etc. are subtracted. Okay, there are some new customers of
the product, but most orders are updates, and on the other side, there are advertising costs etc. If | double
the number of currently sold Qptrs and updates, and count that against the hours used for producing the
product, then this will result in less than 40 Pence per hour. Who would work for this? And, this does not
consider the time taken to produce the individual copy, just the master. The question, why in the world do |
spend my time, if it's not worth at all, is easy to answer: somebody has to do it, because this documentation
is the basic for every pointer-program, and we urgently need new programs for the QL!!! This is also the
reason for producing this book you are just reading: it is important to know how to program the QL, to keep it
staying alive!

Back to this book: it is a mixture of the Technical Guide, The HOTKEY System II, the THING system,
together with information about Level 2 device driver found in different hardware add-ons for the QL and the
QL-Emulator for the ATARI ST, as well as some information about the QDOS-compatible operating systems
SMS2 and SMSQ, and even more.

The keys used in this book are SMS notation, as these keys are more meaningful then the keys used in the
QL Technical Guide. You will also find these keys in the Qptr package. They have been introduced a few
years ago, so it not only helpful but consistent. | decided not to put the old keys in brackets, as it is more
confusing than helpful. People using the old keys will have the documentation; they probably do not need
this book. People starting new projects should use the new keys, and if they use the Pointer Environment,
they have to do so anyway.

This manual describes features available on all machines where not told otherwise. It assumes JS or MG or
later ROMS. You may find some abbreviations in square brackets throughout the manual, they tell about
restrictions. In general, try to program your programs that they don't collide with these restrictions. Where
necessary, check software version and/or hardware to trap crashes.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 0 - 1

[QL]

[ST]

[SMS]

[SMSQ]
[not SMS2]

[DD2]

[DV3]
[EXT]

[QDOS Vx.xx+]

[SMSQ/E]

Only supported on QL, not on the QL-Emulator or other emulators. This usually applies
to hardware features, especially microdrives or the direct programming of the serial
ports. These features may work on an emulator, but are not guaranteed.

Only supported on the QL-Emulator for the ATARI-ST. This usually applies to hardware
which does not exist on a QL. Will also work under SMS2 if it is running on an ST.

Needs the operating system SMS2 or SMSQ (/E) to be installed. Many features marked
with [SMS] will also work on QDOS running on a QL-Emulator, but this is not
guaranteed.

Needs the operating system SMSQ or SMSQ/E to be installed, preferably in the most
recent version.

This feature is not supported on SMS2, so better avoid it if you want to write programs
which run under all operating systems.

Only supported on Level 2 Directory Device Drivers. This depends on the hardware
connected to your machine. Microdrives and old Floppy Disc drivers are not Level 2,
whereas the Drivers for the Miracle Winchester (for example), or the RAM disc, Floppy
Disk and Hard-Disk on the ST-Emulator (from Level C onwards) are Level 2. Devices
on SMS are minimum Level 2.

Only supported on Level 3 Directory Device Drivers.

needs some kind of extension to be installed. This could be the HOTKEY System II, the
Pointer Environment, or SuperToolkit Il, for example. It could also be built into a
hardware expansion, e.g. Floppy-Disc-Controller. In general: available for ‘well
equipped' users, especially QL-Emulator owners. Will be available in SMS2.

only supported from operating system versions x.xx onwards supported. Can have
unpredictable results on older versions.

Needs the operating system SMSQ/E to be installed, preferably in the most recent
version.

Credits: Many thanks to Tony Tebby for his permission to use a lot of his documentation for this book.

Thanks also to a very helpful friend who checked the typing.

Many thanks to all of those users who keep on asking for documentation - they showed interest which made
me think of doing this book.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 0 -2

1. About this Guide

This guide describes the methods which may be used for machine-code programming on the QL.

Its contents are also relevant to compiler writers who must implement a run-time library for other languages.
This guide describes only those techniques which are specific to the QL. It does not contain a general
description of 68000 or 68008 assembly language programming: this information can be obtained from a
number of different sources. It is therefore, strongly recommended that a reference book describing
68000 assembly language be consulted before attempting to understand this guide.

The guide also gives details of how various peripherals such as hard disk interfaces, add-on memory and
ROM cartridges may be added on to the QL, with many details about how the firm-ware for such devices
should be written.

Readers may notice that there are no circuit diagrams or detailed explanations of the QL's internal hardware
structure in this manual. This is because it is not necessary to have such information in order to write
software for the QL. Sinclair tried in the design of QDOS to provide you with a stable interface to the
machine through its operating system; everything you need is there and so long as you build your products
using the interface provided there is no danger that any future upgrade of the QL will introduce an
incompatibility with existing software products.

Programs using supported entries only will work fine on future versions of the operating system, as well as
on different hardware like the ATARI ST QL-Emulator or QXL card.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 1 -1

2. Introduction to QDOS / SMS / SMSQ/E

QDOS is the QL operating system. SMS is an advanced version, completely reprogrammed but as
compatible as possible. SMSQ/E is the modern evolution of SMS. All of them are single-user multi-tasking
operating systems: that is, they provide the means for several independent programs to run concurrently; in
the QL or elsewhere, but do not provide any mechanisms to prevent those programs from interfering with
each other. QDOS can be thought of as a collection of several things:

1. A set of useful routines for performing functions such as memory allocation, Input/Output, etc.

2. A mechanism for maintaining lists of things to be done on interrupt, including the function of
allocating slots of CPU time to programs which require them.

3. A mechanism for starting up the computer, and determining the configuration of any add-on
hardware that is connected to it.

In most cases in this book, wherever QDOS is mentioned, the explanation also applies to SMSQ/E, if not,
this will be stated.

The QDOS mechanisms for start-up are described in Section 2.4. Once start-up has been performed, QDOS
does not "run" in the sense that traditional operating systems run: its pieces of code and data structures
simply exist for programs to use. There is no QDOS "main program" that maintains continuous control of the
machine: the S*Basic interpreter, which takes the place of the command line interpreter found in traditional
operating systems, is simply a program which runs on the QL and uses QDOS's facilities, albeit with a
number of special provisions. It is possible, and indeed commonly done, to destroy the S*Basic interpreter
completely, and yet still use all the facilities of the operating system.

Note that in this guide, hex numbers are preceded by a dollar sign ($) as used in the Motorola assembly
language format.

2.1. Memory Map

This Section describes how QDOS maintains its RAM area. On the standard QL, the RAM starts with the
screen RAM at address $20000, and the area available to QDOS starts at $28000.

In an unexpanded QL, the RAM finishes at $3FFFF, whilst in a QL with expansion memory, the RAM may go
up as far as $BFFFF. The QDOS initialisation routine determines the amount of RAM present and adjusts
the position of its pointers accordingly.

In an ST, RAM may end up at $3FFFFF. The current version of QDOS supports only a maximum RAM size
of 4MB, so it can't be expanded any further. SMSQ/E supports much more memory, in theory it can address
the whole 32 bit memory. However, since some programs, notably Qliberator, use the upper 3 bits of
addresses for their own purpose, most SMSQ/E machines will limit this to something like 256 MB. The
memory map is as follows:

SYS _RAMT Top of RAM
SYS_RPAB Resident procedure area
SYS_TPAB Transient program area
SYS_SBAB S*Basic area
SYS FSBB Free memory area
(used up for slave blocks by the filing system)
SYS CHPB Common heap area
System management tables
System variables Base of system variables
Display RAM Base of RAM

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 2 - 1

211. Principles

There is no memory management hardware in the QL. This means that all code must execute from fixed
addresses in physical memory, and that a piece of code may not be moved after it has been loaded into
memory. For this reason, memory is usually allocated in fixed size areas which remain in a fixed location
until deleted. The S*Basic area is an important exception to this.

2.1.2. System Variables

The QDOS system variables are a block of memory containing information required by the operating system.
This block is normally located at address $28000, but is not fixed at this address in principle.

Applications programs should not rely on that fixed address, but should get the address of the base of
system variables by calling the SMS.INFO trap (see Section 13).

Some of the system variables can usefully be monitored by applications programs, and some of them can
safely be altered. A complete list of the system variables, each with its size and offset from the base of
system variables, given in Section 18.2.

Included in the system variables area are a set of longword pointers indicating the locations of the other
areas in the memory map.

2.1.3. System Management Tables

Immediately above the system variables are various tables used by QDOS to maintain the list of jobs and
various other pieces of information. The supervisor stack also resides in this area.

21.4. Common Heap Area

The Common heap area contains the channel definitions which are maintained by the I/O sub-system,
together with the working storage required by I/O drivers or programs. The allocation of space in this area is
carried out either by device drivers, when invoked, or directly by jobs. There are two traps provided to
allocate and release space in this area: SMS.ACHP and SMS.RCHP (see Section 13). The heap allocations
of a job are automatically released when the job is removed.

The common heap is an example of the use of a general heap mechanism provided by QDOS, which
operates in the way described in section 4.1.

The user code needs to retain one pointer to the free space in the heap. This is a long word and is a relative
pointer to the free space in the heap. When the heap has no free space, either because it does not exist, or
because it is full, this pointer is zero.

2.1.5. Free Memory Area

The free memory area is used by QDOS as a buffer memory for the Microdrives, or, if QDOS is suitably
extended, for other filing system devices. The area is structured as a collection of slave blocks, that is, blocks
which are associated with a physical block on medium. When memory is allocated in another area which
would encroach on the free memory area, QDOS must remove one or more slave blocks. Before such a
removal takes place, QDOS ensures that a true copy of the information is present on the medium.

Whilst the common heap grows upwards into the free memory area, the areas above it grow downwards into

it. As there are three areas above it (the resident procedure area, the transient program area and the
S*Basic area), special provisions are made so that all three can grow at the appropriate times.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 2 - 2

2.1.6. S*Basic area

The S*Basic interpreter owns a special area located immediately above the free memory area: this area is
used for all the interpreter's storage requirements such as the S*Basic programs, its variables, its table of I/O
channels and the interpreter's working storage. This area is noteworthy in that it can be moved by QDOS
without the knowledge of the S*Basic interpreter if an area above it needs to grow, or if the S*Basic area
itself needs to shrink. Its size may also be altered. The mechanism which makes such movement or
alteration in size possible operates as follows:

All references to the S*Basic area are made relative to the address register A6, and the value of A6 on entry
to the interpreter is adjusted by QDOS to the current base of the S*Basic area (which is held in the system
variable SYS_SBAB), offset by the length of the interpreter's job header (currently $68 bytes).

The S*Basic interpreter divides its working area into several portions, details of which may be found by
looking at the BV definitions in Section 18.3. (for QDOS) and the SB definitions in section 18.4 (for SMSQE)
All of the pointers to these various portions are also relative to AG.

Note that, under SMSQ/E, the SBasic area doesn't move. If you write an extension, references thus needn't
be relative to A6 during the entire processing. However, doing so will make your extension incompatible with
QDOS.

21.7. Transient Program Area

The transient program area is the area of memory into which the user's applications programs are loaded.
Each job is allocated a block of memory in the transient program area, which it keeps until it is deleted: this
area is used for the job's code, data and stack. Programs loaded in this way are not normally re-entrant, but
it is relatively straightforward to use the mechanisms in the system to set up a single piece of code which is
shared by several different jobs with different data areas.

There is no safe way of determining a priori where a program will be loaded, therefore programs are normally
position independent (see Section 3.1 on jobs).

2.1.8. Resident Procedure Area

Memory allocated in this area is unavailable to the operating system. The system knows only two things
about the resident procedure area: how to allocate memory in it, and how to release it completely. Both of
these operations can only be carried out when there are no transient programs in the machine, due to the
fact that the transient program area cannot be moved.

Normally, the allocation is done immediately after start-up, and deallocation is never performed.

The area is normally used to load in machine code procedures and functions written to extend the S*Basic
language (see Section 9.7), and occasionally for loading in the code of device drivers when these are not
located in ROM in an add-on device.

2.2 Calling QDOS/SMS Routines

There are two categories of QDOS routines available to the user: traps and vectored routines. The
mechanism for calling a routine is different for each of these two categories.

2.21. Traps

Traps are called using the 68008 TRAP #n instruction: on the QL, this has the effect of a subroutine call to a
defined location which has the side effect of saving the status register and entering supervisor mode.

Of the sixteen trap numbers available on the 68008, numbers 0 to 4 inclusive are defined for use by QDOS,

the remainder being free for the user to redirect to his own routines. Roughly speaking, the traps are utilised
as follows:

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section2 -3

TRAP #0 Special trap for entering supervisor mode.

TRAP #1 Manager traps - routines which perform overall control of the hardware and of the
operating system's resources.

TRAP #2 Input/ Output management traps (I/O traps which allocate resources).

TRAP #3 Input/ Output traps which do not allocate resources.

TRAP #4 Special trap for the S*Basic interpreter.

Traps are called by setting up any required parameters in registers A0-A3 and D1-D3, setting up the code for
the required trap in DO (usually with a MOVEQ instruction), then executing the TRAP instruction. Trap
routines do not affect D4 to D7 or A4 to A6. There are, however, a few defined cases which are exceptions
to this.

When the TRAP operating is complete, control is returned to the program at the location following the TRAP
instruction, with an error key in all 32 bits of D0O. This key is set to zero if the operation has been completed
successfully, and is set to a negative number for any of the system-defined errors (see Section 18.1 for a list
of the meanings of the possible error codes). The key may also be set to a positive number, in which case
that number is a pointer to an error string, relative to address $8000. The string is in the usual SMSQDOS
form of a word giving the length of the string, followed by the characters.

Note that all traps can return the error code ERR.IPAR (for invalid parameter). Note also that the condition
codes may not be set according to the error code on return from a trap, thus a program wishing to detect an
error should execute a TST.L DO instruction immediately after the TRAP instruction.

Details of all the system traps are given in Sections 13 — 15.

2.2.2. Vectored Routines

In addition to the routines accessed by traps, there are several utility routines which are available to the
applications program: their addresses are held in a vector table which is located in the ROM starting at
address $CO0. A vectored routine can be accessed by the following code:

MOVE .W VECTOR_ADDRESS, An
JSR (An)

where VECTOR_ADDRESS is the address of the vector table entry, and An is a suitable address register
which is not required by the particular routine on entry.

There are some exceptions to this technique: for some vectored routines, the code is:

MOVE . W VECTOR_ADDRESS, An
JSR $4000(An)

The entries in Section 16 for vectored routines which require this treatment are suitably marked.

There are no general rules covering the handling of errors in vectored routines. Some routines return an
error code in DO in the same way as traps, but others use the technique of returning to one of a set of
alternative return addresses. An example is the vectored routine MD.RDHDR, which returns to the location
after the call if there is a "bad medium" error detected, to the address 2 bytes later if there is a "bad sector
header" error detected, and to the address 4 bytes later for a correct completion. Thus the correct code to
trap these errors would be:

MOVE . W VECTOR_ADDRESS, An
JSR $4000(An)
BRA.S BAD_MEDIUM_ERROR
BRA.S BAD_SECTOR_ERROR
* Code for processing a correct return starts here
BAD_MEDIUM_ERROR Code for processing a bad medium error starts here
(...)
BAD_SECTOR_ERROR Code for processing a bad sector error starts here

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 2 - 4

Obviously, a similar mechanism can be used with any number of error returns (including zero or one).

Complete details of the vectored routines are given in Section 16.0, including information about the
behaviour of each routine when an error occurs.

2.2.3. Atomic Actions

In general, system calls are treated as atomic: while one job is in supervisor mode, no other job in the
system can take over the processor. This provides for resource table protection without the need for complex
procedures using semaphores. If a job needs to execute some action other than a single system call into
which no other job must be allowed to intervene, it should enter supervisor mode before entering the code
which performs this action. Supervisor mode is entered using TRAP #0. The stack pointer only is changed by
this trap.

A job should only use 64 bytes on the supervisor stack and all of the space used on this stack must be
released before exiting supervisor mode. In general, there should be nothing on the supervisor stack when a
manager trap is made. Under SMSQ/E, 512 bytes may be used on the supervisor stack.

Some system calls are only partially atomic, that is, when they have completed their primary function, some
other job may gain a share of CPU time before control returns to the calling job. These partially atomic
system calls must not be made from a job in supervisor mode. All of the scheduler calls (i.e., TRAP #1 with
DO =4, 5, 8, 9, $A, $B) fall into this category, as do all the 1/O calls (TRAP #3), unless immediate return
(timeout=0) is specified.

A piece of code in supervisor mode can be interrupted by the frame (50/60 Hz) or external interrupts, so care
must be taken, when writing interrupt servers, that the system's internal data structure is not modified,
directly or indirectly, by system calls. In practice, since interrupt servers tend only to be moving data into or
out of queues, this is not a serious limitation.

2.3. Exception Processing

There are three categories of exception traps on the 68008: user traps, traps for software error conditions,
and traps for hardware interrupts. There is also one special hardware trap called "bus error", which can be
used to trap bad conditions on the address bus: this trap is not supported by the QL hardware.

User traps 0 to 4 inclusive are treated as defined in Sections 13 through 15.

User traps 5 to 15 inclusive, together with the software error traps for "address error”, "illegal instruction”,

"divide by zero", "check array", "trap on overflow", "privilege violation" and "trace" are redirectable by the
user on a per-job basis: see the entry for SMS.EXV in Section 13.

Traps and exception vectors which are not used by QDOS may be redirected through a table which is set up
by particular job.

If a job has set up a table of trap vectors for itself, then that table will automatically be used when that
particular job is being executed. The vector tables used by other jobs will not be affected. A job set up by,
even if not owned by, a job which has set up a table of trap vectors, will use the same table as that job, until
it is redefined.

If the Job ID is a negative word, then the table will be set up for the calling job.

The table is in the form of a long word address for each trap or exception.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section2 -5

They are in the following order:

$00 address error

$04 illegal instruction
$08 zero divide

$0C CHK

$10 TRAPV

$14 privilege violation
$18 trace

$1C interrupt level 7
$20 trap #5

$24 trap #6

$28 trap #7

$2C trap #8

$30 trap #9

$34 trap #10
$38 trap #11
$3C trap #12
$40 trap #13
$44 trap #14
$48 trap #15
$4C end of table

All interrupts on the QL are auto-vectored, therefore there is no treatment of the 68008 vectored interrupt
traps. Interrupts generated by the QL internally are level 2 auto-vectors: the interrupt handling mechanism
includes the facility for detecting an interrupt on the EXTINTL (external interrupt, active low) line in the QL's
expansion port.

It is also possible to generate a level 7 (non-maskable) interrupt: the treatment of this can also be redirected
on a per-job basis. Under QDOS (not SMSQ/E), pressing CTRL-ALT-7 on the keyboard generates a level
interrupt and also resets all communications with the IPC: a suitable interrupt handler could be written to
perform a warm start on the system to allow partial recovery from a crash.

2.4, Start-up

The first thing that QDOS does when the system is reset is to execute a RAM test. This test determines the
amount of contiguous RAM present, and if there is any RAM failure, hangs up the machine.

QDOS then initialises the system variables, the system management tables, and the S*Basic area.

The address $C000 is then checked by QDOS for the characteristic longword $4AFB0001: if this is found,
QDOS links in the S*Basic procedures contained in the ROM, prints out the name of the ROM, and performs
a JSR to its initialisation point (details of the correct format of the ROM are found in Section 11.4). It is
perfectly in order for the code in this ROM to take over the machine completely and never return to the
system, for example if another operating system were being booted.

QDOS then does the same for the other ROMs in the expansion slots.

If all of these ROMs return control to QDOS, the next action is to try to open a device driver "BOOT": if this is
found, its contents are loaded as a S*Basic program and executed. If no device driver "BOOT" has been
linked in, QDOS attempts to find a file "MDV1_BOOT" and load and execute its contents as a S*Basic
program. SMSQ/E will search for either “FLP1_BOOT” or “WINx_BOOT", according to the way it is
configured. If both of these attempts fail, the system starts up the S*Basic interpreter with an empty program
memory.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section2 -6

3. Machine Code Programming

Five types of machine code are available to program the QL, each being used to perform quite different
operations: jobs, S*Basic procedures and functions, tasks, the operating system or extensions to it and
“Things”. Thus there are several differences in both the form in which they are written, and the way in which
they are treated by QDOS. Things have their own section in this manual.

3.1. Jobs
3.1.1. Normal Jobs

Most application programs written in machine code or compiled code will be in the form of jobs. A job is an
entity which has a share of machine resources: it has a priority which allows it to claim time-slots of CPU
activity, and it has a fixed-size area of memory where data and code can be stored: code normally starts at
the bottom of the area, and data at the top. This area is located somewhere in the transient program area.

Note that the command interpreter is itself a job but with the exceptional characteristic that its data area is
expandable.

A job also has the ability to own I/O channels or other jobs. There is no protection between jobs under
QDOQOS, so that channels are available for use by all jobs. Ownership simply implies that when the owner of a
channel or job is deleted, the owned channel or job is deleted also (this process continues recursively).

Jobs have three well-defined states: they are active, sharing CPU resources with other jobs; suspended, for
example, waiting for I/O or another job; or inactive, occupying memory but not capable of using CPU
resources.

The priority of a job can be zero, in which case it is suspended, and does not consume CPU time.

It can in fact be suspended for its entire lifetime and never execute at all, which would be the case if it was
simply used as a means of obtaining some memory into which data could be loaded. A job at any other
priority level is active.

When a job is started, two parts of its area of memory have defined meanings:

The bottom of the code area, and the stack, which is at the top of the data area.

It is the programmer's responsibility to set up the bottom of the code area, which should be in the following
form for use by SMSQ/QDOS utilities:

JMP. L JOB_START

DC.W $4AFB

DC.W JOB_NAME_LENGTH

DC.B "Name of job' (word-aligned)
JOB_START

* Code begins execution here (assuming that the
* start address defined when the job was created was zero)

On the first occasion that a job is activated, (A6) points to the base of the job area, (A6,A4) points to the
bottom of the data space, and (A6,A5) points to the top of the jobs area.

There may be some information on the stack, which will be in the following form:
(A7) points to the number of channels which have been opened for the job before it was activated; above this
is a sequence of long words holding the channel IDs, and above these are a command string which may

have been passed to the job.

It is the Programmer's responsibility when starting a job to set up this information: the S*Basic EXEC,
EXEC_W commands and any utilities produced by Sinclair are compatible with this form.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 3 - 1

(A6,A5) }Command string length(word) + bytes

IChannel ID long
}Channel ID long
‘II
‘II
}Channel ID long
\

(A7) 'Number of Channel Ids word

\
(AB,A4) |Data area
\

(Code area
\
}Job name length(word) + bytes
$4AFB word
(A8) }JMP.L JOB_START

Note that the normal sequence in QDOS is as follows:

1. reserve space for a job;
2. load its code in;

3. open its channels;

4. activate it.

Execution begins at an address specified when the job was created. This is normally specified as zero,
which is why the first thing in a job is normally a JMP.L instruction to the entry point of the code. Since
QDOS cannot give guarantees as to where a job will be loaded, it is usual to write jobs as position-
independent code, although it is possible to avoid this constraint if a special relocating loader is used after
the space for the job has been allocated.

The system job table holds information about the jobs within the system. The system variable SYS_JBTB
points to the base of the job table, and SYS_JBTT points to the top. The table is a series of long words each
of which points to a job control block: the contents of this are described in Section 18.6. The job is identified
to the system by its Job ID: this is a longword consisting of a word giving its position in the job table (in the
least significant word), and a word of tag allocated by the operating system when the job is created (in the
most significant word).

The traps that may be called relating to jobs are as follows:

SMS.INFO returns the current Job ID, plus miscellaneous information
SMS.INJB returns the status of a job

SMS.CRJB creates a job

SMS.RMJB removes an inactive job

SMS.FRJB forces removal of a job (whether inactive or not)
SMS.FRTP finds the largest space available for a job
SMS.EXV sets the trap-vector table for a job

SMS.SSJB suspends a job

SMS.USJB releases a job

SMS.ACJB activates a job

SMS.SPJB changes the priority of a job

A job terminates itself by calling SMS.FRJB with its own Job ID (or -1, which always refers to the current
job).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 3 -2

3.1.2. Special Programs

Special Programs have, like standard jobs, the value $4AFB in bytes 6 and 7. This is followed by a standard
string (length in a word followed by the bytes of the program identification). This is followed by a further value
of $4AFB (aligned on a word boundary). When the program has been loaded, the option string put on the
jobs stack and the input pipe (if required) opened and its ID put on the job's stack, then EX will make a call to
the address after the second identifying word.

Note that the code call will form part of a Basic procedure, not part of an executable program.

Special Program

Call parameters Return parameters
D1-D3 D1-D3 7?7
D4.L 0 or 1 if there is an input D4 ?2?7?

pipe ID is not on stack
D5.L 0 or 1 if there is an output D5 nr. of channel ID's on stack
pipe ID is on stack

D6.L job-ID for this program D6 ??7?
D7.L total nr. of pipes and filenames D7 ??7?
AOQ address of support routines A0 ??7?
A1 pointer to command string A1 2?7
A2 A2 7?7
A3 pointer to first filename A3 ??7?

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

|

(name table) (relative to AB) * }

A4 pointer to job's stack A4 }
A5 pointer beyond last filename A5 27?7 |
(name tab.) (relative to A6) * }

A6 base pointer A6 preserved }
\
\
\

Error returns: any standard returns

The entries marked with * are relative to A6 (standard S*Basic procedure passing registers, see Section 9.8).

The file setup procedure should decode the filenames, open the files required and put the IDs on the stack
(A4). D5 must be incremented by the number of channel IDs put on the job's stack.

A0 points to two support routines, the first lies a (A0) and gets a filename, the second lies at 2(A0) and
opens a channel:

The routine (A0) to get a filename should be called with the pointer to the appropriate name table entry in
A3. DO is returned as the error code, D1 to D3 are smashed. If DO is 0, A1 is returned as the pointer to the
name (relative to A6). If DO is returned positive, AO is returned as the channel ID of the S*Basic channel (if
the parameter was #n), all other address registers are preserved.

The routine 2(A0) to open a channel should be called with the pointer to the flename in A1 (relative to AG6).
The filename should not be in the Basic buffer; D3 should hold the access code and the Job ID (as passed to
the initialisation code) should be in D6. The error code is returned in DO, while D1 and D2 are smashed, and
A1 is returned pointing to the filename used (it may have a default directory in front). If the open fails, A1 will
point to the default+given filename. The channel ID is returned in AO and all other registers are preserved.

In both cases the status register is returned set according to the value of DO.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 3-3

3.1.3. Job Control Enhancements [SMSQ/E]

The S*Basic extensions FEX, FEW, FET and FEP have been added to SMSQ/E v3.00 and later.
These are function calls corresponding to the procedures EX (EXEC), EW (EXEC_W), ET and EXEP.

FEX
job id = FEX(<file name>)

Executes and returns the ID of the job <file name>.

This ID can be used to manipulate the job in various ways by using the other job control extensions, such as
SPJOB, AJOB, RJOB, etc.

The full syntax using input and output channels, as well as filters, is supported. See the TK2 documentation,
Section 8.xx for details.

Note: In the event of filters being set up, only the ID of the first job is returned.
Note: The name FEX clashes with the eponymous keyword from FileInfo2. By the time you read this a later
\ég:ts]i‘on of FI2 may be available, otherwise you will need to patch one or the other of the keywords to access
FET
As for FEX above, except the job is not activated.
FEW

er = FEW(<file name>)

Returns the error code returned by the (first) job. Syntax as for FEX above.

Note: FEW tries to open the channels of files supplied in the parameter list before executing the job(s). Any
errors arising from this, including erroneous parameters, are returned to the caller as "hard" errors.

FEP
job _id = FEP(<thing name>)

Executes and returns the ID of the job <thing name>. FEP is the implementation of EXEP as a function.
Refer to your Qpac2 manual for details.

EXF
job_id = EXF (<file name>)

This keyword is, in function, totally identical to the FEX keyword introduced by version 3.00 of SMSQ/E (it
uses the same code, just another name).

The FEX keyword in SMSQ/E FEX clashes with the FEX keyword contained in FileInfo Il. To avoid having to

patch either SMSQ/E or Filelnfo Il (even though an S*Basic program to patch Filelnfo Il is supplied) you can
simply use the EXF keyword, instead of the SMSQ/E FEX keyword.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 3-4

3.2. S*Basic Procedures and Functions

The S*Basic command interpreter is job number zero. It behaves like all other jobs in most respects, with the
important exception that it owns a special data area which is expandable, and may be moved without the
knowledge of the interpreter. This area is located immediately below the transient program area.

Machine code procedures and functions which are added to S*Basic appear to the user to be identical to
those which are built into the ROM. From the user's point of view they are routines which are executed from
within either job number zero (in QDOS) or any other S*Basic job (under SMSQ/E), but which have certain
constraints on the way they are coded.

The most important constraint is that A6 is used to point to the (moveable) base of the S*Basic data area. On
the QL under QDOS, the system may move the area and change the value of A6 between instructions
without the knowledge of the interpreter, therefore A6 must not be modified within the procedure or function,
and its value must not be stored or used in calculation. This constraint may be side-stepped by entering
supervisor mode, but A6 must then be restored on exit back to user mode (the processor is in user mode
when a procedure or function is entered). The stack pointer A7 must of course be restored to its original
value before exiting from the procedure. Note : this restriction concerning register A6 does not apply to
SMSQ/E.

On exit from the procedure, an error key is passed to the interpreter in D0.L: this must be set to zero if there
was no error. The procedure or function can then be exited using an RTS statement.

If machine code procedures or functions are to be used either recursively or in recursive S*Basic
procedures, they must obey the usual constraints of having no local variables and no self-modifying code.

Machine code procedures and functions are normally loaded into the resident procedure area above the
transient program area. This area can only be expanded or deleted when the transient program area is
empty, which is normally immediately after the machine is booted.

Trap #4 is the one special trap which relates to S*Basic procedures and functions. This trap is used to make
the addresses passed to an I/O trap relative to A6, which is necessary when working with the S*Basic
variables area. It only affects the following trap, and must therefore be called before each trap whose
addresses are to be modified.

Details of parameter passing, function returns and other useful information about the S*Basic interface are
given in Section 9.0.

3.3. Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of the physical layer of a device
driver. They obey special rules according to the precise conditions under which they are called: these rules
are described in the Sections on device drivers (Sections 6.0-8.0). The important restriction on tasks is that
they must not allocate or release machine resources: this should only be done from within a job, or within the
access layer of a device driver.

3.4. Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above categories: they are special
routines called from within a job via the QDOS Input/ output sub-system (see Section 6.0).

These routines have their own rules, and these are described in the Sections on device drivers (Sections 6
to 8).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 3-5

4. Memory Allocation

Memory is allocated differently in each area of the QDOS memory map.

4.1.

Memory in the resident procedure area is allocated using the trap SMS.ARPA.

Memory in the transient program area is allocated by the mechanisms described in Section 13.0 for
creation and deletion of jobs. The vectored routines MEM.ALHP and MEM.REHP may be used
within a job to perform primitive heap allocation inside that job's own data area.

Memory in the S*Basic area is allocated by various mechanisms. The traps SMS.AMPA and
SMS.RMPA are used by the interpreter to change the size of the entire area, but are not normally
used by anything else. The vectored routine QA.RESRI is used to allocate space on the arithmetic
stack: the interpreter itself cleans up this space on return from a procedure or function. Space in the
remaining parts of the S*Basic area is usually allocated by the vectored routines being used to
perform the operations that require the space, so that this allocation is invisible to the user, except
that it usually results in a modification of the value of A6.

Memory in the free memory area is not allocated or deallocated by the user, except by the slave
block mechanisms defined in Section 7.0 on directory device drivers.

Memory in the common heap is allocated and released by the traps SMS.ACHP and SMS.RCHP.

The area allocated in this way by a job is released when that job is deleted. The same mechanisms
can be accessed from within device drivers via the vectored routines MEM.ACHP and MEM.RCHP.

Heap Mechanism

The mechanism for allocating and releasing space are common to various routines. They are as follows:

A heap is an area of memory which contains a linked list of free heap items. Each heap item is an
area of memory (which is a multiple of 8 bytes long), together with a pair of long words: the first is
the length of the heap item, while the second is a pointer (relative to itself) to the next heap item in
the list. The use of relative pointers ensures that heaps may be moved.

A heap is set up by linking an area of ram -> memory into a non-existent heap (free space pointer =
0). A heap is expanded by linking an area of ram -> memory, preferably but not necessarily,
contiguous with the current top of the heap, into the heap.

Provided the user code can remember the length of a heap item, all of the memory in it may be used
by the code. On allocation of the heap item, the first long word holds its length, and so, if desired,
this may be retained by the user code.

The user code requires to keep one pointer to the first free space item in the heap. This is a long
word, and is relative. When the heap has no free space, either because it does not exist, or because
it is full, this pointer is zero. Note that memory is always allocated as a multiple of 8 bytes.

Releasing a heap item adds it to the list of free space items within the heap, and consolidates it with
adjacent free spaces where appropriate.

The vectored routines MEM.ALHP and MEM.REHP may be used for allocating/releasing memory
within a heap.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section4 -1

5. Input/ Output on the QL

A QL program uses /O by accessing QDOS. The I0SS in turn accesses the device driver for the appropriate
device. The device driver is a piece of code which can perform low-level I/O routines for a particular device:
that device may correspond to a piece of hardware, such as a serial port, or it may be some notional device
occupying a piece of memory, such as a pipe, which is a communication channel between jobs.

QL /O is performed through the IOSS using an I/O channel. The applications program opens a channel by
passing a device name to the I0SS, which returns a channel ID. The IOSS and the built-in device drivers
have the ability to recognise qualifiers appended to the actual name of the device which can direct the open
operation in particular ways, such as identifying a file name, or selecting some hardware option. The
program then uses the channel ID to identify to the IOSS which channel it wishes to access when performing
read or write operations on it. It can also close the channel, passing the channel ID to the I0SS. There may
be several channels open which use the same device driver, such as multiple screen windows, or Microdrive
files. For this reason, all the built-in drivers are re-entrant, as must user-defined drivers if they are to have the
same capability.

The QL ROM contains drivers for several devices such as screen windows, serial ports. pipes, microdrives,
and so on. The user can add his own device drivers for pieces of add-on hardware, or simply for additional
functions with the existing hardware.

Note that a channel ID is not the same thing as a S*Basic channel number (denoted by #expression): the
latter is the index of an entry in the S*Basic channel table which includes a channel ID. See Sections 18.4
and 18.7 for details of the channel table.

5.1. Serial I/O

All device drivers have, at the very least, the capability to perform serial I/O: that is, the operations of reading
bytes, writing bytes, and testing for pending input. Serial /O is completely byte-oriented - unlike many
operating systems there is no inbuilt record structure, which means that the user is free to superpose his
own record maintenance in whatever form he wishes. I1/O which is purely serial is completely redirectable:
when different devices are being used, the device name passed to the channel open trap is the only thing
that changes.

The 10SS supports one control character only, this being the newline character, which is ASCIl 10 ($0A).
Whilst this has the disadvantage that one cannot directly store files of graphics commands which can be
retrieved by a simple copy, it does have the advantage that files containing arbitrary sequences of bytes
cannot do irretrievable damage to the system by being copied to a device for which they were not intended.
The serial port driver has the option of supporting ASCII 13 as a newline, and ASCII 26 (CTRL-Z) as an end
of file marker.

All serial I/O calls support a time-out feature, which may be zero (return immediately), indefinite (wait until the
operation is complete), or finite (wait until the operation is complete, or for a set time, whichever is the
sooner). This last feature makes it very easy to write code which, for example, puts up a menu only if the
user hesitates.

The 10SS supports the following calls for serial 1/0O:

I0OA.OPEN opens a channel

I0OA.CLOS closes a channel

IOB.TEST tests for pending input

IOB.FBYT fetches a single byte

IOB.FLIN fetches a line of bytes terminated by newline (ASCII 10)
I0OB.FMUL fetches a string of bytes

I0B.SBYT sends a single byte

10B.SMUL sends a string of bytes

The fetch and send traps have several special meanings when used in conjunction with screen or console
channels: for a more detailed description of these, see Section 15 on I/O Traps.

For the fetch byte and fetch string traps, characters read from the keyboard are not echoed in the associated
window, and cursor handling is left to the applications program.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5 - 1

5.2. File 1/0

QDOS files appear to the applications program as arrays of bytes on a physical device, with an associated
file pointer which gives the "current position" in a file. A file also has a header, which is normally 64 bytes
long containing information about the file such as its name, length, etc.

Further details concerning the format of the file header are given in Section 7.0 on Directory Device Drivers.

The open call to a file system device supports several modes: old (exclusive), old (shared), or new
(exclusive). New (overwrite) mode has a slot allocated in the open keys, but is not currently supported for
Microdrives. In addition, a special open key indicates that it is desired to open the directory of the medium for
reading rather than a particular file; the directory cannot be explicitly written, but is maintained by the device
driver when open calls and deletions are made.

QDOS supports a system of slaving, whereby 512-byte blocks of data are buffered in the free memory area
(see Section 4.0): all unused memory being taken for this area. The filing system may return from a write
operation when that operation has only been performed on the slave block concerned; QDOS will later force
the system to convert that slave block into a true copy of the data on the physical device. As a result of this
mechanism, add-on filing devices normally support 512-byte logical blocks: however this blocking system is
transparent to the applications program. A single slave block table is shared by all the directory drivers which
want to use it to improve their performance.

In addition to the serial I/O operations described above, QDOS supports the following operations for file-
system devices:

IOA.FRMT formats a sectored medium
IOA.DELF deletes a file

IOF.CHEK checks all pending operations on a file
IOF.FLSH flushes buffers for a file

IOF.POSA positions the file pointer absolutely
IOF.POSR positions the file pointer relatively
IOF.MINF gets information about the mounted medium
IOF.SHDR sets the file header

IOF.RHDR reads the file header

IOF.LOAD loads a file into memory

IOF.SAVE saves a file from memory

The IOF.FLSH and IOF.CHEK commands are subtly different: IOF.FLSH ensures that all write operations
are complete, whereas IOF.CHEK ensures that all write and read operations (including pre-fetches) are
complete.

Not all drivers will implement this trap, e.g. for the SMSQ/E inbuilt ram disks, where this will just go to a
MOVEQ #0,D0 and an RTS.

SMSQ/E contains several additional operations for filing system devices. Most filing system devices under
SMSQ/E will allow these operations :

IOF.RNAM rename file

IOF.TRNC truncate file to current position
IOF.DATE set or get file dates
IOF.MKDR make directory

IOF.VERS set or get version

IOF .XINF get extended information

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5 -2

5.3. Screen and Console 1/0

The keyboard and screen devices are treated in a special way by QDOS, and have a large number of
functions in addition to those available for purely serial /0 devices. Two types of device are supported: scr
(for screen), which is a screen window, and con (for console), which is a screen window with an associated
keyboard channel. The three channels #0, #1 and #2 which are opened by S*Basic are all console channels.

5.3.1. Display Modes

The QL has two display modes (see the Concepts manual for details). The display mode can be set or read
using the SMS.DMOD trap, but as this trap clears all screen windows, it should be used with great care. A
program can also find out whether the user selected TV or monitor at switch-on by inspecting the value of
the system variable SYS_DTYP, which is unfortunately smashed by the MODE command on standard
QLs.

SMSQ/E has many more display modes, which ones can be displayed depends on the machine it is running
on.

There are two main coordinate systems used for screen I/O: these are the graphics coordinate system and
the pixel coordinate system (see the Concepts manual for details). Note that in 256-pixel mode (mode 8)
and for several commands in 512-pixel mode (mode 4), the least significant bit of a dimension in the x-
direction is ignored, so that a given pixel address refers to the same location in both modes. Some traps
refer to character coordinates: these are based on the pixel coordinate system but are scaled by the current
character spacing for the window.

5.3.2. Window Properties and Operations

A window is an area of screen which may be in any position on the screen, subject to the restriction that its
x-position must be an even number. A window may be of any size that does not run off the edge or bottom of
the screen, subject to the same restriction. Windows may overlap, but the system does not store or retrieve
the area of overlap, it being the user's responsibility to ensure that any information is not lost or garbled.
Under SMSQ/E, or under QDOS with the pointer environment, overlapping windows are restored by the
system.

Each window will have its own particular set of characteristics: a border width, a border colour, a paper
colour, a strip colour, an ink colour, a cursor position, a cursor increment, a flag which says whether the
cursor is suppressed, a pair of font pointers, information about newline treatment, and graphics information.
Details of the window definition block are given in Sections 18.7 to 18.10.

The special traps for dealing with windows are as follows:

IOW.PIXQ returns window information in pixel coordinates
IOW.CHRQ returns window information in character coordinates
IOW.DEFB set the border width and colour

IOW.DEFW redefines a window

IOW.ECUR enables the cursor

IOW.DCUR suppresses the cursor

IOW.SCRA scrolls a whole window

IOW.SCRT scrolls the top part of a window

IOW.SCRB scrolls the bottom part of a window

IOW.PANA pans a whole window

IOW.PANL pans the line the cursor is on

IOW.PANR pans the the right-hand end of the line the cursor is on

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section5-3

IOW.CLRA
IOW.CLRT
IOW.CLRB
IOW.CLRL
IOW.CLRR
IOW.RCLR
IOW.SPAP
IOW.SSTR
IOW.SINK

IOW.BLOK
IOW.SOVA

clears a whole window

clears the top part of a window

clears the bottom part of a window

clears the line the cursor is on

clears the right-hand end of the line the cursor is on
recolours a window

set the paper colour

set the strip colour

set the ink colour

fills a rectangular block in a window

set the character writing or plotting mode

SMSQ/E has many more window traps, some of these will also be available under QDOS with the pointer

environment:

IOW.PAPP
IOW.STRP
IOW.INKP
IOW.BORP
IOW.PAPT
IOW.STRT
IOW.INKT
IOW.BORT
IOW.PAPN
IOW.STRN
IOW.INKN
IOW.BORN
IOW.BLKP
IOW.BLKT
IOW.BLKN
IOW.PALQ
IOW.PALT
IOW.SALP

IOP.WPAP
IOP.FLIM
IOP.SVPW
IOP.RSPW
IOP.SLNK
IOP.PINF
IOP.RPTR
IOP.RPXL

EXTENDED COLOUR TRAPS
define paper colour (palette)
define strip colour (palette)
define ink colour (palette)
define border (palette)
define paper colour (24 bit)
define strip colour (24 bit)
define ink colour (24 bit)
define border (24 bit)
define paper colour (native)
define strip colour (native)
define ink colour (native)
define border (native)
draw block (palette)
draw block (24 bit)
draw block (native)
define QL colour palette
define 8 bit palette
set alpha blending weight

POINTER I/0 TRAP KEYS
define wallpaper
Find window LIMits
SaVe Part of Window
ReStore Part of Window
Set bytes in LiNKage block
pointer information
read pointer
read pixel

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 5-4

IOP.WBLB write blob

IOP.LBLB write line of blobs
IOP.WSPT write sprite
IOP.SPRY spray pixels
IOP.FILM fill within mask
IOP.SPLM set pointer limits
IOP.OUTL set window outline
IOP.SPTR set pointer position
IOP.PICK pick / bury window
IOP.SWDF set window definition
IOP.WSAV locate and save window
IOP.WRST restore window

5.3.3. Screen Character Output Operations

Newline characters receive slightly different treatment when bytes are being sent to a screen or console
channel rather than to any other device. In addition to being caused by a newline character, a newline is
automatically inserted when the cursor reaches the right-hand side of the window; when this happens during
an IOB.SBYT trap, the error code ERR.ORNG (for out of range) is also returned.

If the cursor is suppressed, the newline is held pending. It can be cleared by any call to position the cursor,
or activated by any of the following events: send another byte or string;

* changing the character size;
* activating the cursor;
* requesting the cursor position.

This features allows the right-hand character squares to be used without generating stray blank lines.

The following additional operations apply to screen character output:

IOW.FONT sets or resets the character fount

IOW.SFLA sets or resets hardware flash (256-pixel mode only)
IOW.SULA sets or resets underlining

IOW.SSIZ sets the character size and spacing

5.3.4. Graphics Operations

The QL can perform line, arc or ellipse drawing on a window basis in scaled coordinates. It also provides a
primitive area flood routine. The traps are as follows:

10G.DOT draws a point

IOG.LINE draws a line

I0OG.ARC draws an arc

IOG.ELIP draws an ellipse
I0OG.SCAL sets the scale

I0OG.SGCR moves the graphics cursor
I0G.FILL set or reset area filling

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section5-5

5.3.5. Special Properties of Console Channels

For the console device, the IOB.FLIN trap behaves in a particular fashion: the characters typed are echoed
in the console window, and the left and right cursor keys (with or without CTRL) are used to edit the line in
the standard way. In addition, the cursor is automatically enabled.

An additional trap, IOB.ELIN, is provided for console channels, which invokes the line editor on a pre-defined
string. The line-editor may be exited by typing ENTER, or by typing either the cursor-up or the cursor-down
character.

The user can temporarily suspend screen output to a console channel by typing the freeze screen character
(CTRL-F5). Output is resumed when any character is typed, but the character is ignored for all other
purposes. If a finite time-out has been set for the suspended operation, it may return non-complete if the
screen is frozen past the time-out period.

5.3.6. Special Keyboard Functions

Several console channels may be open at the same time. If they are used by different jobs, it may be that
more than one console channel is expecting input at a given time. When this occurs, the user may cycle
round the list of console channels currently expecting input by typing the change queue character on the
keyboard. The cursor in the console window to which keyboard input is currently directed will flash if it is
enabled. Any enabled cursors in other windows will be steady.

The change queue character is normally CTRL-C (ASCII 3). It can be changed by modifying the system
variable SYS_SWTC.

The keyboard maintains a type-ahead queue of seven characters in the 8049 processor which controls it. In
addition to this, there may be more type-ahead in the queue for each console channel.

The keyboard auto-repeats on all keys except the keyboard change queue character, CTRL-Space (the
S*Basic BREAK) or CTRL-F5 (the freeze screen character). However, auto-repeat will not occur unless the
type-ahead queue for the console channel to which input is currently directed is empty. The delay before
auto-repetition begins is held in the system variable SYS_RDEL, and the interval between repetitions is held
in SYS_RTIM (both in multiples of 1/50th or 1/60th of a second). These can be altered by a program.

When CAPSLOCK is pressed, the system will jump to a user-supplied routine whose absolute address is
held in the system variable SYS_CSUB if the value of this is non-zero. This routine should restore all
registers to their initial state before returning.

5.3.7. Extended Operations susas

A special trap IOW.XTOP is provided to allow a program to invoke a user-supplied routine using the same
environment that is passed to the routines in the screen driver. See the description in Section 15 (I/O Traps)
for a more detailed discussion of this trap.

5.3.8. Display (smsak

This section documents many of the enhancements to SMSQ/E v3.00 and following, mostly directed at
programmers.

5.3.8.1. New CON driver vectors

A new vector block has been introduced to provide direct access to new screen driver functions. To call one
of those functions, one first needs a pointer to the CON linkage block. This can either be obtained in the
traditional way or by reading the sys_cInk ($C4) system variable. It is planned that future PTR_GEN /
WMANSs for non-SMSQ/E version will also support this system variable. On current non-SMSQ/E systems its
value should be 0.

The pointer to the vector table itself is located in the new pt_vecs variable within the linkage block. A typical
call sequence can thus look like this:

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5-6

moveq #sms.info, dO

trap #1 ;
move.l sys_clnk(a0),a3 ;
move.l pt_vecs(a3), a0 ;
jsr pv_fspr(a0) ;

get pointer to system variables in A0
pointer to CON linkage
vector table
actual call

All vectors expect A3 to be the pointer to the CON linkage block on entering the call. With the above code,
this is done automatically. The keys (e.g. the values of PV_PINF, PV_FSPR etc) are contained in the file

"dev8_keys_con".

Vector $00

Call parameters
D1
D2
D3

A0
A1
A2
A3 Pointer to CON Linkage Block

Error returns:

This routine always succeeds.

PV_PINF

Like IOP.PINF, but one doesn't need a channel to call this routine.

Return parameters

D1
D2
D3

A0
A1
A2
A3

Pointer Version Number
Preserved

Preserved

Preserved
Pointer to WMAN
Preserved

Preserved

Vector $06

display mode.

Call parameters
D1
D2
D3

AO Pointer to 1st Sprite

A1

A2

A3 Pointer to CON Linkage Block

Error returns:

This routine always succeeds.

PV_FSPR

Look in linked sprite list for the definition that would actually be used in the current

Return parameters

D1
D2
D3

A0
A1
A2
A3

Preserved
Preserved
Preserved

Pointer to Fitting Sprite
Pointer to WMAN
Preserved

Preserved

If no fitting sprite is found, a pointer to the arrow sprite is returned!

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section5-7

Vector $0C PV_SSPR

Set system sprites/Get system sprite address

Call parameters Return parameters
D1.W Sprite Number / -ve D1 Preserved /
Max Allowed | Max Current
D2 D2 Preserved
D3 D3 Preserved
A0 AO Pointer to Fitting Sprite
A1 Pointer to Sprite / 0 A1 Preserved / Pointer to Sprite
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IPAR lllegal sprite number (set / get)

ITNF there are no system sprites !

This gets or sets a system sprite or returns the maximum number of system sprites

* If D1 is a negative number (-1 is suggested), then on return d1 contains:
maximum number of space in table for system sprites | highest number of current system sprite

else:

« IfA1=0,then
one gets the address of the system sprite the number of which is passed in D1. The address is
returned in a1. This address MAY be 0, in which case the system sprite requested does not
exist. This will only happen if somebody fiddled with the table contrary to recommendations

* If A1 <>then
it contains the address of a sprite that will be a system sprite, d1 contains the number of that
sprite. This sprite is not " copied to a safe place", it is the responsibility of the calling job to make
sure that the sprite doesn't just disappear

For a list of the system sprites defined thus far see KEYS_SYSSPR.

The sprite table has the following format:

-2 maximum number of sprites possible in table (word)
0 number of sprites currently in table (word)
2+ long word absolute pointers (i.e real addresses of sprites)

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section5-8

Vector $12 PV SIZE

Get shift sizes

Call parameters Return parameters

DO DO PT.SPXLW | PT.RPXLW
D1 D1+ Preserved

D2 D2 Preserved

D3 D3 Preserved

AO A0 Preserved

A1 A1 Preserved

A2 A2 Preserved

A3 Pointer to CON Linkage Block A3 Preserved

DO returns :

PT.SPXLW : shift pixels to long word
PT.RPXLW : round up pixels to long word

Error returns:

None, this vector always succeeds. The value in DO is not an error return

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5-9

Vector $18

Moves a block of screen memory about

Call parameters

DO
D1
D2
D3
D4
D5

A2
A3
A4
A5

Size of Section to move
Old origin in source area

New origin in destination area

Row increment of source area
Row increment of destination area
Base address of source area

Base address of destination area

All other registers are preserved

Error returns:

PV_MBLK

Return parameters

DO
D1
D2
D3
D4
D5

A2
A3
A4
A5

Smashed (undefined)
Smashed
Smashed
Smashed
Smashed

Smashed

Smashed
Smashed
Smashed

Smashed

This routine always succeeds. The value in DO is not an error return

This moves a block of screen memory about, from source to destination. The X | Y size of the block, in
pixels, is contained in D1 on entry. Note: Do not mis-use this vector to move general memory about. The
size of the memory actually moved depends on the screen driver that is being used. Thus, if you move a
block of 10x20 pixels (x]y size) in modes 32 and 33, 400 bytes will be moved (1 pixel = 2 bytes). In modes 16
and 31, only 200 bytes will be moved (1 pixel = 1 byte) and in the QL modes, even less bytes will be moved.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 5-10

Vector $1E PV_CURSP

Sets the per job cursor

Call parameters Return parameters

DO DO Error

D1 Job ID D1 Smashed

D2 Status Wished (0| 1) D2+ All preserved
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IJOB Wrong Job ID
NIMP Something went horribly wrong : no job table!

Please see the Section 5.3.9 : Cursor Sprite for further explanations on this vector.

Vector $24 PV BGCTL
Gets/sets the background 1/O status

Call parameters Return parameters
DO DO Standard Error Code
D1 -1 read D1 0 Disabled
0 disable >0 Enabled
1 enable
D2 D2 Preserved
D3 D3 Preserved
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to CON Linkage Block A3 Preserved

Error returns:
IPAR D2isnot0
NIMP Operating System is not background I/O compatible

This sets or gets the background I/O status.

If D1 is negative on entry, the current background I/O status is returned, else the current background 1/O
status is set according to the value of D1 (any value other than 0 enables background 1/O).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5 - 11

Vector $2A PV CMBBLK
Combines two blocks of (screen) memory with alpha blending and puts the
result into the destination block

Call parameters Return parameters

DO DO Smashed (undefined)
D1 Size of block to combine D1 Smashed

D2 Origin in source area 1 D2 Smashed

D3 New origin in destination area D3 Smashed

D4 Origin in source area 2 D4 Smashed

D5 D5 Smashed

D6 Alpha value D6 Preserved

D7 Row increment of source area 2 D7 Smashed

A1 Base address of source area2 A1 Smashed

A2 Row increment of source area 1 A2 Smashed

A3 Base address of source area1 A3 Smashed

A4 Pointer to CON Linkage Block A4 Smashed

A5 Base address of destination area A5 Smashed

All other registers are preserved

Error returns:

This routine always succeeds.

The value in DO is not an error return

This will combine the pixels of two blocks of screen memory with an alpha blending operation and put the
resulting block into the destination. The x|y size of the block, in pixels, is contained in D1 on entry. D6
contains the alpha value, from 1 (nearly transparent) to 255 (totally opaque), in the LSB.

NOTE 1: This vector is only implemented for screen modes where alpha blending actually makes sense,
i.e. modes 16, 32 and 33.

In other screen modes, such as the QL screen modes, or Atari mono modes, this vector is
redirected to vector PV_MBLK.

NOTE 2: Do not mis-use this vector to combine general memory.

The size of the memory actually combined depends on the screen driver that is being used.
Thus, if you combine a block of 10x20 pixels (x|y size), in mode 16, then 200 bytes will be
combined (1 pixel = 1 byte). But in modes 32 and 33, 200 words (400 bytes) will be combined (1
pixel = 2 bytes).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5-12

Display Vectors

PV _BGCTL....coiiiiiii ettt r e e s saa e s aa e e s ba e e sbn e s saanessans 11
PV_CMBBLEiiiiiiiiiiiitiiict ettt a et saa e as e s a e ens 12
PV _CURSP ..ottt s aa e e s ab e e s abe e e sanneesans 11
PV _EFSPRu.ei e 7
PV _MBLEK ..ottt s a e s b e s aa e e s saae e ane 10
PV _PINE .ot 7
PV _SIZE....coo ittt aa e aa e 9
PV _SSPRu.e s a e 8

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5-13

5.3.8.2. New (WMAN) colour format

The latest versions of WMAN, the Pointer Environment Window Manager ,contain the possibility to use new
colour format. Whilst, strictly speaking, this is a WMAN function, these colours can also be used in non-PE
programs under SMSQ/E. Hence the inclusion in this manual.

Colours for the new WMAN are always given as one word. The word may have any of the following formats:

%00000000cccccccc exactly as before
%00000001pppppppp palette
%00000010pppppppp system palette
%000000119g9gggggg gray scale

%00000100cco0tttd 3d border (border calls only!) see below

%OLSSXXXXXXYYYYYY palette stipple see below
%1rrrrrgggggbbbbb 15 bit RGB

5.3.8.2.1. Stipple Format

s = Stipple code (0 = dot, 1 = horizontal, 2 = vertical, 3 = checkers)
X = Stipple colour

y = Main colour

As x and y can only hold 6 bits, only the first 64 entries of the palette can be used for stippling. Due to the
design of the palette those entries alone still cover the whole colour range quite well.

5.3.8.2.2. 3D Border Format

d= Direction (0 =raised, 1 = lowered)
t= Type

c= Compatibility mode

To see what types are available have a look at this image:

DL compatible 1024 I l 1025

decimal walles

I1155 | I1219

1218 I I1154 I 1090 1026 I I 1027 1091
Iluzul |I1155I |1m;2 | 1028 1020 1002]115?' l1221 I
1038 1034 1036 1032 1033 1037 1035 1039
not 0L compatible 1020 I l 1031
0L compatible 400 I l 404 hex walues
]
4c2l l 482 I 442 402 I I 403 443 483 4C3
I|4c4I [|434I |444 | 404 405 445]435' l4c5 I
40E 404 40C 408 409 40D 40P 40F
not L compatible 4086 I l 407
QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 5 - 14

The compatibility modes are available on some border types and they tell how to squeeze a non-standard
border size into a QL border. Some modes paint areas with the current paper colour, therefore it is a wise
idea to always set the paper colour before the border. The WMAN routines have already been changed to

take this into account.

In case of a non-standard border width another border call on this window MUST be made through the
WMAN routines instead of the standard border calls (e.g. by caling WM.TRAP3). Otherwise the overall

window size will be altered.

The colours to paint the border are defined in the system palette (SP.3DDARK and SP.3DLIGHT).

Future versions may shade the paper colour, therefore it's again a good idea to set the paper colour before

the border call.

5.3.8.3. System palette entries

The keys for this are defined in the file dev8_keys_syspal.

Please note that you can configure SMSQ/E to set the palette(s) to your taste.

Name Number Meaning

SP.WINBD $0200 Window border

SP.WINBG $0201 Window background

SP.WINFG $0202 Window foreground

SP.WINMG $0203 Window middleground

SP.TITLEBG $0204 Title background

SP.TITLETEXTBG $0205 Title text background

SP.TITLEFG $0206 Title foreground

SP.LITEMHIGH $0207 Loose item highlight

SP.LITEMAVABG $0208 Loose item available background
SP.LITEMAVAFG $0209 Loose item available foreground
SP.LITEMSELBG $020a Loose item selected background
SP.LITEMSELFG $020b Loose item selected foreground
SP.LITEMUNABG $020c Loose item unavailable background
SP.LITEMUNAFG $020d Loose item unavailable foreground
SP.INFWINBD $020e Information window border

SP.INFWINBG $020f Information window background
SP.INFWINFG $0210 Information window foreground
SP.INFWINMG $0211 Information window middleground
SP.SUBINFBD $0212 Subsidiary information window border
SP.SUBINFBG $0213 Subsidiary information window background
SP.SUBINFFG $0214 Subsidiary information window foreground
SP.SUBINFMG $0215 Subsidiary information window middleground
SP.APPBD $0216 Application window border

SP.APPBG $0217 Application window background
SP.APPFG $0218 Application window foreground
SP.APPMG $0219 Application window middleground
SP.APPIHIGH $021a Application window item highlight
SP.APPIAVABG $021b Application window item available background

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 5- 15

SP.APPIAVAFG $021c Application window item available foreground
SP.APPISELBG $021d Application window item selected background
SP.APPISELFG $021e Application window item selected foreground
SP.APPIUNABG $021f Application window item unavailable background
SP.APPIUNAFG $0220 Application window item unavailable foreground
SP.SCRBAR $0221 Pan/scroll bar

SP.SCRBARSEC $0222 Pan/scroll bar Section (the Section not covered by the bar)
SP.SCRBARARR $0223 Pan/scroll bar arrow

SP.BUTHIGH $0224 Button highlight

SP.BUTBD $0225 Button border

SP.BUTBG $0226 Button background

SP.BUTFG $0227 Button foreground

SP.HINTBD $0228 Hint border

SP.HINTBG $0229 Hint background

SP.HINTFG $022a Hint foreground

SP.HINTMG $022b Hint middleground

SP.ERRBG $022¢ Error message background

SP.ERRFG $022d Error message foreground

SP.ERRMG $022e Error message middleground

SP.SHADED $022f Shaded area

SP.3DDARK $0230 Dark 3D border shade

SP.3DLIGHT $0231 Light 3D border shade

SP.VERTFILL $0232 Vertical area fill

SP.SUBTITBG $0233 Subtitle background

SP.SUBTITTXTBG $0234 Subtitle text background

SP.SUBTITFG $0235 Subtitle foreground

SP.MINDEXBG $0236 Menu index background

SP.MINDEXFG $0237 Menu index foreground

SP.SEPARATOR $0238 Seperator lines etc.

Some sort of design guide to help deciding what colour to use (or what some colour is supposed to mean
anyway) will hopefully be written at a later stage.

5.3.8.4. New Basic Keywords

There are a number of keywords for palette and colour handling:

5.3.8.4.1. Colours

The first of these are useful for colour handling. Their parameters are exactly the same as for the "normal”
commands. The same is true with their names, except for the 'WM_" prefix:

WM_PAPER [#channel],colour

Sets the colour which is a word as described above. It also sets the strip as is the case with the normal
PAPER command. But there is also the WM_STRIP [#channel],colour command to set the strip only. Further
commands are:

WM_INK [#channel],colour

WM_BORDER [#channel],width,colour

WM_BLOCK [#channel],xs,ys,xo,yo,colour

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5- 16

5.3.8.4.2. Palette handling

There are commands to set/get the system palette and commands to set/get the per job palettes.

5.3.8.4.2.1. System palette keywords

SP_RESET [#channel] [[number]
This resets the colour palette given in number to the original values (as configured). Default is number 0.
result% = SP_GETCOUNT()
Gets the number of elements contained in a system palette. Each system palette, of course, has the same
number of elements.
SP_GET [number,] address, first, count
This gets the colours from a system palette and puts them somewhere. The optional "number" parameter
tells us which system palette we want (0 to 3, default = 0). "address" is the address of the space for the
information, "first" is the number of the first system palette colour to get (starting from 0) and "count" is the

number of colours to get.

The space pointed to by "address" MUST have enough space for the number of colours! This is NOT
checked by the keyword and it is the programmer's responsibility to make sure that this is so.

As an example, you could use the following code to get ALL of the colours of a system palette:

REMark Get number of colours in system palette
totcol%= SP_GETCOUNT

REMark enough space for colours + security first=0
address= ALCHP(totcol%*2)+4
SP_GET #1,0,address, first, totcol%

SP_SET [#channel,] [number,] address, first, count

Sets the system palette entries, the address pointing to a space containing the colours. The parameters are
similar to those for SP_GET.

5.3.8.4.2.2. Job palette keywords

SP_JOBPAL [#channel], Job ID / Job_name, number

Set the system palette for the job given to the number. The job is given either as a string (e.g. "FiFi") or as a
standard Job ID number.

SP_JOBOWNPAL [#channel], Job ID / Job_name, pal_pointer

Set the job palette to the palette given in pal_pointer. Of course, the palette must have the format of a
standard system palette.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5-17

5.3.8.5. New Move modes

As of SMSQ/E v.3.01, new ways of moving a window about the screen have been added. Again, this is a
WMAN function but it was thought useful to add it here.

5.3.8.5.1. The move modes

There are now four ways for a window be moved:

0 -The old way: the pointer changes to the "move window" sprite which is moved about
the screen.

1 -"Outline™: click on the move icon with the MOUSE - KEEP HOLDING THE BUTTON
DOWN, an outline of the window appears which you can move around and position
where you want it. Release the mouse button and the window positions itself correctly.

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

2 -"Full window". This is the same as 1 above, but instead of an outline, the entire
window is moved. For Q40/Q60 users, switching on the cache is advisable...

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

3 -"Full window with transparency" (implemented in SMSQ/E v. 3.16). This is the same
as 2 above, but the window to be moved is made "transparent" : one can "see through"
it. This is done via "alpha blending". Alpha blending requires A LOT of computing
power. So, even if your machine can theoretically handle this type of move, in practice it
might not be feasible. For Q40/Q60 users, switching on the Cache is advisable...

This type of move is only implemented for display modes where alpha blending actually
makes sense, i.e. modes 16, 32 and 33. In other display modes, such as the QL screen
modes, or Atari mono modes, this will be redirected to move mode 2.

Please note that you cannot use this move mode with anything but the mouse - the
keyboard (cursor keys) will not work.

5.3.8.5.2. Configuring/setting the move mode

The move modes are configured on a system-wide basis - you cannot have one job moving in mode 0 and
the other in mode 1.

Thus, all jobs are affected by the move mode, even those written a long time ago (unless, such as
QLiberator, the job doesn't use the WMAN move routine).

The move mode can be changed in two ways:
1 - Configure SMSQ/E (WMAN) to a mode of your liking.
2 - Use the new WM_MOVEMODE keyword
This takes one parameter, an integer from 0 to 3:
WM_MOVEMODE 0 : the old way
WM_MOVEMODE 1 : the "outline" move
WM_MOVEMODE 2 : the "full window" move

WM_MOVEMODE 3 : the "full window with transparency" move

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5- 18

5.3.8.5.3. Configuring/setting the degree of transparency

You can set how transparent the window is supposed to be when being moved, from nearly totally
transparent to totally opaque. This is done by setting the "alpha value", from 1 (nearly transparent) to 255
(totally opaque).

The alpha value is configured on a system-wide basis - you cannot have one job moving with an alpha value
of 100 and the other with 200. Thus, all jobs are affected by this, even those written a long time ago (unless,
such as QLiberator, the job doesn't use the WMAN move routine).

The alpha value can be changed in two ways:

1. Configure SMSQ/E (WMAN) to a value of your liking.
2. Use the new WM_MOVEALPHA keyword

WM_MOVEALPHA : this new keyword defines the amount of transparency the window should have when
moved about, from 1 (nearly transparent) to 255 (totally opaque).

Please note that
1) no check is made on the value passed to this keyword, but only the lower byte is used.
2) avalue of 255 is actually equivalent to move mode 2.
3) avalue of 0 is allowed but, since this would make the window to be moved totally transparent when it
is moved (i.e. you would only ever see the background) this is considered to be an error and a value

of 255 will be used!

4) Moving with alpha blending requires a lot of computing power - it may be too slow on your machine.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5- 19

5.3.8.6. Graphics with alpha blending
(Introduced in SMSQ/E version 3.26)

All graphics operations to the screen, including printing text, can be done with alpha blending, where the
object to be drawn, including a single pixel or a text, will be blended in with the background.

To achieve this, set the alpha weight of a channel. This determines how much the object to be displayed is
blended into the existing background.

An alpha weight of 0 means that the object to be drawn will be practically totally translucent, i.e. it can't be
seen since it lets the background shine through entirely. An alpha weight of 255 means that the object to be
displayed is totally opaque, i.e. it covers the existing background.

There is a program called "dev8_extras_alpha_test_bas" in the SMSQ/E sources which can show you how
this works (in SBasic).

IMPORTANT NOTE: This call only really makes sense for 16 bit modes. In 8 bit Aurora mode, the trap tries
as well as it can, but don't expect miracles, there just are not enough colours. When in QL modes 4 or 8, or
in Atari monochrome mode, there simply is no alpha blending (note that being in QL modes 4 or 8 is not the
same as having used COLOUR_QL in 16 or 8 bit mode).

5.3.8.6.1. Machine code interface

Trap #3 D0=$62 IOW.SALP

Set the alpha blending weight for window

Call parameters Return parameters
D1.B alpha weight (0..255) D1 Preserved
D2. D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

ICHN channel not open

This call affects all following text and graphics output functions. To disable alpha blending set the weight to
255.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5 - 20

5.3.8.6.2. S*Basic keywords

Use the ALPHA_BLEND command:
ALPHA_BLEND [#channel,] weight.

Sets the alpha weight for this channel. All further output to this channel will use this. To switch it off, set
weight to 255.

* Channel is the channel to which this applies, as usual, it defaults to 1.

* Weight is the alpha weight of future display operations: from O (translucent) to 255 (opaque).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 5 - 21

6. QDOS Device Drivers

A user-supplied QDOS device driver is a collection of routines which allow an application program to perform
IOSS functions on a user-supplied device in the same way as such functions are performed on the devices
built into the system. As these routines are linked into the system's lists in front of the corresponding system
routines, they may be used to replace the system routines.

At the very least, the device driver contains a set of routines for opening a channel, closing a channel, and
performing serial 1/0 on that channel: these routines are called via the 0SS as part of the job that is
performing the I/O. The driver may also include one or more tasks, that is, routines performed
asynchronously with the calling job, usually under interrupt.

Such tasks, which are known as the physical layer of the device driver, normally communicate with the rest
of the device driver, which is known as the access layer, using asynchronous queues. these queues are
usually polled by the task at regular intervals, either on every occasion the scheduler is entered, or on every
50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general, mechanism: this is described in
Section 7.

Both drivers and tasks are linked in to lists provided by the operating system.

The following traps are used to add items from those lists:

SMS.LEXI links in an external interrupt service task
SMS.LPOL links in a 50/60 Hz polling service task
SMS.LSHD links in a scheduler loop task

SMS.LIOD links in a device driver to the 1/0 system
SMS.LFSD links in a directory device driver to the file system

The following traps are used to remove items from those lists:

SMS.REXI unlinks in an external interrupt service task
SMS.RPOL unlinks in a 50/60 Hz polling service task
SMS.RSHD unlinks in a scheduler loop task

SMS.RIOD unlinks in a device driver to the I/O system
SMS.RFSD unlinks in a directory device driver to the file system

The operating system provides several utility routines which are useful for various actions commonly
performed in device drivers, such as decoding a device name, performing queue operations, etc.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 - 1

6.1. Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition block and the channel definition
block. The device driver definition block belongs to the driver itself, and is allocated by the code which sets
up the driver when it is initialised and linked into the various lists. The channel definition block belongs to
each 1/0O channel, and is allocated by the driver itself when a channel is opened. Various parts of the channel
definition block are thereafter used by the IOSS for its own purposes.

In theory, the access layer can allocate space on the heap at other times: in practice this is not usually
required. The whole system can be made re-entrant to allow several channels to be open with the same
device driver and the same device driver definition block, but with different channel definition blocks.

Note that the system will certainly crash if the area of a channel definition block is deallocated and used for
something else before the channel is closed, or if the area of a device driver definition block is deallocated
and used for something else before the device driver is removed from the system’s lists, for example if the
device driver definition block is in a transient program which is force-removed. This possibility can be
obviated by allocating the block in the common heap with a job number of zero, or by allocating it in the
resident procedure area.

Tasks must not allocate or release memory: this must be done for them by the access layer, or by the
device driver initialisation code.

6.2. Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the device driver definition block,
usually by allocating some space in the resident procedure area, although any of the normal memory
allocation mechanisms may be used.

The device driver definition block will normally have the following structure, assuming that A3 has been
made to point to it:

$00(A3) Link to next external interrupt routine
$04(A3) Address of external interrupt routine
$08(A3) Link to next poll interrupt routine
$0C(A3) Address of poll interrupt routine

$10(A3) Link to next scheduler loop routine
$14(A3) Address of scheduler loop routine
$18(A3) Link to access layer of next device driver
$1C(A3) Address of input/output routine

$20(A3) Address of channel open routine
$24(A3) Address of channel close routine
$28(A3) Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and I/O routines, together with those of
any of the routines for tasks that it will be employing. It should also fill in any preset data required in the
remainder of the workspace.

Finally, the link routines described above should be called to include the driver in the operating system lists.
Note that the structure of the first 24 bytes of the device driver definition block is not mandatory; however it is
desirable from the point of view of consistency that it be kept the same. The comments in later Sections

about the base of the device driver definition block being passed to the driver are only valid if the above
structure has been used.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 - 2

6.3. Physical Layer

The physical layer tasks are normally the ones which perform actual /O under interrupt or polled control.
They usually take data out of queues or put data into queues, the other end of such queues being
maintained by the access layer.

When the operating system calls one of the tasks in the physical layer, it passes the task a standard set of
values in some of the registers. These values are as follows:

Task service routine

Call parameters Return parameters
D1 D1 preserved
D2 D2 preserved
D3 nr. of 50/60Hz Interrupts (sched only) D3 7?7

D4+ all preserved

A0-A2 preserved

A3 base of device driver definition block A3 preserved
A4-A5 preserved
A6 system variables A6 preserved

A7 supervisor stack (64 bytes may be used)

6.3.1. External Interrupt Tasks

An external interrupt task must check its own hardware to determine whether the interrupt was for itself or for
some other driver. It may also need to clear the source of the interrupt at that point. If the interrupt was not
for itself, it should return.

6.3.2. Polling Interrupt Tasks

Polling interrupt tasks should only be used when critical timing operations are required. In common with the
external interrupt tasks, they can interrupt atomic operations in the rest of the system, such as access layer
calls to the same driver, so they should be used with great care.

6.3.3. Scheduler Loop Tasks

Calls from the scheduler loop do not interrupt atomic tasks. This means that operations such as allocating or
releasing memory can be performed safely. Note that it is quite common for the same routine to be included
both in the scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/60Hz when the machine is busy, and more frequently if the
machine is idle.

All physical layer calls return with RTS.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 -3

6.4. The Access Layer

The access layer consists of three routines: the channel open, the channel close, and the Input/Output
routine. These routines are called for the appropriate driver by the 10SS in response to a user's trap
instruction. In the case of the channel open, the routine is called in turn for each device driver in the machine
until a driver's open routine returns correctly to indicate that it has recognised the device name. Due to this
mechanism, an incorrect open routine may crash the whole system when an open to any device is
attempted, whereas the other routines are only invoked in response to the particular device being used.

All access layer calls return using RTS.

6.4.1. The Channel Open Routine

When the channel open routine is called via the 10SS, the following registers are set:

Channel Open Routine for Device Drivers
Call parameters Return parameters
D1 D1 ?7?7?
D2 D2 ?2?7?
D3 access key (as per IOA.OPEN) D3 77
D4+ ?7?7?
A0 pointer to device name A0 channel definition block
A1-A2 7?77
A3 base of device driver definition block A3 77
A4-A5 A4-A5 ??7?
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)
Error returns:
Errors as defined below
0 for successful open

The open routine should perform the following operations:

First, decode the name; the utility IOU.DNAM, which is described in Section 16.0, will normally be used for
this purpose. Return with ERR.ITNF in DO if the name was not recognised by this driver, or with ERR.INAM if
the name was recognised, but some of the additional information was incorrect in value or format.

Then, if the device cannot be shared, check whether the device is in use and prevent another channel from
being opened to it. If the device is in use, return ERR.FDIU.

Finally, allocate some space for the channel definition block. Any buffers or working area required for each
channel are normally allocated in the common heap. Return with ERR.IMEM if there was not enough
memory to do this.

NOTE: A0 should not be amended by the open routine. DO must be set to the appropriate error code.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 - 4

6.4.2. The Channel Close Routine

When this routine is entered, in addition to the usual values of A3, A6 and A7, A0 points to the base of the
channel definition block.

Channel Close Routine

Call parameters Return parameters
D1-D3 D1-D3 ??7?

D4-D7 All preserved
A0 pointer to base of channel definition block A0 ??7?

A1-A2 7?77
A3 pointer to base of device driver definition A3 ?2?7?

block

A4-A5 preserved
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)

Error returns:

Always 0, as this routine cannot fail

The function of the close routine is simply to release the memory taken up by the channel definition block
and to ensure that everything in the device driver definition block is tidy.

Under some circumstances, it may not be possible to close the channel immediately because there are bytes
waiting to be transmitted by the physical layer. In this case, the physical layer must contain a scheduler loop
task, and the close routine should set a flag for the physical layer to complete the release of the memory on
the next invocation of that task in which it is possible to do so. When this happens, it is usually necessary to
build in a special mechanism to cope with the undesirable event of a program closing a channel to a
particular device, and then re-opening it immediately only to receive an "in use" error because the closed
channel has not yet been cleared.

NOTE: On completion of the routine DO must be set to zero as it is assumed that CLOSE cannot fail.
Registers D4 to D7 and A4 to A6 must be set to their initial values before return.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 -5

6.4.3. Input/Output Routine

The 1/0O routine is called once when an |/O call is made, and then, unless the time-out was set to zero, on
every subsequent scheduler loop until the operation is complete or the time-out has expired.

Input/Output Routine

Call parameters Return parameters
DO.b trap code passed to the IOSS
D1 additional information D1 updated parameter
D2 additional information D2 ?77?
D3 0 for first call, else -1 D3 ?77?
D4+ 27?7
AO pointer to base of channel definition block A0 preserved
A1 additional information A1 updated parameter
A2 additional information A2 preserved
A3 pointer to base of device driver definition A3 preserved
block
A4-A5 preserved
A6 system variables A6 preserved
A7 supervisor stack (64 bytes may be used)

Error returns:

All returns defined by the 10 traps

The 1/0O routine should return ERR.NC (not complete) if it cannot complete the operation immediately. If a
string operation has been partially completed, the values in D1 and A1 (number of bytes transferred and
buffer pointer) should be set appropriately so that the operation can continue on the next try. DO should be
zero on return if the operation has been completed correctly.

Since most of the code for handling serial I/O is common to all device drivers, the I/O routine usually calls
one of the utility routines 10U.SSQ or IOU.SSIO (which are described in Section 16.0). IOU.SSQ assumes
that the only function of the access layer is to move bytes in and out of a pair of queues pointed to by fixed
positions in the channel definition block, while IOU.SSIO assumes that the operations required of it can all be
made up out of three primitive routines for sending one byte, fetching one byte, and checking for pending
input, such routines being supplied by the writer of the device driver.

Note that channels are assumed to be bidirectional; it is the responsibility of the I/O routine to trap an
operation in a direction that is not allowed. Note also that output operations which appear to the user as
complete have merely completed the access layer call correctly: there being no general way in which the
user can ascertain whether the physical layer has in fact completed the operation.

NOTE: On completion of the routine, registers A0, A2 to A6 (inclusive) should be reset to their initial values
before return.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 6 - 6

7. Directory Device Drivers

Drivers for devices which have a directory and form part of the filing system have a somewhat extended set of
functions. For directory device drivers, there are three blocks in which memory is allocated, rather than two:
these are the directory driver linkage block, the physical definition block and the channel definition block.

There is one directory driver linkage block for each directory driver: it is an extended form of the device driver
definition block as found in a non-directory device driver. The block contains information about how to use the
driver, together with the links in the operating system's lists.

Each directory driver may control up to 8 drives (numbered 1 to 8). Each drive has one physical definition
block: this contains the drive number and information about the medium.

For each I/O channel that is open, there is an open channel definition block.
The file system is assumed to be composed of 512-byte blocks: thus a byte within a file is addressed by the
IOSS by a block number and a byte number within that block. It is of course possible to have a different

physical block size, but the mapping of the IOSS structure onto the physical structure will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file is set to byte 64, not byte zero).
This header should be formatted as follows:

$00 long file length

$04 byte file access key (used by third parties software)
$05 byte file type

$06 8 bytes file type-dependent information

$0E 2+36 bytes file name

$34 long update date [EXT,DD2]

$38 word version number [DD2]

$3A word reserved

$3C long backup date [DD2]

The current file types allowed are: 2, which is a relocatable object file; 1, which is an executable program; and 0
which is anything else. In the case of file type 1, the first longword of type-dependent information holds the
default size of the data space for the program.

For level 2 and level 3 devices, a type of -1 (or 255 decimal) stands for a subdirectory.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 7 - 1

71.

Initialisation of a Directory Driver

The initialisation routine should first allocate room for the directory driver linkage block, and then write into it the
information about the driver routine addresses, the length of the physical definition block required for each
drive, and the drive name. Note that for directory drivers, the decoding of the device name is performed by the
IOSS, not by the open routine in the device driver as in non-directory drivers: the function of the open routine is
to search for the file name within the given drive. The linkage block may be allocated in the resident procedure
area if the driver is resident there, but will usually be in the common heap. The system will crash if the linkage
block is overwritten without the driver being unlinked.

When this has been done, the traps SMS.LEXI, SMS.LPOL, SMS.LSHD and SMS.LFSD can be called to link
the driver and any associated tasks into QDOS.

The format of the directory driver linkage block is as follows (assuming that A3 has been made to point to it):

IOD_XILK
IOD_XIAD
IOD_PLLK
IOD_PLAD
IOD_SHLK
IOD_SHAD
IOD_OLK
IOD_IOAD
IOD_OPEN
IOD_CLOS
IOD_IEND
IOD_FSLV
IOD_SPR1
IOD_CNAM
IOD_FRMT
IOD_PLEN
IOD_DNUS
IOD_DNAM

Note that a directory driver must have at least 40 bytes of RAM for the linkage block.

$00(A3)
$04(A3)
$08(A3)
$0C(A3)
$10(A3)
$14(A3)
$18(A3)
$1C(A3)
$20(A3)
$24(A3)

—

$28(A3)
$2C(A3)
$30(A3)
$34(A3)
$38(A3)
$3C(A3)
$42(A3)

link to next external interrupt routine
address of external interrupt routine
link to next 50/60 Hz interrupt routine
address of 50/60 Hz interrupt routine
link to next scheduler loop routine
address of scheduler loop routine
link to access layer of next directory driver
address of input/output routine
address of channel open routine
address of channel close routine

end of minimum device driver linkage
address of entry for forced slaving
reserved

address of set channel name [SMSQ]
address of entry to format medium
length of physical definition block

word-length of drive name, characters of drive name (e.g. MDV)

word-length of drive name, characters of drive name real name [SMSQ]

For additional SMSQ features please refer to Section 18.9

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 7 -2

7.2. Access Layer

The access layer of a directory driver contains five routines: the channel open/file delete routine, the close
routine, the 1/O routine, the forced slaving routine and the format routine.

For all directory device driver access layer calls (including open), A0 points to the base of the channel definition
block when each routine is called. However, the format of the block is somewhat different.

The first $18 bytes are reserved for the I0SS (heap entry header). The format of the block for microdrives is:

$18(A0) CHN_LINK long link to next file system channel

$1C(A0) CHN_ACCS byte access mode (D3 on open call, -ve on delete)

$1D(A0) CHN_DRID byte drive ID

$1E(A0) CHN_QDID word number of file on drive

$20(A0) CHN_FPOS word block number containing next byte

$22(A0) word next byte from block

$24(A0) CHN_EOF word block number containing byte after EOF

$26(A0) word byte after EOF

$28(A0) CHN_CSB long pointer to slave block table for current slave block which may hold
current/ next byte

$2C(A0) CHN_UPDT byte file updated

$32(A0) CHN_NAME 2+36 bytes file name

$58(A0) 72 bytes spare

Section 18.8 contains details of the block for other filing systems.
A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the I0SS (heap entry header).

$10(A1) FS_DRIVR long pointer to access layer link for driver
$14(A1) FS_DRIVN byte drive number

$16(A1) FS_MNAME 2+10 bytes medium name

$22(A1) FS_FILES byte number of files open on this medium

The physical format for the microdrive system can be found in Section 18.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section7 -3

7.21. The Channel Open/File Delete Routine

The function of the open routine depends on the access mode. This may have been passed to the IOSS in D3
if the open routine was called as a result of an IOA.OPEN trap, or it may be a negative number, which would be
the case if the routine has been entered as a result of an IOA.DELF trap.

In order to understand the open routine, it is necessary first to understand the way in which QDOS handles
device names. When a device name is passed to the IOSS as a result of an open or delete call, the IOSS looks
for a match in its lists of device drivers and directory device drivers.

The matching mechanism for non-directory device drivers is defined within the open routine for that driver. The
matching mechanism for directory device drivers is as follows. The first characters of the name are checked
against the driver name in the directory driver linkage block (which is put there when the driver is initialised)
and these are expected to be followed by a drive number between 1 and 8, followed by an underscore,
followed usually by the filename.

If a match is found, the file system looks to see if there is a physical definition block for that drive already in
existence. If there is not, a physical definition block is created in the system's table of physical definition blocks
(the drive ID in the channel definition block is an index to this table). Note that the file system has no knowledge
of whether a drive is actually connected, and will set up the definition block regardless.

The 10SS then checks to see if this is the second or subsequent open to a shared file: if this is the case it
generates the complete channel definition block itself, setting CHN_FPOS+2 to $40 (i.e. the first byte behind
header) and copies the remaining information from the channel definition block for the first open. The directory
driver's open routine is not called. Otherwise, the 0SS calls the open routine, passing it the file name in the
channel definition block.

Channel Open Routine for Directory Device Drivers
Call parameters Return parameters
D1 D1 ?7?7?
D2 D2 ?7?7?
D3 D3 ?7?7?
D4+ all preserved
A0 base of channel definition block A0 preserved
A1 base of physical definition block A1 preserved
A2 A2 ?7?7?
A3 base of device driver definition block A3 preserved
A4-A5 ??7?
A6 system variables A6 preserved
Error returns:
Errors as defined below
0 for successful open

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 7 -4

The channel and physical definition blocks are all set to zero except for the following, which are filled by the
IOSS:

CHN_LINK link to next file system channel

CHN_ACCS access mode

CHN_DRID drive ID

CHN_NAME file name

FS_DRIVR pointer to directory driver access layer

FS_FILES number of files open on this drive (maintained by IOSS)

In the case of a device with removable media, the open routine should find out the name of the medium and
install it in FS_MNAME. It should also look at the access mode to find out which operation is required. If the
required operation is delete, it should perform that operation and return, but if the required operation is another
sort of open, then it should fill in the appropriate portions of the channel definition block, namely CHN_QDID,
CHN_EOF, CHN_EOF+2, CHN_FPOS and CHN_FPOS+2. CHN_CSB is a pointer to the slave block table
which may be filled in as an indication to the I/O routine that the block it is looking for may be slaved there. The
I/0 routine must check this however, normally by searching the slave table.

The 10SS will free the channel definition block on exit from the open routine if the action was a delete or if the
open routine returns an error key in DO.

The maintenance of the directory structure of the medium is the responsibility of the open and close routines -
the I0SS plays no part in this. Equally, the open routine is responsible for understanding the meaning of the
access mode and reacting accordingly.

NOTE: A6 should be reset to its initial state before return.

7.2.2. The Channel Close Routine

As far as the 0SS is concerned, this routine behaves in the same way as for a non-directory device driver. It is
of course necessary for the close routine to maintain the directory structure of the medium, so its operation will
normally be rather more complicated.

The close routine for a directory device driver has two additional functions: it must unlink the channel from the
list of files open, and must decrement the FS_FILES field in the physical definition block, which gives the
number of files open on the medium. Suitable code for performing these operations and ending the close
routine is as follows:

* get address of physical definition block into A2

MOVEQ #0, DO top three bytes must be clear
MOVE.B CHN_DRID(AQ), DO get the drive ID
LSL.B #2,D0 convert it to a table offset
LEA.L SYS_FSDD(A6),A2 get base of PDB table
MOVE.L (A2,D0.W),A2 get address from (base+offset)
* now decrement the file count
SUBQ.B #1,FS_FILES(A2)
* now unlink the file
LEA CHN_LINK(AQ),A0 get address of link pointer...
LEA SYS_FSDT(A6),A1 ...and pointer to start of linked list
MOVE .W MEM.RLST, A4 routine to unlink an item
JSR (A4)
LEA -CHN_LINK(AO®),A® restore AO to base of channel definition
MOVE.W MEM.RCHP, A4 routine to release channel definition space
JMP (A4) call it, and exit from the close

The close routine must also initiate the process of tidying up any slave blocks remaining for that channel. It
need not force the slave blocks to be made into true copies itself, but it must be guaranteed that the copying
will happen without further intervention by the calling program.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section7 -5

7.2.3. The Input/ Output Routine

This routine also appears to the 0SS to be identical for both directory and non-directory device drivers, though
once again the routine is usually rather more complex for most normal file system devices. The main difference
is that the 1/O routine for a random access file system device must take into account the current block and
position as provided by the I0SS, since these may have been updated by the 0SS as a result of a file pointer
positioning trap.

7.3. Slaving

The area of memory between SYS_FSBB and SYS_SBAB is used by the filing system as temporary storage
for file slave blocks and for the slave block table. A slave block is a block of 512 bytes of data. The slave block
table is a table of entries sized 8 bytes whose start point is held in the system variable SYS_SBTB and whose
top is held in the system variable SYS_SBTT; the system variable SYS_SBRP points to the most recently
allocated slave block table entry. The address of a slave block, relative to the base of system variables, is
equal to 512/8 times the offset of the corresponding entry in the slave block table from the beginning of that
table.

Currently, only the first byte of each slave block table entry is used by QDOS itself: the remaining bytes are
available for use by the driver. This byte is divided into two four-bit nibbles. The most significant nibble contains
the drive identifier (0..15), and the least significant nibble is a code indicating the status of the block. The byte is
formatted as follows:

$00 unavailable to filing system

$01 empty block

$x3 block is true representation of file
$x7 block is updated, awaiting write
$x9 block is awaiting read

$xB block is awaiting verify

X is the drive ID for this file

For Microdrives, the remaining space in each slave block table entry is laid out as follows:

SBT_PRIO 01 byte available for slaving algorithms
SBT_SECT 02 word physical sector number *2
SBT_FILE 04 word file number

SBT_BLOK 06 word block number within the file

Section 18.6 contains details of table entries for other devices.

It is left to the device driver to decide what the slave blocks are used for but it must be prepared to release a
slave block if requested to do so by the memory manager.

This is done by calling the driver's forced slaving routine with the following parameters:

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section7 -6

Forced Slaving Routine

Call parameters Return parameters
D1 D1 ?7?
D2 D2 ?7??
D3 D3 ???

D4+ all preserved

A0 A0 2?7
A1 base of offending slave block A1 ??7?
A2 physical definition block A2 ??7?
A3 base of device driver definition block A3 preserved

A4+ preserved

This routine cannot fail.

Typically the slave blocks are used to buffer data being written to a device, the actual writing being carried out
by an asynchronous task.

Searching for an empty slave block involves performing a linear search through the slave block table, usually
starting from SYS_SBRP or SYS_SBTB. The status of each entry in the table must be checked and only those
blocks which are empty or true representations should be taken.

When a new block is allocated SYS_SBRP should be updated to point to the allocated block.

Allocating slave blocks is a form of memory allocation and should only be carried out by access layer or
scheduler loop calls.

This position in memory of a slave block which corresponds to a slave block table entry may be calculated
using the following code:

MOVE. L A4,DO A4 is pointer to slave block table entry

*
* form offset into slave block table, gives slave block no.*8
* entries are 8 bytes wide in table
*
SUB.L SYS_SBTB(A6), DO
LSL.L #6, D0 multiply by 64 (8*64=512)
MOVE. L DO, A5
ADD.L A6,A5 add offset to system variable base

* A5 now has base address of slave block

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section7 -7

7.4. The Format Routine

This routine is to a large extend independent of the other routines. It is called with the drive number in D1, a
pointer to the medium name in A1, and a pointer to the directory driver linkage block in A3.

Format routine
Call parameters Return parameters
D1 drive number D1 number of good sectors
D2 D2 total number of sectors
D3+ ?7?7?
AO A0 ?2?7?
A1 pointer to medium name A1 77
A2 A2 ?7?7?
A3 base of device driver definition A3 ?7?7?
block
A4-A5 ?77?
A6 system variables A6 preserved
Error returns:
FMTF format failed

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section7 -8

8. Built-in Device Drivers
The following devices are built in to the QL ROM:

CON_wXhAxXy_k Console /0,
window area "w" by "h" pixels, top left hand corner at pixel position "x", "y",
keyboard type-ahead buffer length "k" characters.

The size and position are defined in terms of pixels on a 512x256 display map
(position 256x128) is the centre of the screen in both display modes).

Default CON_448x200a32x16_128

SCR_wXhAxXy Screen output
window definition is as for CON.
Default SCR_448x200a32x16

SERnphz RS232 serial 110

port "n",
"p" indicates parity: E, O, M, S for even, odd, mark, or space parity,
"h" indicates handshaking, H to enable it, | if it is to be ignored
"z" indicates protocol:
R indicates raw data,
Zor C indicates that CTRL-Z is used as an EOF marker,

C indicates that ASCII 13 is to be exchanged with ASCII 10 on input
and vice versa on output.

Default SER1HR no parity.

NETI_nn Serial network input

link from node "nn"

NETO_nn Serial network output
link to node "nn"

PIPE_n Job connection and synchronisation

if "n" given it is an output pipe of length n bytes,
otherwise it is an input pipe connected to the channel ID passed in D3.

MDVn_name Microdrive file
MDV1 refers to Microdrive "1".

FLPn_name Floppy Disc file [EXT]
FLP1 refers to Floppy Disk "1".

Within device names, no distinction is made between upper and lower case letters.
Floppy Disks are supported in a standard way. The format and additional facilities of the floppy disk driver

are explained in Section 8.1 and 8.2. For the extended drivers of the QL Emulator, their additional
parameters and facilities, refer to the Emulator's manual.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 8 - 1

8.1. QL Floppy Disc Format exn

For ease of data transfer between different manufacturer's floppy disc systems, it is necessary to have a
common standard of disk formats. Clearly this only applies where the discs are physically compatible:
physical dimensions, recording method, recording density, track spacing and positioning must all match on
the source and destination machines. There is no requirement for the format for (e.g.) 5.25" and 8" discs to
be the same, however, for convenience, this standard is proposed not only for 5.25" drives, but also for
electrically compatible 3.5" and 3" drives. Similar formats may be derived for other standards. This standard
has been based on the original Sinclair Research proposals, and compatibility between different
manufacturers has already been established.

Floppy disks will be sectored in 512 byte sectors. 5.25" compatible disks will have 9 sectors per track (MFM
200ms rotation), for a 40 track drive, single sided, this gives 180k bytes and for an 80 track drive, double
sided, this gives 720k bytes capacity.

Tracks are numbered from 0, sectors on a track are numbered, by ones, from sector 1 immediately after the
index mark.

The physical format is basically IBM System 34 (8" MFM) with four changes. There is no index mark
recorded, the sector length flag is $02, the data record is 512 bytes long, and the write splice gap is
increased.

For IBM standard format on MFM recording with 256 bytes sectors, the write splice gap at the end of a data
record is 54 bytes. This is increased to 84 bytes allowing for a short term speed variation of + or - 4%. Using
this, each sector is recorded in 658 bytes, this sets the gap between sector 9 and 1 to approximately
6250-5922 (328) bytes, allowing a long term speed variation of + or - 2.75%.

Regardless of the physical characteristics, all floppy disks will have the same directory structure.

Track zero will hold the map of sector allocations (the FAT). The first block of the map will be in sector 1 side
0 track 0. Note that in QL parlance, a cluster is called a group.

The first 96 bytes of the sector map hold information about the format of the rest of the drive:

Q5A_ID $00 long format ID

Q5A.ID 'QL5A' ‘

QS5AX.ID '‘QL5B' as QL5A but no physical-logical translation

Q5A_MNAM $04 10*bytes medium name (space filled). Note: this is not a standard
QL string as there is no length word

Q5A_RAND $0e word random number set during format

Q5A_MUPD $10 long count of updates

Q5A_FREE $14 word free sectors

Q5A_GOOD $16 word good sectors

Q5A_TOTL $18 word total sectors (sectors*tracks)

Q5A_STRK $1a word sectors per track (normally <=9)

Q5A_SCYL $1c word sectors per cylinder (e.g. 9 or 18)

Q5A_TRAK $1e word number of tracks (cylinders)

Q5A_ALLC $20 word allocation size (sectors per allocation group)

Q5A_EODR $22 long current end of directory (block/byte format)

Q5A_SOFF $26 word sector offset

Q5A_LGPH $28 18 bytes logical to physical sector translate

Q5A_PHLG $3a 18 bytes physical to logical sector translate (standard)

Q5A_SPRO $4c 20 bytes $ff

Q5A_GMAP $60 3 byte entry map in form: (file id-1) / Group number

Q5A_MTOP $600 Max length

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 8 - 2

The map is always of a size to fill the first three (logical) sectors of the drive, being padded with 'non-existent'
sectors if necessary to fill the (512*3-96)/3=480 allocations allowed.

This is adequate for up to 720k bytes with a sector allocation size of 3 (3 groups per track per side), and a
sector allocation size of 6 for up to 1440k bytes.

For extended density disks, the number of entries in the map is 1600, therefore the size is 1600*3+96=6144.
The format ID is a 4 byte ID indicating that the format conforms to this standard.

The medium name, random number and update count are used to provide protection against media change.
In addition the update count allows detection of the case of a medium being removed, updated on another
machine or drive, and being re-inserted into the original drive.

The drive statistics are maintained in the map header for simplicity and speed of access, while the directory
EOF is maintained in the map to reduce the access overheads associated with directory handling.

Sectors are allocated to files in multiples of the allocation size. To ensure fast serial access, it is necessary to
space adjacent blocks of a file in such a way as to allow processing between those blocks. The translate
tables define the spacing. There is an additional overhead on accessing a sector on a new track, and so
there is an additional offset to be applied to the sector calculation for each track.

The logical sector is obtained from the sector map by the following calculation:

(sector in map * alloc size + sector in alloc group) MOD sectors per cylinder
In the logical to physical translate table, the MSB of the translate byte indicates the side number, while the
remaining 7 bits give the sector number (numbered from 0 to 8). In the physical to logical translate table the
first nine bytes correspond to sectors 0 to 8 on side 0, and the next 9 bytes to sectors 0 to 8 on side 1. (Note
that the internal numbering of sectors on a track starts at 0 for convenience in calculation: 1 is added to the

sector number immediately before recording or reading).

E.g. for a 1in 3 interleave, 18 sectors per cylinder, the tables will be:

00 03 06 80 83 86 01 04 07 81 84 87 02 0508 82 8588
00 06 Oc 01 07 0d 02 08 Oe 03 09 Of 04 0a 10 05 Ob 11

For each track there will be an additional offset to allow for steps between adjacent tracks. So the final
physical sector is calculated as

(translated sector + track * sector offset) MOD sectors per track

The EOF of a file is the position of the next byte after the end of the file. Thus for an empty file it is 0/40. The
block number starts at 0, the byte number is between 0 and $1ff inclusive.

The allocation map itself is a table giving the usage of each group of sectors. For each group there are three
bytes: the file number in the first 12 bits and in the second twelve bits, the numbers of the blocks of the file,
stored in the group, divided by the allocation size. Thus for file number 2, the first allocation of sectors is
identified in the map as 002000, the next allocation as 002001 and so on.

The file number is the index into the master directory. The file numbers are allocated as follows:

000 Master directory

001+ Normal files

F8x Sector map

Fdx Vacant sector group

Fex Bad sector group

Ffx Non existent sector group

The master directory is a table of file headers in standard format. The first 64 bytes of any file do not contain
any useful information.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 8 -3

8.2. Direct Sector Read/Write &xn

Most driver software includes provision for reading sectors of a disk using direct addressing. To do this a
special file is opened on the disk. The name is

FLPn_*Dsd where s is the sector length 0=128 bytes
1=256 bytes
2=512 bytes
3=1024 bytes

and d is the density D=double (MFM)

When opening a disk for direct sector read/write from S*Basic, the name should be enclosed in quotes (or
apostrophes).

OPEN #3,'flp1_*d2d'

When this file is open, no other file may be open on the drive. The only 10 calls supported for this type of file
are IOB.FMUL, IOB.SMUL, IOF.POSA and IOF.POSR (D0=%$03, $07, $42 or $43), to read or write complete
sectors or to set the position. The parameter (D1) to the POSR call is ignored, but the current position is
returned. Reading or writing a sector does not change the file position.

The position is a composite of the required sector, side and track:
sector number + side * 256 + track * 65536

To ensure compatibility with string I/O the length specified in the SMUL and FMUL calls may be one of three
values:

sector length the complete sector is read or written

2 returns the sector length (IOB.FMUL)
ignored (IOB.SMUL)

2 + sector length returns the sector length followed by the sector (IOB.FMUL)
skips the first two bytes, and writes the rest to the sector (IOB.SMUL)

This variety enables sectors to be read and written in S*Basic using the normal string I/O in the Super Toolkit
II, as well as by assembler programs.

For example, sector 1 of side 1 on track 2 may be read into the string A$ using the following command:
GET #n\1+256+2*65536, a$

Direct sector read/write calls can be used for a 40 track disk in an 80 track drive by multiplying the track
counter by two.

8.3. Additional Standard Device Drivers [ST] [EXT] [SMSQ/E]

In addition to the standard device drivers exist some other devices and directory devices which are defined
for a whole range of machines, including SMS2. Application software should allow these optional devices
whenever possible. As most device do not need special treatment, this should be no problem at all.

FLPn_name Floppy Disc file
FLP1 refers to Floppy Disk "1".

RAMn_name RAM Disc file
RAM1 refers to RAM Disk "1".

WINn_name Hard disk or Changeable Disk file
WIN1 refers to Hard disk "1".

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 8 - 4

The Serial and Parallel Port drivers accept additional parameters:

SERnpftce Serial Port receive and transmit

SRXnpftce Serial Port receive only

STXnpftce Serial Port transmit only

PARnNtce Parallel Port (transmit only)

PRT

NULF

NULZ

NULL

NULP

n - port number e.g. 1 or 2; default is 1
p - parity: O (7 bit + odd parity), E (7 bit + even parity),
M (7 bit + mark=1), S (7 bit + space=0); default is none
f - flow control: H (Hardware CTS/DTR), | (Ignore flow control),
X (XON/XOFF); default H
t - translate: D (direct output), T (translate), A (auto-CR)
c - <CR>: C (<CR> is end of line), R (no effect)
e -end of file: F (<FF> at end of file), Z (CTRL Z at end of file)

Printer Port (either SER or PAR)
Null device, emulating null file.
emulates a file filled with zeros.
emulates a file filled with null lines.

always returns "not complete™.

Named pipes have been added to the unnamed type:

PIPE_name_n Job communication and synchronisation

if "n" given it is an output pipe.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 8 -5

9. Interfacing to S*Basic

When writing S*Basic procedures or functions in machine code, there are several things that an applications
programmer may want to do: he may wish to look at or modify the information held in S*Basic variables and
arrays, he may wish to access or modify the S*Basic list of I/O channels, and he may wish to reserve and
use space on the arithmetic stack. He will also, of course, wish to access the list of parameters passed to the
routine and return values either to those parameters or in a function return. In order to do this, it is necessary
to understand the data structures used by the interpreter and to emulate the interpreter's techniques for
manipulating them.

9.1. Memory Organisation within the S*Basic Area

The S*Basic area contains twelve distinct areas:

the job header,

the S*Basic work areas,
the name table,

the name list,

the variable values area,
the channel table,

the arithmetic stack,

the token list,

the line number table,
the program file,

the return list,

the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the S*Basic area, and looks just like other job header (see Section
18.5). Immediately above this is the S*Basic work area; this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are pointers to the other areas: the
interpreter can not only shuffle these areas around, but may also ask QDOS to change the size of the whole
S*Basic area.

The organisation of this area is shown in Section 18.3. Throughout normal operation of the interpreter, A6
points to the base of the S*Basic work area, the whole of which may move between instructions, with a
corresponding change in A6. All the pointers are, of course, relative to A6, so that their values need not be
changed when the S*Basic area is moved.

The name table, the name list and the variable values area are required by the applications programmer in
order to access and/or modify S*Basic variables and parameters. The channel table is required in order to
access S*Basic I/0O channels, and the arithmetic stack (usually abbreviated to RI stack) is a convenient area
in which to reserve storage, and is also where parameters are passed. The remaining areas are not
described in this document.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 9 - 1

9.2. The Name Table

All variables, procedure names, parameters and even expressions are handled through the name table. This
is a regular table of eight byte entries, but the entries hold different information according to the type of entry.

The entries may be as follows:

Bytes 7-4 Bytes 3-2 Bytes 1-0 Type

Value pointer Name pointer $0001 Unset string

Value pointer Name pointer $0002 Unset floating point number
Value pointer Name pointer $0003 Unset integer

pointer to RI stack -1 $0101 String expression

pointer to RI stack -1 $0102 Floating point expression
pointer to RI stack -1 $0103 Integer expression

Value pointer Name pointer $0201 String

Value pointer Name pointer $0202 Floating point number
Value pointer Name pointer $0203 Integer

Value pointer -1 $0300 Substring

Value pointer Name pointer $0301 String array

Value pointer Name pointer $0302 Floating point array

Value pointer Name pointer $0303 Integer array

Line no in msw Name pointer $0400 S*Basic procedure

Line no in msw Name pointer $0501 S*Basic string function

Line no in msw Name pointer $0502 S*Basic f.p. function

Line no in msw Name pointer $0503 S*Basic integer function
Value pointer Name pointer $0602 REPeat loop index — floating point
Value pointer Name pointer $0603 REPeat loop index - integer
Value pointer Name pointer $0702 FOR loop index — floating point
Value pointer Name pointer $0703 FOR loop index - integer
Abs. address Name pointer $0800 Machine code procedure
Abs. address Name pointer $0900 Machine code function

Byte 0 of the name table has an additional usage during parameter passing: see Section 9.8.

The Name pointer is a pointer to an entry in the name list (see the following Section). A name pointer of -1
indicates a nameless item such as the value of an expression; any other negative pointer indicates a pointer
to another entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see Section 9.4). A value pointer of -1
indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets from the base of each area. For
the RI stack, the base is at the high address; for the others it is at the bottom.

Note that functions written in S*Basic are typed according to whether the name ends in %, $ or neither.
Functions written in machine code, in common with procedures written in S*Basic or machine code, have no

type.

The entries for expressions and substrings are for use within the expression evaluator: the applications
programmer would not normally use them.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 9 -2

9.3. Name List

The names in the name list are stored as a byte character count followed by the characters of the name.
Note that this format is different from all the other uses of strings in QDOS in which a word character count is
used.

9.4. Variable Values Area

This area is a heap in which the values are stored. The format for each type of data item is given in the
following Sections.

9.5. Storage Formats

9.5.1. Integer Storage

An integer is a 16-bit two's complement word.

9.5.2. Floating Point Storage

A floating point number is stored as a two-byte exponent followed by a four-byte mantissa.

The most significant four bits of the exponent are zero, whilst the remaining twelve bits are an offset from -
$800. The mantissa is two's complement and fractional, with bit 31 of the mantissa representing -1, and bit

30 of the mantissa representing +1/2. There are no implicit bits in the mantissa, so either bit 31 or bit 30 will
be set for a normalised number, except in the special case of zero.

The value of the number is thus mantissa*2 to the power (exponent-$800). If the mantissa is viewed as two's
complement absolute (as opposed to fractional), the value of the number is given by: mantissa*2 to the
power (exponent-$81F). The $1F corresponds to 31 decimal: the length of the mantissa minus one.

Examples of floating point storage are as follows:

Hex Decimal value
0804 50000000 10.00

0801 40000000 1.00

07FF 40000000 0.25

07FF 80000000 -0.50

0800 80000000 -1.00

0000 00000000 0

9.5.3. String Storage

A string is stored as a word character count, followed by the characters of the string. The string storage
always takes a multiple of two bytes. Examples are as follows:

Hex String

0004 41424344 "ABCD"

0003 414243xx "ABC"

0000 " (empty string)

9.5.4. Array Storage

An array descriptor has a header which consists of a longword offset of the array values from the base of the
variable value area, followed by the number of dimensions (word), followed by a pair of words for each
dimension. The first word is the maximum index, the second word is the index multiplier for this dimension.

The storage of floating point and integer arrays is entirely regular. A floating point array takes 6 bytes per
element, an integer array 2 bytes per element.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section9-3

A string array is stored as an array of characters; except that the zeroth element of the final dimension is a
word containing the string length. The final dimension defines the maximum length of the string. This is
always rounded up to the nearest even number.

A substring is the result of internal slicing operations; this is a regular array of characters; the base of the
indexing is one rather than zero.

Examples of Floating Point Storage
Floating point variables (in hex)

0000 0000 0000 0.0
0801 4000 0000 1.0
0800 8000 0000 -1.0
0804 5000 0000 10.0

Floating point arrays
base,2,3,3,2,1 DIM A(3,2)

Examples of string storage (numbers in decimal)
String variable

4,65,66,67,68 "ABCD"
String array

base,2,3,12,10,1 DIM A$(3,10)

4:;65,66,67,78,X,X,X,X,X,X "ABCD"

9;49,50,51,52,53,54,55,56,57 ,x "123456789"

0;%,%,X,X,X,X,X,X,X,X "
1:32,%,%,X,%,X,X,X,X,X "

Substring array

base,1,3,1 A$(0,1 TO 3) as above
65,66,67 "ABC"
9.6. Code Restrictions

There is a simple set of rules for writing procedures in machine code for S*Basic:

1. As the S*Basic program area is liable to move at any time while the execution is in user mode, all
references to this area must be indexed by A6 or A7. This is not true for SMSQ/E.

A6 and A7 must never be saved, used in arithmetic or address calculations, and must never be
altered, except by pushing or popping the A7 stack. In extreme circumstances it is possible to enter
supervisor mode (TRAP #0) to make the following action atomic. If this is done, A6 and the user
stack pointer must not be saved or manipulated before entering supervisor mode, and they must be
restored before exiting.

2. Not more than 128 bytes must be used on the user stack.

3. DO must be returned as an error code (long).

4. D1 to D7 and A0 to A5 inclusive may be treated as volatile.

9.7. Linking in New Procedures and Functions

New S*Basic procedures and functions written in machine code may be linked into the name table using the
vectored routine SB.INIPR (see Section 16). When the procedures and functions are in a ROM in the
suitable format (see Section 11.4), SB.INIPR is called automatically. If the procedures and functions are to

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 9-4

be stored in RAM, they should be loaded into the resident procedure area as, once added, they may not be
removed except by re-booting the machine. It is usually convenient to load the code for calling SB.INIPR to
make the linkage into the same area, although this is not necessary.

9.8. Parameter Passing

The S*Basic interpreter passes parameters using a substitution mechanism, which operates as follows. The
interpreter first evaluates any of the parameters that are expressions. A new entry is then created at the top
of the name table for each actual parameter. In the case of a procedure or function written in S*Basic, this is
followed by a null entry for any formal parameter that is missing from the actual parameter list. The
interpreter then swaps the new name table entries with the old name table entries corresponding to the
actual parameters. In the case of a procedure or function written in machine code, the code is then called
with A3 pointing to the name table entry for the first parameter in the list, and A5 pointing to the last ((A5-
A3)/8 is the number of parameters).

If a local statement is encountered, the entry in the name table is copied to a new position at the top of the
table, and an empty entry put in its place.

At the end of a S*Basic procedure or function, the parameter entries are copied back and local variables are
removed. The parameter entries in the name table together with any temporary storage in the variable value
table are then removed for all procedures and functions.

Byte 0 of the name table entry for a parameter has an additional meaning to that associated with a normal
name table entry. The bottom four bits have the usual indication of type (0O=null, 1=string etc.), but the top
four bits are used to indicate the separator that was present after the parameter in the actual parameter list,
together with information as to whether the actual parameter was preceded by a hash (#).

Thus the format of byte 0 is as follows:

h sss tttt
tttt: type: 0=null, 1=string, 2=floating point, 3=integer

sss: type of following separator: 0=none, 1=comma, 2=semi-colon, 3=backslash,
4=exclamation mark, 5=TO

h: 1 if the parameter was preceded by hash, otherwise 0

Note that byte 0 of the name table is located at 1(a3) as it is part of a word (see Section 9.2).

The name pointer of a parameter (if it is not an expression or substring) is the index of the name table entry
of the item from which it is copied. Thus the parameter "name" can be obtained from the name list entry of
that item (see also Section 9.9). The index must be multiplied by the entry size (8) to get the pointer.

9.9. Getting the Values of Actual Parameters

For the purpose of using scalar (as opposed to array) parameters locally in the same way as "call by value"
parameters in other high-level languages, it is expedient to use one of a set of four vectored routines which
place the values of actual parameters on the arithmetic stack. Each routine assumes that all the parameters
will be of the same type. It is passed the values of A3 and A5 which point to the name table entries for the
parameters; it returns the number parameters fetched in the least significant word of D3, and the values
themselves in order on the arithmetic stack with the first parameter at the top (lowest address) of the stack.
These routines smash the separator flags. They are as follows: SB.GTINT gets 16-bit integers, SB.GTFP
gets floating point numbers, SB.GTSTR gets strings, and SB.GTLIN gets floating point numbers but
converts them to 32-bit long integers.

These routines may still be used when processing parameters of mixed type or when wishing to inspect the
separators. To begin with, the values of A3 and A5 should be saved; then, for each parameter in the
succession, the separator flags are inspected, and the appropriate routine is called with A3 pointing to the
parameter and A5 equal to A3+8, thus getting one parameter.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section9-5

These routines smash D1, D2, D4, D6, A0 and A2. The error codes are returned in DO and the condition
codes.

A special technique is provided for use in those routines in which it is necessary for the user to be able to
type in a string without quotes, as it's required for S*Basic commands involving device names. Firstly, the
name is inspected to see if it is a valid set string variable. If it is, the string is fetched using SB.GTSTR,; if it is
not, the parameter's name itself is fetched from the name list, and converted to string form by changing its
word count from byte to word, realigning the string if necessary. If a string is to be input without quotes, it
must of course follow the rules for S*Basic names, as described in the Concepts manual.

9.10. The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by A1. Space may be allocated on the stack by calling
the vectored routine QA.RESRI: the number of bytes required is given in D1.L; DO to D3 are smashed by the
call. Since both the stack within the S*Basic area and the S*Basic area itself may move during a call, the
stack pointer should be saved in BV_RIP(A6) before the call, and restored from BV_RIP(AB) after the call
has been completed. The routine ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the arithmetic stack.
The arithmetic stack is automatically tidied up both after procedures, and after errors in functions.

To make a good return from a function, the returned value should be at the top (lowest address) of the stack
with nothing below it (that is with both (A6,A1.L) and BV_RIP(A6) pointing to it) when the routine is exited.
The type of the returned value should be in D4 (1=string, 2=floating point, 3=integer). Since S*Basic has no
long integer type, long integers must be converted to floating point before returning.

Values can also be returned to parameters or, indeed, global variables, by putting the value on the arithmetic
stack in the same way, pointing A3 to the appropriate name table entry and calling the vectored routine
SB.PUTP. DO is an error return, and D1, D2, D3, A0, A1 and A2 are smashed. If the actual parameter was
an expression, no error will be given, but the value returned will be lost. The type of the returned parameter
is determined by the name table entry, and the information on the arithmetic stack must be in the correct
form.

As functions do not tidy up the arithmetic stack automatically unless an error occurred, it is very important to
make sure that the stack does not grow on function returns, especially if strings have been passed and
returned. Also, the routine QA.RESRI does not update A1 (return value undefined!) or move the stack, it just
makes sure that enough memory is available so that the arithmetic stack may grow downwards.

Note that strings must be aligned on the arithmetic stack so that the character count is on a word boundary.
All entries on the stack must be even length, so that a string of odd length has one byte at the end which
contains no information.

9.11. The Channel Table

A channel number (#n) is an index to an entry in the S*Basic channel table. This is a table of items which are
each of length CH.LENCH (currently $28) bytes. The base of the table is at BV_CHBAS(A6), and the top is
at BV_CHP(A®6); thus the base of the entry for channel #n is given by:

(n*CH.LENCH+BV_CHBAS(A6))(A6)
The format of each table entry is as follows:

$00 long the channel ID

$04 float current graphics cursor (x)

$0A float current graphics cursor (y)

$10 float turtle angle (degrees)

$16 byte pen status (0 is up, 1 is down)

$20 word character position on line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel ID is negative, there is no channel open
to that # number.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 9-6

10. Hardware-related Programming

10.1. Memory Map au

The 68008 has one megabyte of address space. Although an unexpanded QL uses only the bottom 256 Kb
of this, the allocation for the remainder is determined and should be adhered to when designing add-on
hardware.

This is how it is made up:

$FFFFF

Add-on ROM (up to 128 Kb)
$E0000

Add-on peripherals (8 slots of up to 16 kbytes each)
$C0000

Add-on RAM (up to 512 kbytes)
$40000

On-board user RAM (96 kbytes)
$28000

Screen RAM (32 kbytes)
$20000

On-board I/O (Partially decoded)
$10000

Plug-in ROM cartridge (16 kbytes)
$0C000

On-board ROM (48 kbytes)
$00000

The registers in the on-board 1/O area are partially decoded: the details of this decode may vary according to
different versions of the QL hardware - some versions will recognise any address in the entire area.

However, the address map normally used is the same for all QLs:

Address (hex) Function (read) Function (write)

$18023 Microdrive data (track 2) Display control

$18022 Microdrive data (track 1) Microdrive/RS232-C data
$18021 Interrupt/IPC link status Interrupt control

$18020 Microdrive/RS232-C status Microdrive control
$18003 Real-time clock byte 3 IPC link control

$18002 Real-time clock byte 2 Transmit control

$18001 Real-time clock byte 1 Real-time clock step
$18000 Real-time clock byte 0 Real-time clock reset

The display control registers are in the ZX8301 "Master chip", and the others are in the ZX8302

"Peripheral chip". The details of the QL hardware are rather obscure, and it is strongly recommended that
these registers should not be used by applications programs, and should only be accessed via QDOS traps
or vectored routines.

For other hardware, e.g. the Miracle Gold card or the QL-Emulator for the ATARI ST or other machines
running SMSQ/E, the area from $C0000 is filled up with continuous memory (up to $3FFFFF or beyond).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 - 1

10.2. Display Control

The display format in memory is explained below: this format is specific to the QL and may change on future
Sinclair products. It is, therefore, strongly advised that screen output be performed using only the standard
screen driver, together with the SMS.DMOD trap. It notably is different on machines running SMSQ/E in
higher display modes.

In 512-pixel mode, two bits per pixel are used, and the GREEN and BLUE signals are tied together, giving a
choice of four colours: black, white, green and red. On a monochrome screen, this will translate as a four-
level grey-scale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green and Blue, and one bit for
flashing. The flash bit operates as a toggle: when set for the first time, it freezes the background colour at the
value set by R, G and B, and starts flashing at the next bit in the line; when set for the second time, it stops
flashing. Flashing is always cleared at the beginning of a raster line.

Addressing for display memory starts at the bottom of dynamic RAM and progresses in the order of the
raster scan - from left to right and from top to bottom of the picture. Each word in display memory is
formatted as follows:

High byte (A0=0) Low Byte (A0=1)

Bit D7 D6 D5 D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 D1 DO Mode
G7 G6 G5 G4 G3 G2 G1 GO R7 R6 R5 R4 R3R2 R1 R0 512-pixel
G3 F3 G2 F2 G1 F1 GO FO R3 B3 R2 B2 R1 B1 R0 BO 256-pixel

R, G, B and F in the above refer to Red, Green, Blue and Flash. The numbering is such that a binary word
appears written as it will appear on the display: i.e. RO is the value of Red for the rightmost pixel, that is the
last pixel to be shifted out onto the raster.

In 8 bit (aurora or palette) modes, there is one byte per pixel. In 16 bit modes, there are two bytes per pixel.
The 16 bit QPC/QXL/SMSQmulator format is as follows:

G2 G1G0B4B3B2B1B0 R4R5R2R1 R0 G5 G4 G3

The 16 bit Q40/Q60 format is as follows:

G4G3G2G1GOR4R3R2 R1TR0OB4B3B2B1BOW

10.3. Display Control Register

This is a write-only register, which is at $18063 in the QL.

One of its bits is available through the QDOS SMS.DMOD trap: bit 3, which is 0 for 512-pixel mode and 1 for
256-pixel mode.

The other two bits of the display control register are not supported by QDOS, these being bit 1 of the display
control register, which can be used to blank the display completely, and bit 7, which can be used to switch
the base of screen memory from $20000 to $28000. Future versions of QDOS may allow the system
variables to be initialised at at $30000 to take advantage of this dual-screen feature: the present version
does not.

Bits 0, 2, 4, 5 and 6 of the display control register should never be set to anything other than zero, as they
are reserved and may have unpredictable results in future versions of the QL hardware.

10.4. Keyboard and Sound Control

The keyboard and loudspeaker are controlled by the QL's second processor, which is an 8049single-chip
microcomputer: this is known in the QL as the Intelligent Peripheral Controller, or IPC. The SMS.HDOP trap
provides a set of commands that the CPU can send to the IPC over the serial link that connects them. This
trap is discussed in greater detail in Section 13.0.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 - 2

When the keyboard is accessed via the console driver, the usual functions of de-bounce and conversion to
ASCII are performed, in addition to the functions described in Section 15.0. The other way of accessing the
keyboard is to use the SMS.HDOP trap to monitor the instantaneous state of the keys directly: this is the only
way of detecting multiple key presses (necessary for joystick input), or of detecting the state of the SHIFT,
CTRL and ALT keys when no other key has been depressed. See the S*Basic Keywords entry on the
KEYROW function for an example of the use of this technique.

The same trap, with different parameters, is used for sound generation.

10.5. Serial I/0

The QL's serial 1/0 should only be accessed via the serial driver, except for setting the baud rate, which is
performed by the SMS.COMM trap. The only other function that can safely be performed by the user
independently of the operating system is the checking of the transmit handshake lines (DTR on channel 1
and CTS on channel 2), which can be looked at by monitoring bits 4 and 5 of the microdrive status register
respectively. Note that if the connector is rewired to use these pins as data lines, this function could be used
to perform RS232-C reception entirely in software, which would make it possible to perform XON-XOFF
handshaking or split baud rate operation.

10.6. Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps SMS.RRTC, SMS.SRTC and
SMS.ARTC are used to read, set and adjust the clock. The vectored routines CV.ILDAT and CV.ILDAY are
used to convert the time obtained to a string.

10.7. Network

This should not be accessed other than by the built-in device driver.

10.8. Microdrives

Normally, these should not be accessed other than by the built-in device driver. However, it is possible to
write routines to access microdrive sectors directly in order to perform such functions as fast medium-to-
medium copying or recovery of data from a damaged medium.

There are four vectored routines provided for this purpose: MD.READ, MD.WRITE, MD.VERIF and
MD.RDHDR. Use of these routines requires a detailed understanding of the microdrive hardware and format,
and is probably beyond the scope of most users.

However, to use these routines ,the following example shows how a microdrive is selected or de-selected:

sys_wser
move.b do, -(sp) ; save operation
wait subqg.w #1,sys_tmot(a0) ; decrement timeout
blt.s set_mode ; done?
move.w #(20000*15-82)/36,d0 ; time=18*n+42 cycles
delay1l
dbra do, delayl ; delay
bra.s wait ; repeat until timeout expires
set_mode
clr.w sys_tmot (a0 ; clear wait
and.b #pc.notmd, sys_tmod(a®) ; not RS232
move.b (sp)+,do
or.b do, sys_tmod(a0) ; either mdv or net
and.b #$ff-pc.maskt,sys_qlir(a0@); disable transmit interrupt
exit
move.b sys_tmod(a@),pc_tctrl ; set PC
rts
sys_rser
bclr #pc..serb,sys_tmod(a®) ; set RS232 mode
or.b #pc.maskt, sys_qlir(a@) ; enable transmit intertupt
bra.s exit

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 -3

md_desel

; clock in deselect bit first

; clock in select bit first
; and clock it through n times

; clock high

; time=2*n+20 cycles

; clock low

; ... clocks d2.0 into first drive

; time=2*n+20 cycles

; clock high - deselect bit next

moveq #pc.desel, d2
moveq #7,d1 ; deselect all
bra.s sedes

md_selec
moveq #pc.selec,d2
subg.w #1,d1

sedes

clk_loop
move.b d2, (a3)
moveq #(18*15-40)/4,do
ror.1l do, de
bclr #pc..sclk,d2
move.b d2, (a3)
moveq #(18*15-40)/4,d0
ror.1l do, de
moveq #pc.desel, d2
dbra d1,clk_loop
rts

drive

bsr.s startup
bsr.s wind_dwn
rts

Entry Exit

D1 D1 smashed

D2 D2 smashed

D3.L number of microdrive
AO AO SYS_BASE

A3 A3 mdctrl (=$18020)

Error returns:

) N= N= Ne N2 Ns Ns NsNsNsNsNsS-

Routine to start up a microdrive
RETURNS IN SUPERVISOR MODE (if D3=1 to 8)

D3 preserved

orng microdrive out of range

tartup

cmp.1l #1,d3 ; legal microdrive?
blt.s i1l drve ; jump if not
cmp.w #8,d3 ; legal microdrive?
bgt.s i1l drve ; jump if not
move.l (sp)+,as ; A3=return address
moveq #sms.info, do ; get system variables
trap #do.sms2 ; get system variables
trap #0 ; supervisor mode
move.l a3, -(sp) ; 'return' the return address
moveq #3$10, dO ; microdrive mode
bsr sys_wser ; wait for RS232 to complete
or.w #$0700, sr ; shut out rest of world
move.1l d3, d1 ; d1 is microdrive to be started
move.1l #pc_mctrl, a3 ; control register
bsr md_selec ; start it up
moveq #0,do ; no problems
rts ; return

i1l drve
moveq #err.orng,de ; error!
rts

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 - 4

Routine to wind down (all!!!) microdrives
MUST BE CALLED IN SUPERVISOR MODE

Entry Exit

D1 D1 smashed
D2 D2 smashed
AO AO SYS_BASE

S Ns Ns NsNs N NsNe N

A3 A3 pointer to instruction after call to here
ind_dwn

moveq #sms.info, dO

trap #do.sms2 ; get system variables

move.l #pc.mctrl, a3 ; control register

bsr.s md_desel ; wind it down

bsr sys_rser ; re-enable RS232

move.l (sp)+,as ; A3=return address

move .w #0,sr ; enable interrupts, exit SV-mode

move.l a3, -(sp) ; return address

rts ; return

10.9. User and Supervisor Mode st

Motorola has implemented function code lines into their processors to allow for hardware memory protection.
This has never been used on a QL, and for the first two QL-Emulators for the ATARI's the machines had to
be modified to ignore the function code line which says whether an access is done in supervisor mode or
user mode - the hardware always thought the access is in supervisor mode. Generally, allowing accesses to
the system addresses in supervisor mode only is a good idea. This traps a program which tries to destroy
some vectors or modify the hardware settings by mistake or due to a programming fault.

Accesses to the system vectors ($000 to $400) have to be done in supervisor mode, otherwise the system
will generate a bus error. The only exception is an access to a QL utility vector which may be accessed in
both modes, e.g.

MOVE . W RI.EXEC, A2
JSR (A2)

Hardware registers should be modified by the supervisor only, therefore any access to ST hardware registers
($FFxxxxxx to $SFFFFFFFF) are allowed in supervisor mode only - no exception!

Again, doing it in user mode results in a bus error. The same applies for accesses to non-existent hardware -
a bus error is generated.

In general there should be no need to access non-existent hardware, as the facilities of the system can be
discovered by looking at system variables or the thing list, if a thing does not exist, then the hardware is
simply not available on this machine.

If a hardware address has to be accessed and it is not known whether the machine supports it or not, the
following routine could be used to do it.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 -5

Call routine with own bus error handler ©1992 Jochen Merz

Call a user-supplied routine to access hardware addresses

and ignore internal bus error handler to find out if routine succeeds.
This routine must be called in supervisor mode!

The routine which is to be called must not modify d3-d4 and a3, but

it should reset dO on success or return any other error!

Entry Exit
D1 call parameter return parameter
D2 call parameter return parameter

D3+ preserved

A0 routine to be called return parameter
Al call parameter return parameter
A2+ preserved

Error returns: ERR.NIMP if bus error occured
any error returned by supplied routine

" N N® N® Ns N® Ns= N® Ns N= N= NE Ns N= N= NE N= N= N= Na

l4

cbus_reg reg d3-d4/a3-a4

ut_chuser
movem. 1 cbus_reg, -(sp)
move.w sr,d3 ; keep SR
or.w #$0700, sr ; no interrupts allowed
move.l sp, a3 ; keep SSP
move.1l $0008, d4 ; get standard bus error
lea buserr, a4
move.l a4, $0008 ; and insert new one
moveq #err.nimp, dO ; assume bus error
jsr (a0) ; call routine
buserr
move.1l a3, sp ; restore stack
move.1l d4, $0008 ; restore bus error
move .w d3, sr ; restore SR
movem. 1 (sp)+,cbus_reg
tst.1l do
rts

The routine at (A0) should first access the hardware register which is to be tested. If this fails, the routine is
left immediately. If not, it can do whatever it wants and return with an RTS.

10.10. The Interrupt System s

All I/O on the ATARI is done under interrupt. This means, disabling the interrupts for a longer period of time
should be avoided. At present, there are two different interrupt systems implemented: one for the old ST
models, which uses the VBLANK interrupt for calling the Poll loop. The disadvantage is, that it is unknown
whether the poll is called at 50, 60 or even 71 Hz, because this depends on the monitor which is connected.

On STE and TT models the poll is a steady 50 Hz interrupt, not related to the VBLANK. It is derived from a
200 Hz interrupt which generates a software level 1 interrupt.

The general rules are: try to avoid disabling the interrupts at all. If you have to, don't stay long in this mode
(Sometimes you have to, e.g. for accesses to the sound chip - there must be no interrupt between register
select and register read/write)! Never modify the interrupt system! Do not modify the masks in the SCU!

If you need a timer, the system may provide a timer. Check for a thing named "Timer" by trying to use it. If it
is in use, someone else is using the timer. If it is not found, the timer is not available at all. If it is successful
(it should be, generally spoken) then the Timer B of the MFP is yours. The Thing itself does nothing but
making sure that only one job can use the timer at a time, and it also disables the interrupt on force remove.
The server routine for the timer interrupt has to be inserted at $1A0. The timer can be programmed to any
rate which is possible, but you should refer to other documentation which gives detailed description of the
MFP.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 - 6

10.11. The MIDI Interrupt server sn

The MIDI interrupt server is invoked through the keyboard server. To locate the keyboard server, scan
through the polling linked list looking for 'ASTK' iod_pllk (8) bytes below the polling link (i.e. the base of a
standard linkage block). Then put the base address of the midi linkage at $a8 in the keyboard linkage and
the address of the MIDI server at $ac.

The MIDI server is called with A3 pointing to the MIDI linkage and DO.b holding the contents of the MIDI
status register. (D0.b will always be negative - i.e. the interrupt bit will be set.) The server may smash
D0/D1/A0/A2/A3 and should return with RTE. Due to an error in old keyboard drivers, A3 is not saved on a
MIDI call. This means, that when you look for the 'ASTK' flag, this address should be kept and A3 should be
set to this linkage address just before the MIDI server returns with RTE.

10.12. Different Processors [STI[SMSQ/E]

You can find out which processor is running the system by having a look at the system variable SYS_PTYP
($A1). The high nibble contains the processor type, which gives a byte value of $0x for a 68000, $1x for a
68010, $2x, $3x and $4x for 68020, 68030 and 68040, respectively. It is a good idea to write a branch by
looking at this register for time-critical routines which could be improved by using the extended 68020+
register set.

The low nibble is reserved to show the presence of MMUs and Floating Point Coprocessors. It is, at present,
usually 0.

The different processors differ a bit in user-mode handling of some instructions. QDOS programs had a
number of privilege violation problems, but these are emulated now. The most common problem is the entry
to Supervisor mode, which is usually something like

move.w SR,Dx ; save previous processor mode
trap #0 ; into supervisor mode

supervisor mode code
move.w Dx,SR ; back to previous mode

Processors other than 68000s will generate a Privilege Violation exception on the first command, as it is not
allowed to read the status register in user mode! Therefore, all reads of the status register are emulated. As
all the other privilege violation cases will definitely lead to a program malfunction, the program loops in an
endless loop, waiting to be removed from the system. If you set a debugger on this program and display the
memory after the PC, then you will see a message "Priv V at (A0)”". The offending instruction can be found at
the address to which AQO points.

10.13. Different Machines s, swsa

It might be very helpful to know on which machine the current programs are running. They all differ in
hardware, and behave different in some ways. The standard application usually does not need to know on
which machine it is running, but it could be very useful for some special applications to use hardware if it
exists to speed up things on some machines. In addition, it could be helpful to know which type of emulator
is installed in the machine. The system variable SYS_MTYP ($A7) gives details about the machine. At
present, the definition is as follows: Bits 4 to 0 contains the machine type, bits 7 to 5 the display type:

0 for all ordinary ST's without realtime-clock.
2 for Mega ST or ST's with realtime clock.
4 for Stacy.

6 for ordinary STE.

8 for Mega STE.

10 for GoldCard.

12 for SuperGoldCard.

16 for the Falcon 030.

17 for the Q40/Q60.

20 for SMSQmulator.

24 forthe TT.

28 for the QXL.

30 for QPC.

In addition, bit O is set if the machine contains a Blitter chip (ATARIs only) or a Hermes (QL).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 -7

The display types are:

%00000000 Standard QL or the Futura emulator (we cannot tell whether it gives real MODES or not)
%01000000 The Extended 4 Emulator.

%10000000 The QVME emulator card.

%00100000 ATARI monochrome mode.

%11000000 VGA mode (e.g. QXL) or QL mode LCD.

%10100000 Aurora.

10.14. The ATARI DMA sn

The DMA is used to handle the floppy disk system and the ACSI port. You may gain access to the DMA by
trying to TAS the system variable SYS_DMIU ($A6). If this is set, you may use the DMA (e.g. to provide new
device drivers for streamers or CD ROMs connected to the ACSI port).

You should clear this flag as soon as possible.

As SMSQ supports more than one type of RAM, a key has been added to allow for the controlled allocation
of specific RAM. The ATARI TT may have Fast RAM in addition of the standard ST compatible RAM. This
Fast RAM cannot be used for Floppy Disk DMA and DMA from and to devices connected to the ACSI port
(this includes the ATARI LaserPrinter SLM 804 and SLM605).

It is possible to pass the characters "ACSI" in D3 on the SMS.ACHP call to make sure that only the type of
RAM is allocated wich supports direct memory access to the ACSI port.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 10 - 8

11. Adding Peripheral Cards to the QL

Peripheral cards may be plugged into the expansion connector on the left-hand side of the QL.

There are two general categories of peripheral card for the QL: pure add-on memory cards, and other
peripheral cards. It is intended that only one pure add-on RAM card be plugged into the machine at any one
time.

It is allocated the address area between $40000 and $BFFFF; the add-on memory should be contiguous
from $40000 upwards. This allows for an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128kbytes, which is allocated the addresses $E0000 to
$SFFFFF.

Other peripheral cards contain electronics for the devices being added, a small ROM containing the drivers
for the devices being added together with a code allowing the QL to detect that the card is present, and a 4-
bit comparator which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is to append the letter "L" to the
end of the signal name, as in DTACKL, VPAL etc. This takes the place of the overbar indication used in the
data sheets from most vendors.

11.1. Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL. Details of the connections
available at the connector may be found in the QL Concepts manual.

The connector inside the QL is a 64-way male DIN-41612 indirect edge connector, as found on standard
Eurocard modules. The connector on each add-on card should be the inverse version of this.

The VIN supply is in the region of +9V DC: the trough never falling below 7V. Up to 500 mA may be drawn
from this to power the card.

No add-on card should load any pin on the edge connector by more than two LSTTL loads. All add-on card
data bus output drivers should be a 74LS245 or equivalent, in terms of drive ability, and being tri-state.

11.2. CPU Interface

The CPU interface is totally memory-mapped onto the 68008's bus, control of the bus for use with the video
display controller being obtained by using the DTACKL signal to arbitrate the bus.

Memory access is entirely controlled by DSL, with ASL left unused. ASL should not be used to gate any add-
on hardware.

An unexpanded QL does not look at address lines A19 and A18. In peripheral cards which are to be added
to the QL, it is necessary for each card to disable the circuitry on the QL itself when that peripheral card
recognises its own address.

This is achieved by pulling signal DSMCL high before DSL goes low including buffering times. This is done
typically by using a fast NPN switching transistor (such as an MPS2369) connected as an emitter follower
with the emitter connected to DSMCL, the collector to +5V and the base to a logic signal. Note that the timing
for this operation is the most critical in most hardware interfaces to the QL, especially when the necessary
signals have been buffered.

Add-on cards must supply DTACKL or VPAL as required, to notify the CPU that they have recognised their
address.

All 68008 signals are available on the expansion connector to allow expansion to include coprocessors or
other peripherals.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 11 -1

The following signals are outputs only: A0-A19, RDWL, ASL, DSL, BGL, CLKCPU, E, RED, BLUE, GREEN,
CSYNCL, ,VSYNCH, ROMOEH, FC0-2, RESETCPUL.

The following lines are inputs only, and should only be driven from open collector outputs: DTACKL, BRL,
VPAL, IPLOL, IPL1L, BERRL, EXTINTL, DBGL.

The data bus, DO-D7, is bidirectional.

The EXTINTL pin may be used to generate a level 2 external interrupt, which can be linked to a user task
(see Section 6.3). Note that the EXTINTL pin must not be negated until the QDOS startup mechanism is
complete, or there is a risk of the system hanging up.

11.3. Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards) are allocated the address space between $C0000
and $DFFFF. Each peripheral card, when selected, must disable DSMCL and assert VPAL or DTACKL as
required, for its own use. This address pace is split into eight slots of 16kbytes each; each peripheral card
should normally take only one block if a full set of eight peripheral cards is to be allowed to operate
concurrently.

There is a set of four select lines, SPO-SP3, appearing on the edge connector. The first card in an expansion
module, or a single card directly plugged into the QL, receives a value of zero on these four lines. Each slot
in an expansion module has a value one different from that in the other slots: this means that each card is
allocated 16kbytes of address space. The card select logic compares the values on A17-A14 against the
number coming in on the select lines in order to determine whether that card is selected. For the card to be
selected it must be the case that A14=SP0, A15=SP1, A16=SP2 and A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should sit in the bottom addresses of
the 16kbyte block. The format of the lowest part of this ROM is specified in the next Section.

11.4. Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in ROM drivers by looking for the
characteristic Longword flag $4AFB0001 at the base of each location in which a ROM might be present. The
beginning of a plug-in ROM should be in the following format:

00 $4AFB0001 (flag to indicate ROM is present)

04 pointer to list of BASIC procedures and functions
06 pointer to initialisation routine

08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero then there will be no attempt to link
routines into S*Basic.

The list of BASIC procedures and functions is in the form used by SB.INIPR (see Section 16).

At start-up the machine will link in the additional BASIC procedures from the ROM, then call the initialisation
routine (in user mode) which must not modify A6, and finally must restore AO (the initial window ID), and A3,
the pointer to the ROM, on exit. Up to 128 bytes may be used on the user stack.

The description should be in the form of a character count (word) followed by the ASCII characters of the
device description(s) ending with the newline character (ASCII 10). It is recommended that the number of
characters should be limited to 36.

All code for device drivers must be position independent, since the addresses of the ROM and the

devices on the card will be dependent upon the position at which it has been plugged into a QL expansion
module. This allows multiple copies of the same add-on card to be used simultaneously.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 11 -2

12. Non-English Systems

There are three areas in which non-English QLs may differ from English QLs: the video, the keyboard, and
the character set for serial communications.

The version codes for non-English QLs are adjusted appropriately to contain a character identifying the
country. In the version code returned by SMS.INFO, this character replaces the decimal point; in the string
returned by the S*Basic VERS$ function, the character is added on at the end, producing a string three
characters long for non-English QLs. Example:

1G13 MGG

12.1. Video

This is different for countries where the television system is NTSC, which permits the use of fewer raster
lines than PAL. In QLs for such countries, the following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used; this is the same system as is used on
the English QL. The full 512x256 pixel display is available, and the default windows and character size are
the same as for the monitor mode on an English QL.

For TV operation, a 60Hz 524-line non-interlaced system is used in which the number of raster lines
available is limited to 192. In order to ease the task of software conversion, an alternate display font is
provided which allows a 6x8 character square instead of the usual 6x10. This ensures approximately the
same number of visible rows of text on both PAL and NTSC QLs, at the cost of true descenders and reduced
vertical spacing. The default windows and graphics scaling for TV operation are different from those of the
English QL.

12.2. Non-English-language Keyboards

The keyboard layout for most European countries will be different from the English layout. This difference
should be largely transparent to applications software, since the "QL ASCII" codes contain all the characters
necessary for the European countries in question, and the codes generated are independent of the keyboard
layout and hence of the actual key depressions required to generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which draws pictures of keys in certain places will certainly produce an incorrect drawing
if the location of those keys has changed between countries.

2. The keyrow function (or SMS.HDOP trap) refers to the physical position of the keys, not to their
logical meaning. For example, a test on an English QL for the letter "Q" using keyrow will turn into a
test for the letter "A" on a French QL which has an AZERTY keyboard.

3. An instruction to "hit any key" will not be strictly accurate for a country which employs non-spacing
diacriticals, where the keypress of an accent character does not generate a code until the character
to be accented is pressed. The length of the type-ahead buffer in the IPC will be apparently reduced
in such cases.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 12 - 1

12.3. Character Set (ot sms2] [smsq]

The English character set is available in all countries. However, in non-English countries, the character set
for serial communications may (optionally) be translated into a "local" character set.

A further option allows the user to specify his own translation table, since it is anticipated that a number of
countries will have several standards (i.e., no standards at all).

The trap SMS.TRNS is used to set up user-supplied translation tables for the serial communications (serial
and parallel printer ports). In addition, a language-dependant table for the error-messages may be supplied.

The simple translation exchanges a character code against another one. The character may optionally be
replaced by three characters, using a second table.

The format of the translation table is as follows:

base of table

word $4AFB flag

word table1-base of table relative pointer to first table

word table2-base_of table relative pointer to second table
table1

256 bytes 1 to 1 character translation
table2 byte number of translations or 0

for every translation ...:
byte character to be translated

3 bytes three replacement characters

If the first pointer is zero, no translation is being performed. The second table is only used for output.

The message table, which may be optionally supplied, has to be in the following format:

base
word $4AFB flag
word err_nc-base rel. pointer to 'not-complete' message
word err_ijob-base rel. pointer to 'invalid job' message

all error messages

word err_isyn-base rel. pointer to 'bad line' message
word atline-base * message 'At line'
word sectors-base message ' sectors'
word F1_F2-base message 'F1 .. monitor'
'F2.. TV
word copyright-base * message 'C1983 Sinclair Research Ltd'
word dur_when-base message 'during WHEN processing'
word procclr-base message 'PROC/FN cleared'
word days-base * days 'SunMonTueWedThuFriSat'
word months-base * months 'JanFebMar .." etc

All messages except the days and months have to be in standard string format.
All messages except those marked with * should end with newline (ASCII 10).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 12 -2

12.4. Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic, etc., require special treatment.
No general scheme has been devised for making software transportable to these countries, and the
implementation means will be specific to each country.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 12-3

13. System Traps

Trap #1 D0=$18 SMS.ACHP

Allocate common heap area

Call parameters Return parameters

D1.L Number of bytes required D1.L Nr. of bytes allocated *
D2.L Ownerjobid D2 ?77?

D3 0 or "acsi" D3 7?77

D4+ All preserved

AO AO Base address of area
A1 A1 7??
A2 A2 7??
A3 A3 7??

A4+ All preserved

Error returns (Z flag is not always set correctly):
IMEM Out of memory

IJOB Job does not exist

This trap is a specific example of the general heap allocation mechanism described in Section 4.1 and
accessible using SMS.ALHP.

ATARI TT (or similar machines with ST RAM and Fast RAM) only: If D3 is passed as "ACSI", then memory is
allocated in ST compatible RAM, not in Fast RAM [SMSQ].

* The number of bytes allocated as returned in D1 includes the bytes necessary for the heap header. It does

not correspond to the number of bytes that may be used in the heap (which is smaller than the number
returned in D1).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13 - 1

Trap #1 D0=$0A

Activate job

Call parameters

D1.L Jobid

D2.B Priority

D3 Timeout (0 or -1)

A0
A1
A2
A3

Error returns:
IJOB Job does not exist

NC Job already active

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3
Ad+

Job id
Preserved
Preserved
All preserved

Base of job ctrl area
Preserved
Preserved
Preserved if d3=0
All preserved

SMS.ACJB

This trap activates a job in the transient area. Execution commences at the start address defined when the

job was created.

If the timeout is zero then the execution of the current job continues, otherwise the current job will be
suspended until the job activated is completed. The trap will then return with the error code (if any) from that

job.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 -2

Trap #1 D0=$0C SMS.ALHP

Allocate an area in a heap

Call parameters Return parameters
D1.L Length required D1.L Length allocated
D2 D2 ?77?

D3 D3 ?77?

D4+ All preserved

A0 pointer to pointer to free space A0 Base of area allocated
A1 A1 ?77?

A2 A2 ?77?

A3 A3 ???

A6 Base address A6 Preserved

Error returns:

IMEM No free space large enough

Two trap entries are provided for user heap management where this is required to be atomic. A6 is used as
a base address for both this call and for SMS.REHP so that A0 (and A1) is an address relative to A6. See
section 4.1 for details of the heap mechanism.

Trap #1 D0=$16 SMS.AMPA
Allocate BASIC program area

Call parameters Return parameters

D1.L Number of bytes required D1.L Number. of bytes allocated
D2 D2 ???

D3 D3 ??7?

D4+ All preserved

AO AO ?77?
A1 A1 ?77?
A2 A2 ???
A3 A3 ??7?
A6 Base address A6 New base address
A7 User stack pointer A7 New stack pointer

Error returns:

IMEM Out of memory

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13-3

Trap #1 D0=$0E SMS.ARPA

Allocate resident procedure area

Call parameters Return parameters
D1.L Number of bytes required D1 ?77?
D2 D2 ?77?
D3 D3 2?7

D4+ All preserved

AO AO Base address of area
A1 A1 ?77?
A2 A2 ?77?
A3 A3 ??7?

A4+ All preserved

Error returns:
IMEM Out of memory

NC Unable to allocate (TRNSP area not empty)

This trap should only be invoked when the transient program area is empty.

Trap #1 D0=$15 SMS.ARTC

Adjust Real-Time clock

Call parameters Return parameters
D1.L Adjustment in seconds D1.L Time in seconds
D2 D2 ?77?

D3 D3 ??7?

D4+ All preserved

A0 A0 ?7??
A1 A1 Preserved
A2 A2 Preserved

A3+ All preserved

As setting the clock takes a significant time, no adjustment is made if a call is made to adjust the clock and
D1=0.

Time starts at 00:00:00, 1. January 1961.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13-4

Trap #1 D0=$2F SMS.CACH (susq

Turn Cache on or off

Call parameters Return parameters
D1.L 1 for Cache on D1 1 = Cache on,
0 for Cache off 0 = Cache off

-1 to read current cache setting

Error returns:

Always okay

No other value than 0 or 1 should be used to set the cache, to allow for future cache control strategies.
To read the current cache setting, use -1.

For Motorola 68000 processors, it always returns 0.

Trap #1 D0=$12 SMS.COMM
Set the Baud rate

Call parameters Return parameters
D1.W Baud rate D1 ?77?

D2 D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 Preserved

A1 A1 Preserved
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

IPAR Non recognised baud rate

For a standard QL, the baud rate supplied in D1 is applied to both serial ports.

For extended Systems (e.g. Hermes) refer to the specific documentation supplied with the extension.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13-5

Trap #1 D0=%$01

Create a job in transient program area

Call parameters

D1.L Owner Job ID

D2.L Length of code (bytes)
D3.L Length of data space
A0

A1 Start address or 0

A2

A3

Error returns:
IMEM Out of memory

IJOB Noroom in job table or d1 is not a job

Return parameters

D1.L
D2
D3
D4+

A0
A1
A2
A3
Ad+

Job ID
Preserved
Preserved
All preserved

Base of area allocated
Preserved

Preserved

Preserved

All preserved

SMS.CRJB

This trap allocates space in the transient program area, and sets up a job entry in the scheduler tables. This

does not invoke the job and the only initialisation is that two words of 0 are put on the stack.

The program itself would normally be loaded, by another job, into the space allocated, after this system call.

The stack pointer saved in the job control area points to two zero words on the stack (at the highest
addresses in the job's data area); if channels are to be opened for the job, or a command string is to be
passed to the job then this can be done before the job is activated.

If D1 is O (i.e. owned by the system), the new job is independent, if D1 is negative, it is owned by the calling

job.

In QDOS and in versions of SMSQ/E before 3.24, care should be taken that the parameters passed in D2
and D3 are both even before calling this trap. If they are not, the resulting job will most likely crash.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 13 -6

Trap #1 D0=$10

Set or read the display mode

Call parameters

D1.B key: -1read mode

0 mode is 4 colour
2 mode is 2 colour [SMS]
8 mode is 8 colour

Return parameters

D1.B

12 mode is 16 colour [Thor XVI]

D2.B key: -1 read display

0 monitor
1625-line TV
2 525-line TV

D3

A0

A1

A2

A3

D2.B

D3
D4+

A0
A1
A2
A3
A4

Display mode

Display type

Preserved
All preserved

?7?7?
Preserved
Preserved

Preserved
?7?7?

SMS.DMOD

This call is used to set or read the current display mode.

It is treated as a manager trap as it affects all the displayed windows.

If a call is made to set the screen mode, then all the windows on the screen are cleared and the character

sizes may be adjusted.

Obviously, there are serious risks involved in calling this trap to set the mode when there are jobs in the

machine accessing the screen.

For a SMS machine or Extended4-Emulator, this trap only clears the windows of the calling job, so that the

windows of other jobs are not affected.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 -7

Trap #1 D0=$07 SMS.EVX

Set the per-job pointer to trap vectors

Call parameters Return parameters
D1.L JobID D1.L JobID

D2 D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 A0 Base of job
A1 Pointer to table A1 ?77?

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

When a routine in the table is entered as a result of an exception, the CPU is in supervisor mode.
The routine should return with an RTE command (not RTS).

Any registers used must be saved and restored.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13- 8

Trap #1 D0=$35 SMS.FPRM (smsq;
Find Preferred Module

Trap #1 D0=$31 SMS.LENQ smsq
Language Enquiry

Trap #1 D0=$30 SMS.LLDM [SMSQ]
Link in Language Dependent Module

Trap #1 D0=$32 SMS.LSET (susq
Language Set

Trap #1 D0=$34 SMS.MPTR [SMSQ]
Find Message Pointer

Trap #1 D0=$33 SMS.PSET susq
Set Printer Translate

For details on these trap calls, please refer to Section 19 "Language handling in SMSQ".

Trap #1 D0=$05 SMS.FRJB

Force-remove job from transient program area

Call parameters Return parameters
D1.L JobID D1 7?7
D2 D2 ??7?
D3.L Error code D3 7

D4+ All preserved

A0 A0 ???
A1 A1 ?7??
A2 A2 ?7??
A3 A3 7?7

A4+ All preserved

Error returns:
IJOB Job does not exist

This trap inactivates a complete job tree and deletes all jobs in it. If D1 is set to -1 then the current job is
removed.

Neither of the traps SMS.FRJB or SMS.RMJB to remove jobs can remove job 0. Neither of these traps are
guaranteed to be atomic.

If there is a job waiting on completion of any job removed, this is released with DO set to the error code (see
SMS.ACJB D0=$0A).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13-9

Trap #1 D0=$06 SMS.FRTP

Find largest contiguous free space that may be allocated in transient program area

Call parameters Return parameters

D1 D1.L Length of space found
D2 D2 ?77?

D3 D3 2?7

D4+ All preserved

A0 AO 7?7
A1 A1 ?77?
A2 A2 ?77?
A3 A3 ???

A4+ All preserved

Trap #1 D0=$11 SMS.HDOP

Send a command to the IPC

Call parameters Return parameters
D1 D1.B Return parameter
D2 D2.L Preserved
D3 D3 Preserved
D5 2?7
D7 ??7?
AO AO Preserved
A1 A1 Preserved
A2 A2 Preserved
A3 Pointer to command A3 Preserved

A4+ All preserved

This trap sends a command to the IPC.

A command sent to the IPC is a nibble (4 bits of a byte) followed by a stream of nibbles or bytes being the
parameters of the command; some information may then be returned from the IPC.

The command format for SMS.HDOP is a header describing the command to be sent, followed by the
parameters to be sent, followed by a byte indicating whether a reply is expected.

The IPC communication is completely unprotected and the command must not contain any errors or else the
entire machine will hang up. IPC communications is a very slow process and excessive use of the IPC, for
example: polling all rows of the keyboard - the cursor keys have been organised to all be in one row, will
cause very high processor overheads.

The command format allows 0, 4 or 8 bits to be transferred from each byte in the parameter block.
This is encoded in 2 bits:

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13- 10

00 Send least significant 4 bits
01 Send nothing
10 Send all 8 bits
11 Send nothing.

The complete command format is:

1 byte The IPC command nibble in the Is 4 bits
1 byte The number of parameter bytes to follow
1 long word Containing the codes for the amount of each parameter byte to be sent in reverse order:

Bits 1,0 the amount of first byte to send

Bits 3,2 the amount of the second byte etc...
n bytes The parameter bytes
1 byte Length of reply encoded in bits 1,0

Most of the IPC commands are for use by the operating system and any attempt by application programs to
use these is liable to cause loss of data or worse.

There are three commands for the IPC which may be used by applications programs:

$09 Read a row of the keyboard, 1 parameter
4 bits The row number
8 bits Reply

$0A Initiate sound, 8 parameters

8 bits Pitch1

8 bits Pitch2

16 bits Interval between steps

16 bits Duration

8 bits Top 4 bits: Step in pitch

Lower 4 bits: Wrap

8 bits Top 4 bits: Randomness of step
Lower 4 bits: Fuzziness

No reply

$0B Kill sound, no parameters, no reply.

An example of initiate sound is the following line, which is the data for a "siren-type" sound:

sirene
DC.B $%a ; command nibble
DC.B 8 ; number of parameter bytes
DC.L $0000aaaa ; parameters all 8 bit
DC.B $01,$14, $c8, $00, $ff, $7f, $10,0 ; parameters
DC.B 1 ; no reply

This is equivalent to the S*Basic command:

BEEP HEX('7FFF'),1,HEX('14'),HEX('00C8'),1,0,0,0

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13 - 11

Trap #1 D0=$00

System information

Call parameters
D1
D2
D3

A0
A1
A2
A3

Return parameters

D1.L Current Job ID

D2.L ASCII OS version (n.nn)
D3 Preserved

D4+ All preserved

AO Pointer to system Variables

A1 Preserved
A2 Preserved
A3 Preserved
A4+ All preserved

SMS.INFO

This trap should always be used as a means of obtaining the base address of the system variables as well
as ensuring that the operating system version supports the features you wish to use. This trap always

succeeds.

Trap #1 D0=$02

Information on a job

Call parameters

D1.L Jobid

D2.L Job at top of tree
D3

A0
A1
A2
A3

Error returns:
IJOB Job does not exist

Return parameters

D1.L Nextjob in tree

D2.L Owner job

D3.L MSB -ve if suspended
LSB priority

D4+ All preserved

A0 Base address of job
A1 7?7?

A2 Preserved

A3 Preserved

A4+ All preserved

SMS.INJB

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs.

On each call D2 should be the ID of the job at the top of the tree; to scan a complete tree, the trap is made
with D1 being the return value of the previous call. When the tree has been completely scanned D1 is

returned equal to zero.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13- 12

Trap #1 D0=$2E
Set IO Priority

Call parameters
D1
D2.W priority to set

Error returns

Always okay

Return parameters

D1
D2

preserved

preserved

SMS.IOPR (susq;

The I/O priority sets the priority of the 1/O retry operations.

In effect, this sets a limit on the time spent by the scheduler retrying 1/O operations.

A priority of one sets the 1/O retry scheduling policy to the same as QDOS, thus giving a similar level of

response but with a higher crude performance.

A priority of:
2 will give QDOS levels of response, better response under load.
10 for example, will give a much better response under load but degraded performance.

32767 will give maximum response, the performance depends on the number of jobs waiting for input

(default SMSQ setting).

Call parameters

D0=$1E Link a scheduler loop task

D0=$20 Link an 1O device driver

Return parameters

Trap #1 DO0=$1A Link an external interrupt service routine

D0=$1C Link a polling 50/60 Hz service routine

SMS.LEXI
SMS.LPOL
SMS.LSHD
SMS.LIOD

D0=$22 Link a directory device driver into the operating system SMS.LFSD

D1 D1 Preserved
D2 D2 Preserved
D3 D3 Preserved
D4+ All preserved

AO Address of link AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3 Preserved
A6 A6 Preserved

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13 - 13

Trap #1 D0=$19 SMS.RCHP
Release common heap area
Call parameters Return parameters
D1.L D1 ?77?
D2.L D2 ???
D3 D3 ??7?
D4+ All preserved
A0 Base of area to be freed A0 ?77?
A1 A1 ?77?
A2 A2 ???
A3 A3 ??7?
A4+ All preserved
Please refer to Section 2.1.4 for an explanation of the common heap.
Trap #1 D0=$0D SMS.REHP

Link a free space (back) into a heap

Call parameters

D1.L Length to link in
D2

D3

AQ Base of new space

A1 Pointer to Pointer to free space
A2

A3

A6 Base address

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3
A6

?7??
?7??
7?7

All preserved

???
?7??
?7??
7?7

Preserved

A6 is used as a base address for this call and for SMS.ALHP, so that A0 (and A1) is an address relative to

AG.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 - 14

Trap#1 D0=$1B Remove an external interrupt service routine SMS.REXI
D0=$1D Remove a polling 50/60 Hz service routine SMS.RPOL
D0=$1F Remove a scheduler loop task SMS.RSHD
D0=$21 Remove an |0 device driver SMS.RIOD
D0=%$23 Remove a directory device driver from the operating system SMS.RFSD

Call parameters Return parameters

D1 D1 Preserved

D2 D2 Preserved

D3 D3+ All preserved

AO Address of link A0 Preserved

A1 A1 ???

A2 A2 Preserved

A3 A3 Preserved

Trap #1 D0=$04 SMS.RMJB

Remove job from transient program area

Call parameters
D1.L Jobid
D2

D3.L Error code

AO
A1
A2
A3

Error returns:

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3
A4+

IJOB Job does not exist

NC

Job not inactive

?7??
?7??
?77?

All preserved

2?7
?7??
?7??
?77?

All preserved

This trap removes a job (and its subsidiaries) from the transient program area.

Only inactive jobs may be removed.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13- 15

Trap #1 D0=$17

Release BASIC program area

Call parameters

D1.L Number of bytes to release
D2

D3

A0
A1
A2
A3
A6 Base address

A7 User stack pointer

SMS.RMPA

Return parameters

D1.L
D2
D3
D4+

A0
A1
A2
A3
A6
A7

Number of bytes released
?77?
???

All preserved

?2??
?2?7?
?2??
2?7
New base address
New stack pointer

Trap #1 D0=%$13

Read real-time-clock

Call parameters
D1
D2
D3

AO
A1
A2

SMS.RRTC

Return parameters

D1.L
D2
D3
D4+

A0
A1
A2
A3+

Time in seconds
?7??
Preserved

All preserved

?7??
Preserved
Preserved

All preserved

The time returned in D1 is the number of seconds since 00:00 1 January 1961.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 - 16

Trap #1 D0=$38

Shrink allocation in common heap

Call parameters

D1.L New size required
D2

D3

AO Base address of area
A1
A2
A3

SMS.SCHP susq;

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3
Ad+

Error returns (z flag is not always set correctly):

IJOB Job does not exist

New size retained
27?7
7?7

All preserved

Base address of area
??7?
?2?7?
??7?

All preserved

This trap can be used to link part of a heap allocation back into the free space list.

The first part of the area, starting from the base address, stays the same and the following space which is

not required anymore is released.

This trap can be used to avoid unnecessary re-allocation and copying, in case too much memory is taken.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 - 17

Trap #1 D0=$0B SMS.SPJB
Change job priority

Call parameters Return parameters
D1.L Jobid D1.L Jobid

D2.B Priority (0 to 127) D2 Preserved
D3 D3 Preserved

D4+ All preserved

A0 A0 Smashed, or
AO base of job area (SMSQE)
A1 A1 Preserved

A2+ Preserved

Error returns:
IJOB Job does not exist

This call is used to change the priority of a job. If D1 is a negative word it will change the priority of the
current job.

Setting the priority to 0 will cause inactivation.
This call re-enters the scheduler and so a job setting its own priority to zero will be immediately inactivated.

Warning: Contrary to other QDOS documentation, A0 may be smashed - it does not always return the base
of the job control area, except for SMSQE.

Trap #1 DO=$3A SMS.SEVT
Send Event to Job

Call parameters Return parameters
D1 Destination job id D1.l Destination job id
D2.B Event(s) to notify D2.b Preserved

D3+ All preserved

AO+ All preserved

Error returns:
IJOB Job does not exist

The events in D2 are sent the the destination job.

If the job is waiting for one of these events, the job is released, otherwise the all the events are pended.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13- 18

Trap #1 D0=$14

Set Real-Time-Clock

Call parameters

D1.L Time in seconds
D2

D3

AO
A1
A2

SMS.SRTC

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3+

Time in seconds
27?7
7?7

All preserved

???
Preserved
Preserved

All preserved

The value in D1 has to be the number of seconds since 00:00 1 January 1961 to set the new time and date.

Trap #1 D0=$08

Suspend a job

Call parameters

D1.L JobID

D2

D3.W Timeout period

A0
A1 Address of flag byte or 0
A2
A3

Error returns:

IJOB job does not exist

SMS.SSJB

Return parameters

D1.L
D2
D3
D4+

AO
A1
A2
A3
Ad+

Job ID
Preserved
Preserved

All preserved

Base of job ctrl area
Preserved
Preserved
Preserved

All preserved

A job may be suspended for an indefinite period, or until a given time has elapsed. The timeout period is up
to ($7FFF times the frame time). If the timeout period is specified as -1, then the suspension is indefinite; no

other negative value should be used.

If the Job ID is a negative word, then the current job is suspended.

The flag byte is cleared when the job is released. If there is no flag byte, then A1 should be 0.

If the job is already suspended, the suspension will be reset. All jobs are rescheduled.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13- 19

Trap #1 D0=$24

Set translation table and error messages

Call parameters

SMS.TRANS (1ot sms2

Return parameters

D1 Pointer to translation table, -1 or 0 (or 1) D1 7?7

D2.L Pointer to message table, -1 or 0
D3

A0
A1
A2
A3

Error returns:
IPAR

D2 ??7?
D3 ?7??
D4+ All preserved

A0 ???
A1 ???
A2 27?7
A3 ?7??

A4+ All preserved

table has invalid format or is on odd address

This trap is supported from QDOS V1.10 onwards. If D1 or D2 are 0, then no translation is used and the
standard error messages are used. -1 leaves the values as it has been defined previously. If D1=1 then a
local translation table is used, depending on the language of the ROM (not in UK or US ROMs).

[SMSQ]: If D2 is not zero and it points to a message table with language code $4AFB, this address is used
for message group 0. The printer translate tables are then set according to the value in D1 (see SMS.PSET).

Trap #1 D0=$09

Release a job

Call parameters
D1.L JoblID
D2

D3

A0
A1
A2
A3

Error returns:

IJOB job does not exist

SMS.USJB

Return parameters
D1.L JobID
D2 Preserved

D3+ All preserved

A0 Base of job control area
A1 Preserved

A2 Preserved

A3+ All Preserved

After this call all jobs are rescheduled. The activity of jobs can be controlled by activation or by modification

of the priority levels. A job at priority level 0 is inactive, at any other priority level it is active.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 13 - 20

Trap #1 D0=$3B SMS.WEVT [smsq;

Wait for Event
Call parameters Return parameters
D2.B Event(s) to wait for D2.B Event(s) causing return
D3.W Timeout (-1 is forever) D3.W Preserved

D4+ All preserved

AO+ All preserved

Error returns: None

The job waits for one or more of the events in D2 or the timeout.

The events returned in D2 are removed from the job's pending event vector (event accumulator).

Trap #1 D0=%25 SMS.XTOP [SMSQ]

External Operation

The code which follows the TRAP #1 is executed as if it was part of a system call.

When this TRAP #1 is encountered, the registers are changed to A6 pointing to the system variables, A5
pointing to the stack frame (which contains D7.l, previous A5, previous A6) and the code is executed in
Supervisor mode.

The routine must finish in an RTS, which brings it back to user mode on return. It continues with the next
program line after the RTS.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 13 - 21

13.1.

Trap 1 Keys - numerical order with page reference

(Clicking on the page number will send you there)

SMS.INFO
SMS.CRJB
SMS.INJB
SMS.RMJB
SMS.FRJB
SMS.FRTP
SMS.EXV
SMS.SSJB
SMS.USJB
SMS.ACJB
SMS.SPJB
SMS.ALHP
SMS.REHP
SMS.ARPA
SMS.DMOD
SMS.HDOP
SMS.COMM
SMS.RRTC
SMS.SRTC
SMS.ARTC
SMS.AMPA
SMS.RMPA
SMS.ACHP
SMS.RCHP
SMS.LEXI
SMS.REXI
SMS.LPOL
SMS.RPOL
SMS.LSHD
SMS.RSHD
SMS.LIOD
SMS.RIOD
SMS.LFSD
SMS.RFSD
SMS.TRNS
SMS.XTOP
SMS.IOPR
SMS.CACH
SMS.LLDM

QDOS/SMS Reference Manual v. 4.9

$00
$01
$02
$04
$05
$06
$07
$08
$09
$0a
$0b
$0c
$0d
$0e
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1a
$1b
$1c
$1d
$1e
$1f
$20
$21
$22
$23
$24
$25
$2e
$2f
$30

get INFOrmation on SMS

CReate Job

get INformation on JoB

ReMove JoB

Forced Remove JoB

find largest FRee space in Tpa

set EXception Vector

SuSpend a JoB

UnSuspend a JoB

ACtivate a JoB

Set Priority of JoB

Allocate in HeaP

RElease to HeaP

Allocate in Resident Procedure Area
set or read the Display MODe

do a Hardware Dependent Operation
set COMMuncation baud rate etc.
Read Real Time Clock

Set Real Time Clock

Adjust Real Time Clock

Allocate space in S*Basic area
Release space in S*Basic area
Allocate space in Common HeaP
Release space in Common HeaP
Link in EXternal Interrupt action
Remove EXternal Interrupt action
Link in POLIed action

Remove POLled action

Link in ScHeDuler action

Remove ScHeDuler action

Link in 10 Device driver

Remove |O Device driver

Link in Filing System Device driver
Remove Filing System Device driver
Set translation and error messages
eXTernal Operation [SMSQ]

IO PRiority [SMSQ]

CACHe handling [SMSQ]

Link in Language Dependent Module [SMSQ]

31.03.2025

12
6
12
15
9
10
8
19
20
2
18
3
14
4
4
10
5
16
19
4
3
16
1
14
13
15
13
15
13
15
13
15
13
15
20
21
13
5
9/ Section 19

Section 13 - 22

SMS.LENQ
SMS.LSET
SMS.PSET
SMS.MPTR
SMS.FPRM
SMS.SCHP
SMS.SEVT
SMS.WEVT

$31
$32
$33
$34
$35
$38
$3a
$3b

Language ENQuiry [SMSQ]

Language SET [SMSQ]

Printer translate SET [SMSQ]

find a Message PoinTeR [SMSQ]

Find PReferred Module [SMSQ]

Shrink alloaction in common heap [SMSQ]
Send event to job [SMSQ]

Wait for event [SMSQ]

QDOS/SMS Reference Manual v. 4.9 31.03.2025

9/ Section 19
9/ Section 19
9/ Section 19
9/ Section 19
9/ Section 19
17
18
21

Section 13 - 23

14. /O Management Traps

Trap #2 D0=$02 IOA.CLOS

Close a channel

Call parameters Return parameters
D1 D1+ All preserved
A0 Channel id A0 ?77?
A1 A1 ???
A2 A2+ All preserved

Error returns:

ICHN channel not open

Trap #2 D0=$06 IOA.CNAM smsq

Fetch channel name

Call parameters Return parameters
D1 D1 Preserved
D2.W Max length of string D2 Preserved

D3+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to buffer A1 Device name (QDOS-string)
A2 A2 Preserved

A3+ All preserved

Error returns:
ICHN Channel not open
IPAR Buffer too small

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 14 - 1

Trap #2 D0=$04

Delete a file

Call parameters

D1.L Job ID (as file openl!!)
D2

D3

A0 Pointer to file name
A1
A2

Error returns:

IMEM Out of memory
FDNF File or device not found

INAM Bad file or device name

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3+

ICHN Not opened - too many channels open

?7?

Preserved
?7?7?

All preserved

?77?
77?
?7??

All preserved

IOA.DELF

A0 should point to a standard QDOS string containing the full name of the device and file.

NOTE: not all device drivers/OSes support this TRAP#2 call. In this case, an IOA.OPEN call with D3 set to -1

should be used.

SMSQ/E checks whether a device driver is specially marked as being compatible with the IOA.DELF
TRAP#2 call, if not it will use the IOA.OPEN call with D3 set to -1. DV3 drivers linked in via the standard
dv3_link subroutine and a standard table of values, will be marked as being compatible with the IOA.DELF
TRAP#2 call, and the deletion will be handled internally by SMSQ/E, without the device driver specifically

having to take care of this.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 14 - 2

Trap #2 D0=$03

Format a sectored medium

Call parameters
D1
D2
D3

A0 Pointer to medium name
A1
A2

Error returns:

IMEM out of memory
FDNF drive not found
FDIU drive in use
FMTF format failed

Return parameters

D1.W Number of good sectors
D2.W Total number of sectors

D3
D4+

AO
A1
A2+

Preserved
All preserved

?77?
?77?

All preserved

IOA.FRMT

The medium name is in the form of a character count (word) followed by the ASCII characters of the drive

name.

The drive number, underscore then up to 10 characters for the medium name.

For example,

dcw 13
dc.b 'FLP1_November'

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 14 -3

Trap #2 D0=$01 IOA.OPEN

Open a channel

Call parameters Return parameters
D1.L Jobid D1.L Jobid

D2 D2 Preserved
D3.L Open-key D3 Preserved

0 Old (exclusive) file or device

1 Old (shared) file

2 New (exclusive) file

3 New (overwrite) file

4 Open directory

-1 Delete file
AOQ Pointer to file name AOQ Channel id
A1 A1 ?2?7?
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

ICHN Not opened - too many channels open
IJOB Job does not exist

IMEM Out of memory

FDNF File or device not found

FEX File already exists

FDIU Drive in use

INAM Bad file or device name

IPAR Invalid open-key

If the Job ID is passed as a negative word (for example -1) then the channel will be associated with the
current job.

The file or device name should be a string of ASCII characters. This string is preceded by a character count
(word), AO should point to this word (on a word boundary).

The error return "INAM" indicates that the name of the device has been recognised but that the additional
information is incorrect, for example CON_512y240.

The open-key is usually ignored for access to any non-shared device: in practice, this is anything other than
a file store. If the error code is non-zero then no channel has been opened.

In order to open an input pipe, D3.L must hold the output pipe channel ID instead of an open key. Note that
New (overwrite) is not currently supported for Microdrive files on all versions of QDOS.

Note also that most device drivers, when requested to open a directory will, if no such directory exists, open
the next existing higher level directory. Most QL software expects this behaviour.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 14 - 4

Trap #2 D0=$05

Set new owner of open channel

Call parameters
D1.L New owner job-id
D2

A0 Channel id

Error returns:
ICHN Channel not open
IJOB Job does not exist

Return parameters
D1 Preserved
D2 Preserved
D3+ All preserved

A0 Preserved

A1 + all preserved

IOA.SOWN ssq;

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 14 -5

14.1. Trap 2 Keys - numerical order with page reference

IOA.OPEN $01 OPEN IOSS channel
IOA.CLOS $02 CLOSe I10SS channel
IOA.FRMT $03 FoRMaT medium on device
IOA.DELF $04 DELete file from device
IOA.SOWN $05 Set OWNer of channel [SMSQ]
IOA.CNAM $06 fetch Channel NAMe [SMSQ]

= N W =~ b

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 14 -6

15. /O Access Traps

Every I/O trap which is not supported by the system (e.g. IOF.XINF without level 2 device drivers) returns the
error IPAR.

Trap #3 D0=$04 IOB.ELIN

Edit a line of characters (console driver only)

Call parameters Return parameters

D1 Cursor/line length D1 Cursor/line length
D2.W Length of buffer D2 Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to end of line A1 Pointer to end of line
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:
NC not complete
ICHN channel not open
OVFL buffer overflow

This is similar to the fetch line trap, except that the pointer A1 is always to the end of the line, D1 contains
the current cursor position in the MSW and the length of the line in the LSW and the line (from the current
cursor position) is written out to the console when the call is made.

The line should not have a terminating character when the trap is made, but the terminating character will be
included in the character count on return.

Enter (ASCII 10), cursor up or cursor down are all acceptable terminating characters.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 1

Trap #3 D0=5%01 IOB.FBYT
Fetch a byte
Call parameters Return parameters
D1 D1.B Byte fetched
D2 D2 Preserved
D3.W Timeout D3.L Preserved
D4+ All preserved
A0 Channel id A0 Preserved
A1 A1 ?7??
A2 A2 Preserved
A3 A3 Preserved
A4+ All preserved
Error returns:
NC not complete
ICHN channel not open
EOF end of file
QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-2

Trap #3 D0=$02 Fetch a line of characters terminated by ASCII <LF>* |OB.FLIN

D0=$03 Fetch a string of bytes IOB.FMUL
Call parameters Return parameters
D1 D1.W Number of bytes fetched
D2.W Length of buffer (+ve word) D2 Preserved but upper word 0
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel id AO Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3+ Preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

BFFL Buffer full

The character count of a fetch a line trap includes the linefeed character ASCII $0A, if found. The length in
D2 must be a positive word (i.e. no more that $7FFF). NOTE : if no LF can be found within the length of the
buffer, the trap should return error ERR.BFFL (not OVFL as previously mentioned). Whilst the number of
bytes fetched is returned in D1.W, the upper word of D1 is NOT preserved.

* Note : For IOB.FLIN, many SMSQ/E level 3 device drivers (mostly WIN and FLP) will convert a <CR><LF>
to a simple <LF>.

Trap #3 D0=$05 IOB.SBYT
Send a byte

Call parameters Return parameters

D1.B Byte to be sent D1 ?77??

D2 D2 Preserved

D3.W Timeout D3 + All preserved

A0 Channel ID A0 Preserved

A1 A1 ?7??

A2 A2 Preserved

A3 A3 Preserved

A4+ All preserved
Error returns:
NC Not complete
ICHN Channel not open
DVFL Drive full
ORNG Off window/paper etc.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-3

Trap #3 D0=$07 I0B.SMUL
Send a string of bytes

Call parameters Return parameters

D1 D1.W Number of bytes sent
D2.W Number of bytes to be sent (+ve word) D2.W Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

AQ Channel ID AQ Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
DVFL Drive full

Please refer to Section 5.3.3 for details of the special treatment afforded to newlines on the console or
screen device. Note: the size of the number of bytes to be sent in D2 should be a positive word, i.e. no larger
than $7FFF. Whilst the number of bytes sent is returned in D1.W, the upper word of D1 is NOT preserved.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 -4

Trap #3 D0=$06 IOB.SUML [susarg

Send a string of untranslated bytes

Call parameters Return parameters

D1 D1.W Number of bytes sent
D2.W Number of bytes to be sent D2.W Preserved

D3 Timeout D3.L Preserved

D4+ All preserved

AO Channel id AO Preserved
A1 Base of buffer A1 Updated pointer to buffer
A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:
NC Not Complete
ICHN Channel not open

DVFL Drive full

Please refer to Section 5.3.3 for details of the special treatment afforded to newlines on the console or
screen device.

This trap is similar to IOB.SMUL ($07) but it does not translate the characters. Therefore, the setting of
translation tables is ignored as well as the parameter in the device open call (e.g. SERd, SERt, PARd,
PARt). A safe way of sending graphics data or control codes to the printer, as they will never be translated
into other byte patterns.

This trap is only available on SMSQ/E.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-5

Trap #3 D0=$00

Check for pending input

Call parameters Return parameters
D1 D1 ??7?

D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+

AO Channel ID AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

IOB.TEST

This trap is used to check for pending input on a channel. It does not read any data or modify the input

channel in any way.

This only works on a console device if D3=0 and the keyboard queue is already connected to the console.

Trap #3 D0=%$40

Check all pending operations on a file

Call parameters Return parameters
D1 D1 ?7?7?

D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 ?7?7?

A2 A2 Preserved
A3 A3+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

IOB.CHEK

This trap is used to check whether all of the pending operations have completed.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 15-6

Trap #3 D0=$4C IOF.DATE (exmiipp2)

Set or read file date

Call parameters Return parameters
D1L -1 Read date D1.L Date set
0 Set date Date read
Date
D2B 0 Update date D2 Preserved
2 Backup date
D3.W Timeout D3 Preserved
AO Channel id AO Preserved
A1 A1 Preserved

Error returns:
Any I/O sub system errors

The update date of a file is usually set when a file which has been modified (including new copies of files) is
closed (or flushed for the first time).

To read the appropriate date of a file, the trap should be called with the long word value -1 in D1.

To set either the update date, or the backup date, of a file to the current date, the trap should be called with
the value 0 in d1.

A specific date may be set by calling the trap with required date in D1.

If the update date has been set by this trap, then the update date will not be re-set when the file is closed.
The backup date is not stored in the file itself, and may be updated even if the file is open for read only.
The date is a long word giving the date and time in seconds from the start of 1961.

This trap is not supported on native QLs without Toolkit Il and it is partially supported on earlier floppy disc
drivers. It should not be used on any other than Level 2 or 3 devices.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-7

Trap #3 D0=%$41

Flush buffer for this file

Call parameters
D1

D2

D3.W Timeout

AO Channel ID
A1
A2
A3

Error returns:
NC Not complete
ICHN Channel not open

Return parameters

D1
D2
D3.L
D4+

AO
A1
A2
A3
A4+

?7??
Preserved
Preserved

All preserved

Preserved
?7??

Preserved
Preserved

All preserved

IOF.FLSH

When a write operation to a file is complete, the data written may still be in the slave blocks rather than on

the file.

For further details please see Section 5.2 on File I/O.

This call may be used to check that a file is in a known state.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15-8

Trap #3 D0=$48 IOF.LOAD

Load a file into memory

Call parameters Return parameters

D1 D1 ?7??

D2.L Length of file D2 Preserved

D3.W Timeout (should be -1) D3+ All preserved

A0 Channel ID A0 Preserved

A1 Base address for load A1 Top address after load
A2 A2 Preserved

A3 A3 Preserved

A4+ All preserved
Error returns:

ICHN Channel not open

Files may be loaded into memory in their entirety with the file load trap. If the transient program area is used
for this, a Trap #1 must have been invoked to reserve the space before the file load trap is invoked. D3
should be set to -1 before this trap and the base address in A1 must be even.

Trap #3 D0=$45 IOF.MINF

Get information about medium

Call parameters Return parameters

D1 D1.L Empty / Good sectors
D2 D2 Preserved

D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Pointer to 10 byte buffer A1

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

NC Not complete

ICHN Channel not open

The name of the medium, its capacity, and the available space may be obtained for a file or directory that is
open. The medium name is 10 bytes long and left justified. Any remaining bytes are filled with the space
character ($20).

The number of empty sectors is in the most significant word (MSW) of D1, the total available on the medium
is in the least significant word (LSW). A sector is 512 bytes.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-9

Trap #3 D0=$4D IOF.MKDR pp2;
Make directory

Call parameters Return parameters
D1L O D1 Preserved
D2 D2 Preserved
D3.W Timeout should be -1 D3 Preserved
A0 Channel ID A0 Preserved
A1 A1 Preserved

Error returns:

Any I/O sub system errors

The IOF.MKDR trap is called to convert the file into a directory.

The file itself should be empty. Any existing files which would, by virtue of their name, belong in the new
directory, are transferred into the directory. The trap will return a 'bad parameter' error if the file is not empty.

The file must have been opened with a READ/WRITE access key (OLD, NEW or OVER); after this call the
access mode of the file is changed to IOA.KDIR.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15-10

Trap #3 D0=$42 IOF.POSA

Position file pointer absolute

Call parameters Return parameters
D1.L File position D1.L New file position
D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ?7?7?
A2 A2+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

If the position file pointer call is made for a direct sector access channel, a "special” file position flag can be
specified in D1:
IOFP.OFF $FOFFFOFF Returns the sector offset of the first physical sector of the current partition on
multiple-partition devices [SMSQ V2.77+], otherwise returns D1 unchanged

Trap #3 D0=$43 IOF.POSR

Position file pointer relative

Call parameters Return parameters
D1.L Offset to file pointer D1.L New file position
D2 D2 Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 7?7?
A2 A2+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
EOF End of file

If a file positioning trap returns an off file limits error, then the pointer is set to the nearest limit, this being 0 or
end of file. The relative file positioning may, of course, be used to read the current file position.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 11

Trap #3

D0=$47

Read file header

Call parameters

D1
D2.W
D3.W

A0
A1
A2

Error re
NC
ICHN
OVFL

Buffer length

Timeout

Channel ID

Base of read buffer

turns:
Not complete
Channel not open

Buffer overflow

Return parameters
D1.W Length of header read

D2
D3.L
D4+

A0
A1
A2+

Preserved
Preserved

All preserved

Preserved
Top of read buffer
All preserved

IOF.RHDR

The read header call is provided so that a job can allocate the space for a load call as well as determining
the characteristics of a file. The buffer provided must be at least 14 bytes long, but should be minimum 16 for
Level 2 drivers. In the case of a trap to a pure serial device, the length of the header returned in D1 will be
spurious. The file pointer is such that position zero is the first byte after the header. Thus block boundaries
on standard directory driver files are at position 512*n-64.

Section 7 contains details about the format of a file header.

D1
D2
D3.W

AO
A1

Any I/O

Trap #3 D0=$4A

Rename file

Call parameters

Timeout

Channel id

Pointer to new filename (string)

Error returns:

sub system errors

IOF.RNAM exmiiop2;

Return parameters

D1
D2
D3

A0
A1

7?7?
Preserved
Preserved

Preserved
?7?7?

This call renames a file. The name should include the drive name:

e.g. 'FLP1_NE

W_NAME'

This trap does not work on every device, especially not on MDV on an unexpanded QL.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15-12

Trap #3 D0=%$49

Save an entire file

Call parameters

D1

D2. Length of file

D3.W Timeout (should be -1)

AO Channel ID

A1 Base address of file
A2

A3

Error returns:
ICHN Channel not open
DRFL Drive full

IOF.SAVE

Return parameters

D1
D2
D3.L
D4+

AQ
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved

Top address of file
Preserved
Preserved

All preserved

D3 should be set to -1 before this trap, and IOF.LOAD,

and the base address in A1 must be even.

Trap #3 D0=%$46

Set file header

Call parameters
D1

D2

D3.W Timeout

A0 Channel ID

A1 Base of header definition
A2

A3

Error returns:

NC Not complete

ICHN Channel not open

IOF.SHDR

Return parameters
D1.W Length of header set

D2
D3.
D4+

A0
A1
A2
A3
Ad+

Preserved
Preserved
All preserved

Preserved
End of header definition
Preserved
Preserved

All preserved

This call sets the first 14 bytes of the file_header. The length of file will normally be overwritten by the filing
system. When a header is sent over a pure serial device, the 14 bytes of the header are preceded by a byte

$FF.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15-13

Trap #3 D0=$4B IOF.TRNC (exmjioo2;

Truncate file

Call parameters Return parameters
D1 D1 ??7?

D2 D2 Preserved
D3.W Timeout D3 Preserved
AO Channel ID AO Preserved
A1 A1 ??7?

Error returns:

Any /O sub system errors

This call truncates a file to the current byte position. This trap does not work on every device, especially not
on MDV on an unexpanded QL.

Trap #3 DO=$4E IOF.VERS pp2

Set or read file version

Call parameters Return parameters
D1.L Read: -1 D1.L File version
Set: 0

Version: 1 to 65535

D2 D2 Preserved
D3.W Timeout D3 Preserved
A0 Channel ID A0 Preserved
A1 A1 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:
Any /O sub system errors

To read the file version number, this trap should be called with the long word value -1 in D1.
To preserve the file version number, this trap should be called with the value 0 in D1.

To set a specific version number the trap should be called with the version number 1 to 65535 as a long
word value in D1.

If this trap is called to set the version number, the version number will not be incremented when the file is
closed or flushed.

This trap is supported on Level 2 and 3 devices only.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 14

Trap #3 D0:$4F IOF.XINF [DD2]

Get extended information

Call parameters Return parameters
D1 0 D1 Preserved
D2 D2 Preserved
D3.W Timeout D3 Preserved
AO Channel ID AO Preserved
A1 Pointer to info buffer A1 Preserved

Error returns:

Any 1/O sub system errors

This call fetches extended filing system information in a block 64 bytes long.

IOI_NAME $00 String Up to 20 character medium name (null filled)
IOI_DNAM $16 String Up to 4 character long device name (e.g. Win)
I0l_DNUM $1C Byte Drive number

I0I_RDON $1D Byte Non zero if read only

IOI_ALLC $1E Word Allocation unit size (in bytes)

IOI_TOTL $20 Long Total medium size (in allocation units)
IOI_FREE $24 Long Free space on medium (in allocation units)
IOI_HDRL $28 Long File header length (per file storage overhead)
IOL_FTYP $2C Byte Format type (1=gdos, 2=msdos etc)
IOI_STYP $2D Byte Format sub-type

IOI_DENS $2E Byte Density

IOI_MTYP $2F Byte Medium type (ram=0, flp=1, hd=2, cd=3)
IOI_REMV $30 Byte Set if removable

I01_XXXX $31 $OF Bytes Setto -1

The number of allocation units required to store a file may be calculated as:
(file + header length + alloc unit size - 1) / (alloc unit size)
This trap is supported on Level 2 device drivers.

It should be called to find out whether the current device is Level 2 or not and to check which operations are
supported.

If this trap succeeds, all other filing system traps will be available.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15- 15

Trap #3 D0=$30

D0=$31
D0=$32
D0=$33
D0=$34
D0=$36

Call parameters

Draw dot

Draw line

Draw arc

Draw ellipse

Set graphics scale

Set graphics cursor position

Return parameters

D1 D1 ?7??

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Arithmetic stack pointer A1 2?7

A2 A2 Preserved
A3 A3 Preserved

Error returns:

NC

A4+ All preserved

Not complete

ICHN Channel not open

10G.DOT
IOG.LINE
I0G.ARC
I0G.ELIP
I0G.SCAL
I0G.SGCR

Plot a point, line, arc, ellipse, set scale or graphics cursor position. Expects parameters on the arithmetic
stack pointed to by (A1).

The first four traps (I0G.DOT, IOG.LINE, IOG.ARC and IOG.ELIP) draw various lines and arcs in the given

window. Any point on these lines which fall outside the window will not be plotted.

All six traps expect parameters on the arithmetic stack pointed to by (A1). The format of the parameters
required is as follows:

10G.DOT

IOG.LINE

$00(A1)
$06(A1)

$00(A1)
$06(A1)
$0C(A1)
$12(A1)

y-coordinate

x-coordinate

y-coord of finish of line
x-coord of finish of line
y-coord of start of line

x-coord of start of line

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 15- 16

I0OG.ARC $00(A1) angle subtended by arc
$06(A1) y-coord of finish of line
$0C(A1) x-coord of finish of line
$12(A1) y-coord of start of line
$18(A1) x-coord of start of line

IOG.ELIP $00(A1) rotation angle
$06(A1) radius of ellipse
$0C(A1) eccentricity of ellipse
$12(A1) y-coord of centre
$18(A1) x-coord of centre

IOG.SCAL $00(A1) vy position of bottom line of window
$06(A1) x position of left hand pixel of window
$0C(A1) length of Y axis (height of window)

IOG.SGCR $00(A1) graphics x-coordinate
$06(A1) graphics y-coordinate
$0C(A1) pixel offset to right
$12(A1) pixel offset down

For all the graphics traps, the parameters on the A1 stack are floating point and the coordinates are specified
in relation to an arbitrary origin (default is 0,0) with an arbitrary scale.

The default is: height of window = 100 units.

The calling program must allocate at least 240 bytes on the A1 stack.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 17

Trap #3 D0=$35

Turn area flood on and off

Call parameters

Return parameters

I0G.FILL

D1.L Key: 0=end flood D1 ??7?
1=start or restart flood

D2 D2.L Preserved

D3.W Timeout D3.L Preserved
D4+ All preserved

AO Channel ID AO Preserved

A1 A1 ??7?

A2 A2 Preserved

A3 A3 Preserved
A4+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15- 18

Trap #3 DO=$2E IOW.BLOK

D0=$5C (8 bit palette) IOW.BLKP swvsas
D0=$5D (24 bit) IOW.BLKT isusae
DO=$5E (native) IOW.BLKN svsas

Fill rectangular block in window

Call parameters Return parameters
D1 Colour D1 7

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Base of block definition A1 ?27?7?
A2 A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

ORNG Block falls outside window

This trap fills a rectangular block of a window with the current ink colour, taking into account the mode set by
IOW.SOVA. The block definition is in the same form as a window definition. It is 4 words long: width, height,
X-origin and Y-origin. The origin is in relation to the window origin in which the block is to be drawn. This is a
fast way of drawing horizontal or vertical lines.

The colour to be set is in D1, the actual amount used depends on the mode : a byte for iow.blok and in
palette mode, the lower 3 bytes in 24 bit mode and a variable amount in native mode.

Note: The last three traps are only available under SMSQ/E.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15- 19

Trap #3 D0=$0B IOW.CHRQ

Return the current window size and cursor position in character coordinates

Call parameters Return parameters
D1 D1 ?7??

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 Base of enquiry block A1 ?77?
A2 A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

The window size (X,Y) and cursor position (X,Y) are put into a 4 word enquiry block. The top left hand corner
of the window is cursor position 0,0. This trap activates the newline if pending in the window.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 20

Trap #3 D0=$20

D0=$21
D0=$22
D0=$23
D0=$24

Call parameters

D1
D2

D3.W Timeout

A0
A1
A2
A3

Channel ID

Error returns:

NC

Not complete

Clear all of window
Clear top of window
Clear bottom of window

Clear cursor line

Clear right hand end of cursor line

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

ICHN Channel not open

???
Preserved
Preserved
All preserved

Preserved
7?7

Preserved
Preserved

All preserved

IOW.CLRA
IOW.CLRT
IOW.CLRB
IOW.CLRL
IOW.CLRR

The clear window traps can clear all or part of a window.

To clear a part of a window the cursor is used as a reference.

The clear operation consists of overwriting all the pixels in the designated area with paper colour.

The division between the top of the window and the bottom of the window is the cursor line.

The cursor line is neither the top nor the bottom of the window.

The cursor line is the whole height of the current character fount (either 10 or 20 rows).

The right hand end includes the character at the current cursor position.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 15 - 21

Trap #3 D0=$0F

Disable the cursor

Call parameters
D1
D2
D3.W Timeout

A0 Channel ID
A1
A2

Error returns:

NC Not complete

ICHN Channel not open

IOW.DCUR

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2+

?7??
Preserved
Preserved

All preserved

Preserved
?7?7?

All preserved

The call to suppress the cursor does not return an error if the cursor is already suppressed, as it merely

ensures that the cursor is in the desired state.

Trap #3 D0=$0C

Set the border width and colour

Call parameters
D1.B Colour
D2.W Width
D3.W Timeout

A0 Channel ID
A1
A2

Error returns:

NC Not complete

ICHN Channel not open

IOW.DEFB

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2 +

7?7?
Preserved
Preserved

All preserved

Preserved
?7?7?

All preserved

This call redefines the border of a window. By default this is of no width. The width of the border is doubled

on the vertical edges. The border is inside the window limits.

All subsequent screen traps (except this one) use the reduced window size for defining cursor position and

window limits.

As a special case, the colour $80 defines a transparent border so that the border contents are not altered by

the trap.

If the call changes the width of the border, then the cursor is reset to the home position (top left hand corner).

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 22

Trap #3 D0=$0D IOW.DEFW

Redefine a window

Call parameters Return parameters
D1.B Border colour D1 7

D2.W Border width D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 Base of window block A1 ?7?7?
A2 A2+ All preserved

Error returns:
NC Not complete
ICHN Channel not open

ORNG Window does not fit on screen

This call redefines the shape or position of a window: the contents are not moved or modified, but the cursor
is repositioned at the top left hand corner of the new window. The window block is 4 words long representing
the width, height, X origin and Y origin.

Trap #3 D0=$2E IOW.DONL

Do a pending newline

Call parameters Return parameters
D1 D1 7?7

D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ?7?7?
A2+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

This trap forces a newline pending in a window to be carried out. This is normally where something has been
printed at the bottom of a window, but the newline has not been performed as this would cause the window
to scroll upwards. If a newline is not pending in the window, then the routine will return without affecting the
display, otherwise the screen is scrolled upwards SD_YINC pixels (if necessary) and the cursor is placed at
the start of the next line.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 23

Trap #3 D0=$0E

Enable the cursor

Call parameters
D1
D2
D3.W Timeout

AO Channel ID
A1
A2
A3

Error returns:

NC Not complete

ICHN Channel not open

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved
???
Preserved
Preserved
All preserved

IOW.ECUR

The call to enable the cursor does not return an error if the cursor is already enabled, as it merely ensures

that the cursor is in the desired state.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 24

Trap #3 D0=$25 IOW.FONT

Set or reset the fount

Call parameters Return parameters
D1 D1 ?7??

D2 0 (or "DEFF” [SMSQ/E]) D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 Base of fount A1 ?77?

A2 Base of second fount A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

The fount is a 5x9 array of pixels in a 6x10 rectangle.
A default fount and a second fount are built into the ROM, although alternative founts may be selected.
If either fount address is given as zero, the relevant default fount will be used.

The structure of a fount assumes that up to a certain value characters are invalid (default $1E), from the next
value (default $1F) a known number of characters are valid (default $61).

Thus the structure is as follows:

$00 lowest valid character (byte)

$01 number of valid characters-1 (byte)

$02 to $0A 9 bytes of pixels for the first valid character
$0B to $13 etc.

Each byte of pixels has the pixels in bit 6 to 2 (inclusive) of the byte.
The top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in the first fount, it is written using the second
fount. If it is also invalid in the second fount, then the lowest valid character of the second fount is used.

The default fount extends from $20 to $7F.
[sMSQ/E] In SMSQ, this sets or resets the default system font. Each of the two fount addresses can either be
the address of a newly supplied fount, or -1 to keep the current setting, or 0 to select the default font which is

inbuilt into the system. Moreover, an optional parameter can be specified in D2. If it contains the ASCII string
"DEFF", then this call sets the default system fount used by any subsequently opened channels.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 25

Trap #3 D0=$60 Define QL colour palette IOW.PALQ ismsae

D0=$61 Define 8-bit colour palette IOW.PALT 1swsag
Call parameters Return parameters
D1.W Start entry in palette D1 ??7?
D2.W Number of entries to change D2 7
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID A0 Preserved
A1 Pointer to entries A1 ?77?

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete

ICHN Channel not open

These traps redefine colour palettes, either the QL palette or the 8 bit palette.

On entry to the traps, D1 is the number of the first entry to change (starting at 0 for the first entry in the
palette). D2 is the number of palette entries to change from there on.

There are 8 entries in the QL palette and 256 entries in the 8 bit palette.

A1 points to the list of new palette entries. Each entry in the list takes one long word, which must be in 24 bit
RGBx format (i.e. the colour information is in the 24 MSb of the long word — the lower byte is ignored).

Please note that these traps are only available under SMSQ/E.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 26

Trap #3 D0=$1B pan all of window

D0=$1E pan cursor line

Call parameters
D1.W Distance to pan
D2

D3.W Timeout

A0 Channel ID
A1
A2

Error returns:

NC Not complete

ICHN Channel not open

D0=$1F pan right hand end of cursor line

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2+

?77?
Preserved
Preserved
All preserved

Preserved
?7??

Preserved

IOW.PANA
IOW.PANL
IOW.PANR

The whole of a window, or the whole of the cursor line, or the right hand end of the cursor line may be
panned by any number of pixels to the right or to the left.

A positive distance implies that the pixels will move to the right.

The space left behind will be filled with paper colour.

The cursor line is the whole height of the current character fount (either 10 or 20 rows).

The right hand end includes the character at the current cursor position.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 27

Trap #3 D0=$50
D0=$51
D0=$52
D0=$53

D0=$54
D0=$55
D0=$56

D0=$57

D0=$59
D0=$59
DO=$5A

D0=$5B

Call parameters

D1 Colour
D2
D3.W Timeout

A0 Channel ID
A1
A2
A3

Error returns:

NC Not complete

Set paper colour (palette)
Set strip colour (palette)
Set ink colour (palette)

Set border colour (palette)

Set paper colour (24 bit)
Set strip colour (24 bit)
Set ink colour (24 bit)

Set border colour (24 bit)

Set paper colour (native)
Set strip colour (native)
Set ink colour (native)

Set border colour (native)

ICHN Channel not open

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved
???
Preserved
Preserved
All preserved

IOW.PAPP
IOW.STRP
IOW.INKP

IOW.BORP

[SMSQE]
[SMSQE]
[SMSQE]

[SMSQE]

[SMSQE]

IOW.PAPT
IOW.STRT
IOW.INKT

IOW.BORT

[SMSQE]
[SMSQE]

[SMSQE]

IOW.PAPN
IOW.STRN
IOW.INKN

IOW.BORN

[SMSQE]

[SMSQE]

[SMSQE]

[SMSQE]

These traps set the paper, ink, strip and border colours for the respective modes. The colour to be set is in
D1, the actual size (amount used) depends on the mode : a byte in palette mode, the lower 3 bytes in 24 bit
mode and a variable amount in native mode.

Please note that these traps are only available under SMSQ/E.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 28

D1
D2
D3.W

A0
A1
A2
A3

NC
ICHN

Trap #3

D0=$0A

Call parameters

Timeout

Channel ID

Base of enquiry block

Error returns:

Not complete

Channel not open

Return the current window size and cursor position in pixel coordinates

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

?7??
Preserved
Preserved

All preserved

Preserved
???
Preserved
Preserved
All preserved

IOW.PIXQ

The window size (X,Y) and cursor position (X,Y) are put into a 4 word enquiry block.

The top left hand corner of the window is cursor position 0,0.

This trap activates the newline if pending in the window.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 29

Trap #3 D0=%$26

Recolour a window

Call parameters
D1
D2

D3.W Timeout

AO
A1
A2
A3

Channel ID

Pointer to colour list

Error returns:
NC
ICHN

Not complete

Channel not open

IOW.RCLR

Return parameters

D1 ??7?

D2.L Preserved
D3.L Preserved
D4+ All preserved
AO Preserved
A1 ?77?

A2 Preserved
A3+ All preserved

A window may be recoloured without changing the information in it. This allows the same sort of effects as
resetting the attributes of an attribute based screen, but it is very much slower.

The colour list is 8 bytes long and should contain the new colours required for each of the 8 colours in the

window.

Each of the new colours must be in the range 0 to 7.

For 4 colour mode, only bytes 0, 2, 4 and 6 need to be filled in.

Trap #3 D0=%$62

Set the alpha blending weight for window

Call parameters

D1.B alpha weight (0..255)
D2.

D3.W Timeout

A0 Channel ID

A1

Error returns:

ICHN channel not open

IOW.SALP

Return parameters

D1 Preserved
D2 Preserved
D3.L Preserved
D4+ All preserved
AO Preserved
A1+ All Preserved

This call affects all following text and graphics output functions. To disable alpha blending set the weight to

255.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 30

Trap #3 D0=$18 Scroll all of window IOW.SCRA

D0=$19 Scroll top of window IOW.SCRT
D0=$1A Scroll bottom of window IOW.SCRB
Call parameters Return parameters
D1.W Distance to scroll D1 ?7?7?
D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ???

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:
NC Not complete

ICHN Channel not open

Part or all of window may be scrolled; for partial scrolling the cursor is used as a reference.
These traps cause pixels to be transferred from one row to another.
Vacated rows of pixels are filled with paper colour.

A positive scroll distance implies that the pixels in the window will be moved in a positive direction, i.e.
downwards. The space left behind will be filled with paper colour.

The division between the top of the window and the bottom of the window is the cursor line. The cursor line
is included in neither the top nor the bottom of the window.

The cursor is not moved.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 31

Trap #3 DO0=$10
D0=$11
D0=$12
D0=$13
D0=$14
D0=$15
D0=$16

Call parameters

Set cursor position by character intervals
Set cursor column

Put cursor on a new line

Move cursor to next column

Move cursor to previous row

Clear right hand end of cursor line

Move cursor to next row

Return parameters

D1.W Column number (D0=10,11) D1 ?77?
D2.W Row number (D0=10) D2.L Preserved
D3.W Timeout D3.L Preserved

A0 Channel ID
A1
A2
A3

Error returns:

NC Not complete

D4+ All preserved

AO Preserved
A1 ???

A2 Preserved
A3 Preserved
A4+ All preserved

ICHN Channel not open

IOW.SCUR
IOW.SCOL
IOW.NEWL
IOW.PCOL
IOW.NCOL
IOW.PROW
IOW.NROW

In the case of an error return, the cursor position is not changed.

The cursor position is the top left hand corner of the next character rectangle in relation to the top left hand

corner of the window.

These traps clear the pending newline in the window.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 15 - 32

Trap #3 DO0=$2A Set flash attribute IOW.SFLA

D0=$2B Set underline attribute IOW.SULA
Call parameters Return parameters
D1.B O=attribute off, else attribute on D1 27?7
D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1l A1 ??7?
A2 A2+ All preserved

Error returns:
NC Not complete

ICHN Channel not open

Trap #3 D0=$2C IOW.SOVA

Set the character writing or plotting mode

Call parameters Return parameters
D1.W Mode: D1 ?7??

-1 Ink is exclusive ORed into the background

0 Character background is strip colour

1 Character background is transparent
D2 D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

A0 Channel ID A0 Preserved
A1 A1 ?7??

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved
Error returns:

NC Not complete

ICHN Channel not open

Mode 0 or 1 : plotting is in ink colour.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 33

D0=$28 Set strip colour

D0=$29 Set ink colour

Call parameters

D1.B Colour
D2
D3.W Timeout

AQ Channel ID
A1
A2
A3

Error returns:

NC Not complete

ICHN Channel not open

Trap #3 D0=$27 Set paper colour

Return parameters

D1
D2.L
D3.L
D4+

A0
A1
A2
A3
Ad+

?77?
Preserved
Preserved
All preserved

Preserved
?7??

Preserved
Preserved

All preserved

IOW.SPAP
IOW.SSTR
IOW.SINK

The screen driver uses three colours.

There is the background colour of a window, referred to as paper colour; this is the colour which is used by

the scroll, pan and clear operations.

There is the colour which is used by the character generator to provide a highlighting background for
individual characters or words; referred to as strip colour.

Finally, there is the colour used for writing characters and drawing graphics; referred to as ink colour.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 34

Trap #3 D0=$17 IOW.SPIX

Set cursor to pixel position

Call parameters Return parameters
D1.W X-coordinate D1 7

D2.W Y-coordinate D2.L Preserved
D3.W Timeout D3.L Preserved

D4+ All preserved

AO Channel ID AO Preserved
A1 A1 ?77?

A2 A2 Preserved
A3 A3 Preserved

A4+ All preserved

Error returns:

NC Not complete
ICHN Channel not open
ORNG Off window

The cursor position is the top left hand corner of the next character rectangle referred to the top left hand
corner of the window.

This trap clears the pending newline in the window.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 - 35

Trap #3 D0=$2D

Set character size and spacing

Call parameters
D1.W Character width/spacing:

Return parameters

D1

0 Single width, 6 pixel spacing

1 Single width, 8 pixel spacing

2 Double width, 12 pixel spacing

3 Double width, 16 pixel spacing

D2 Character height / spacing:

D2.L

0 Single height, 10 pixel spacing

1 Double height, 20 pixel spacing

D3.W Timeout

A0 Channel ID
A1
A2
A3

Error returns:

NC Not complete

ICHN Channel not open

D3.L
D4+

A0
A1
A2
A3
Ad+

?7??

Preserved

Preserved

All preserved

Preserved
???
Preserved
Preserved
All preserved

IOW.SSIZ

The character generator supports two widths and two heights of character.

In 8 colour mode, only the double width characters may be used.

In addition the spacing between characters is entirely flexible, but for simplicity of use only two additional
spacings are supported directly: these are 8 pixel and 16 pixel, in single and double width respectively.

Calls with D1=0 or 1 in 8 colour mode will operate as though a call had been made with D1 equal to 2 or 3

respectively.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 15 - 36

Trap #3 D0=$09

Call an extended operation

Call parameters

D1
D2
D3.W

AO
A1
A2
A3

Error
NC
ICHN
Plus

Parameter
Parameter

Timeout

Channel ID
Parameter

Start address of routine

returns:
Not complete

Channel not open

Return parameters

D1
D2.L
D3.L
D4+

AO
A1
A2
A3
Ad+

Anything from the operation routine

Parameter
Preserved
Preserved

All preserved

Preserved
Parameter
Preserved
Preserved
All preserved

IOW.XTOP

This trap invokes an externally supplied routine as if it were part of the standard screen driver.

D1, D2 and A1 are passed to the routine, while only D1 and A1 are returned.

The code within the routine is executed in supervisor mode with AO pointing to the channel definition block
(see Section 7.2, 18.7 to 18.10) and A6 pointing to the system variables as for standard device drivers.

Both AO and

QDOS/SMS

A6 must not be smashed.

Reference Manual v. 4.9

31.03.2025

Section 15 - 37

15.1.

IOB.TEST
IOB.FBYT
IOB.FLIN
IOB.FMUL
IOB.ELIN
IOB.SBYT
I0B.SUML
I0B.SMUL
IOW.XTOP
IOW.PIXQ
IOW.CHRQ
IOW.DEFB
IOW.DEFW
IOW.ECUR
IOW.DCUR
IOW.SCUR
IOW.SCOL
IOW.NEWL
IOW.PCOL
IOW.NCOL
IOW.PROW
IOW.NROW
IOW.SPIX
IOW.SCRA
IOW.SCRT
IOW.SCRB
IOW.PANA
IOW.PANL
IOW.PANR
IOW.CLRA
IOW.CLRT
IOW.CLRB
IOW.CLRL
IOW.CLRR
IOW.FONT
IOW.RCLR
IOW.SPAP
IOW.SSTR
IOW.SINK
IOW.SFLA

Trap 3 Keys - numerical order with page reference

$00
$01

$02
$03
$04
$05
$06
$o07
$09
$0A
$oB
$oC
$0D
$OE
$OF
$10
$11

$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1E
$1F
$20
$21

$22
$23
$24
$25
$26
$27
$28
$29
$2A

TEST input

Fetch BYTe from input

Fetch LINe from input

Fetch MULtiple characters/bytes
Edit LINe of characters

Send BYTe to output

Send a string of untranslated bytes [SMSQ/E]

Send MULtiple bytes
eXTernal OPeration on screen
PIXel coordinate Query
CHaRacter coordinate Query
DEFine Border

DEFine Window

Enable CURsor

Disable CURsor

Set CURsor position (character coordinates)

Set cursor COLumn

put cursor on a NEW Line

move cursor to Previous COLumn
move cursor to Next COLumn

move cursor to Prevous ROW

move cursor to Next ROW

Set cursor to PlXel position

SCRoll All of window

SCRoll Top of window (above cursor)
SCRoll Bottom of window (below cursor)
PAN All of window

PAN cursor Line

PAN Right hand end of cursor line
CLeaR All of window

CLeaR Top of window (above cursor)
CLeaR Bottom of window (below cursor)
CLeaR cursor Line

CLeaR Right hand side of cursor line
set/ read FOuUNT (font U.S.A.)
ReColLouR a window

Set PAPer colour

Set STRip colour

Set INK colour

Set FLash Attribute

QDOS/SMS Reference Manual v. 4.9 31.03.2025

A O W a2 W W DN O

W W W W W N N N DN DN DNDNDNDNWWWW W W W WWWWNDNDDNDDNDNDNDDND®
w A A A O O A~ A A A A NN N 22 a2 a0 NDNDNDNDNDNDMDNDMDN PPN o o N

Section 15 - 38

IOW.SULA
IOW.SOVA
IOW.SsIzZ
IOW.BLOK
IOW.DONL
I0G.DOT
IOG.LINE
I0G.ARC
I0G.ELIP
I0OG.SCAL
IOG.FILL
I0G.SGCR
IOF.CHEK
IOF.FLSH
IOF.POSA
IOF.POSR
IOF.MINF
IOF.SHDR
IOF.RHDR
IOF.LOAD
IOF.SAVE
IOF.RNAM
IOF.TRNC
IOF.DATE
IOF.MKDR
IOF.VERS
IOF.XINF
IOW.PAPP
IOW.STRP
IOW.INKP
IOW.BORP
IOW.PAPT
IOW.STRT
IOW.INKT
IOW.BORT
IOW.PAPN
IOW.STRN
IOW.INKN
IOW.BORN
IOW.BLKP
IOW.BLKT
IOW.BLKN
IOW.PALQ

$2B
$2C
$2D
$2E
$2F
$30
$31

$32
$33
$34
$35
$36
$40
$41

$42
$43
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51

$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$60

Set UnderLine Attribute

Set OVerwrite Attributes

Set character SlZe

fill a BLOcK with colour

DO a pending NewLine

draw (list of) DOTs

draw (list of) LINEs

draw (list of) ARCs

draw ELIIPse

set graphics SCALe

set area FILL

Set Graphics CuRsor position
CHECcK all pending operations on file
FLuUSH all buffers

set file POSition to Absolute address

move file POSition Relative to current position

get Medium INFormation
Set file HeaDeR

Read file HeaDeR
(scatter) LOAD file
(scatter) SAVE file
ReNAMe file [EXT, DD2]

TRuNCate file to current position [EXT, DD2]

set or get file DATEs [EXT,DD2]
MaKe DiRectory [DD2]

set or get VERSion [DD2]

get eXtended INFormation [DD2]
Set paper colour (palette) [SMSQ/E]
Set strip colour (palette) [SMSQ/E]
Set ink colour (palette) [SMSQ/E]
Set border colour (palette) [SMSQ/E]
Set paper colour (24 bit) [SMSQ/E]
Set strip colour (24 bit) [SMSQ/E]
Set ink colour (24 bit) [SMSQ/E]

Set border colour (24 bit) [SMSQ/E]
Set paper colour (native) [SMSQ/E]
Set strip colour (native) [SMSQ/E]
Set ink colour (native) [SMSQ/E]
Set border colour (native) [SMSQ/E]

Fill block with colour (palette) [SMSQ/E]
Fill block with colour (24 bit) [SMSQ/E]
Fill block with colour (native) [SMSQ/E]

Define QL colour palette [SMSQ/E]

QDOS/SMS Reference Manual v. 4.9 31.03.2025

33
33
36
19
23
16
16
16
16
16
18
16
6

8

11
11
9

13
12
9

13
12
14
7

10
14
15
28
28
28
28
28
28
28
28
28
28
28
28
19
19
19
26

Section 15 - 39

IOW.PALT $61 Define 8-bit colour palette [SMSQ/E] 26
IOW.SALP $62 Set the alpha blending weight for window 30

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 15 -40

16. Vectored Routines

Vector $D6

Convert date and time to Integer Long

Call parameters Return parameters
D1 D1 Date

D2 D2.L Preserved
D3 D3.L Preserved
AO AO Preserved
A1 Pointer to 6 words A1 ?7?7?

A2 A2 Preserved
A3 A3 Preserved

CV.DATIL ssus;

This routine converts the single parameters year, month, day, hour, minute and second into the internal

longword format.

This routine is not available on a standard QL or non-SMSQE QL-Emulator. It is available on all machines

that run SMSQ/E.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 16 - 1

D1
D2
D3
D7

AO
A1
A2
A3

Vector $100

$102
$104
$106
$108
$10A
$10C
$10E

Convert Decimal to Floating Poi
Convert Decimal to Integer
Convert Binary to Integer
Convert Binary to Integer
Convert Binary to Integer
Convert Hexadecimal to Integer
Convert Hexadecimal to Integer

Convert Hexadecimal to Integer

Call parameters

0 or pointer to end of buffer

Pointer to buffer (rel. A6)
Pointer to RI stack (rel. A6)

Error returns:
XP

Error in conversion

(e.g. 1..0 as floating point or no digits or too many hex or binary digits)

nt

Return parameters

D1
D2.L
D3.L
D7

AO
A1
A2
A3

(word)

(byte) *
(word) *
(long) *
(byte) *
(word) *

(long) *

?77?
777
?77?

Preserved

CV.DECFP
CV.DECIW
CV.BINIB
CV.BINIW
CV.BINIL
CV.HEXIB
CV.HEXIW
CV.HEXIL

Updated to end of buffer+1

Updated
?7?7?
7?7?

All addresses passed to this routine must be relative to AG6.

Utilities marked with * are non-functioning in QDOS V1.03 and earlier.

These routines convert from ASCII characters in a buffer to a value on the stack.

Conversion ends either at the character to which D7 points (if given) or at an invalid character within the

buffer.

The hex. and binary conversions from ASCII to number, always put a long word on the A1 stack.

A1 is set to point to the least significant byte or less significant word for the byte and word conversions.

The decimal conversions may use up to about 30 bytes on the A1 stack.

If there is an error then A0 and A1 are both unchanged.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 2

Call parameters
D1
D2
D3

A0 Pointer to buffer (rel. A6)
A1 Pointer to RI stack (rel. A6)
A2

A3

Vector $FO Convert Floating Point to Decimal
$F2 Convert Integer (word) to Decimal
$F4 Convert Integer (byte) to Binary
$F6 Convert Integer (long) to Binary
$F8 Convert Integer (long) to Binary
$FA Convert Integer (byte) to Hexadecimal
$FC Convert Integer (word) to Hexadecimal

$FE Convert Integer (long) to Hexadecimal

Return parameters
D1 ?77?
D2.L ?7?
D3.L 7?7??

CV.FPDEC
CV.IWDEC
CV.IBBIN
CV.IWBIN
CV.ILBIN
CV.IBHEX
CV.IWHEX
CV.ILHEX

A0 Pointer to buffer (rel. A6)

A1 Updated
A2 ??7?
A3 ?7?

All addresses passed to these routines must be relative to A6. These routines convert a value on the stack to
a set of ASCII characters in a buffer. For CV.FPDEC and CV.IWDEC, D1 contains the length of the result.

$EE Get day of week

Call parameters

D1.L Date (interval value)
D2.wW

D3.W

A0
A1 Pointer to RI stack (rel. A6)
A2
A3

Vector $EC Get date and time

Return parameters
D1 Preserved
D2 Preserved
D3 Preserved

A0 Preserved
A1 Updated

A2 Preserved
A3 Preserved

CV.ILDAT
CV.ILDAY

All addresses passed to this routine must be relative to A6. There are two date conversion routines:

CV.ILDAT Returns the date in the form:

yyyy mmm dd hh:mm:ss

CV.ILDAY Returns a three letter day of the week.

The result is put on the A1 stack in string format. At least 22 bytes are required by CV.ILDAT and at least 6

bytes by CV.ILDAY.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 3

Vector $DC Setup a queue IOQ.SETQ
$DE Test status of queue IOQ.TEST
$EO Put byte into queue I0OQ.PBYT
$E2 Extract byte from queue I0Q.GBYT
$E4 Put end of file marker into queue I0OQ.SEOF

Call parameters Return parameters

D1.L Queue length or data D1 Data

D2.W D2 Preserved / Free space

D3.wW D3 Preserved

A0 A0 Preserved

A1 A1 Preserved

A2 Pointer to queue A2 Preserved

A3 A3 ??7?

Error returns

NC Queue is full (PBYT) or empty (GBYT, TEST)

EOF End of file reached (GBYT, TEST)

The data length should be less than 32767.
A queue definition is given in Section 18.10.
QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 4

Vector $122 IOU.DNAM

Decode device name

Call parameters Return parameters
D1 D1 ?7?7?
D2 D2 ???
D3 D3 77

D4+ All preserved

AO Pointer to name AO Preserved
A1 A1 ??7?
A2 A2 ?7?7?
A3 Pointer to parameters A3 Preserved

Error returns:
ITNF Not recognised
INAM Name recognised but bad parameters

This routine parses a device name.

Given a device name and a description of the syntax of the name to be checked against and for the possible
parameters to be appended to it, the routine determines whether the name is recognised and extracts the
parameters if it is.

The device name is formed using four components:

Name ASCII characters, normally letters. Case is ignored.
Separator Single ASCII character. Case is ignored.

Number Decimal number in the range 0 to 32767.

Code One of a list of ASCII characters.

On entry to the routine, AO must point to the device name to be checked (which is in the usual QDOS string
format), A3 must point to an area of memory which is sufficient to hold the decoded parameter values, and
A6 must point to the base of system variables. The device description starts 6 bytes after the call, and is in
the following format:

word Number of characters in the device name to be checked for
bytes The characters of the device name to be checked for (word-aligned)
word Number of parameters

The byte which then follow are the various parameters to be checked for. For each parameter to be checked,
you will need to use one of the following options:

byte space, byte separator, word default value (humeric with separator)
word negative number, word default value (numeric with no separator)
word positive number of possible codes, bytes for the ASCII codes

Note that all letters must be in upper case.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 5

For each numeric parameter value in the description, the utility will return either the value given in the device
name, or the default. For each list of codes in the description the utility will return the position of the code in

the list (starting at 1), or zero if not . All returned parameters are word length integers.

Examples:

The CON description is:
DC.W 3,'/CON'

DC.W 5

DC.W '_'448, X',200
DC.W 'A'32'X',16
DC.W ‘_',128

Device name

CON

CON_256

con__ 60

cona0x12
con_256x64a64x128 20

The SER description is:
DC.W 3,'SER'

DC.W 4

DC.W -1,1

DC.W 4'OEMS'
DC.W 2/IH

DC.W 3,'RzC'

Device name
SER

SERE
ser2miZ

If the name is not matched, the routine returns immediately after the call with ERR.ITNF in DO.

Console

Five parameters
Window size
Window position

Keyboard queue length

Parameters
448,200,0,0,128
256,200,0,0,128
448,200,0,0, 60
448,200, 0,12,128
256,64,64,128,20

Rs232 serial device

Four parameters

Port number (default 1)
Parity (odd/even/mark/space)
Ignore/use handshaking

Raw / use ctrlz / use cr

Parameters
1,0,0,0
1,2,0,0
2,31,2

If the name is matched but the additional information is incorrect, it returns 2 bytes after the call with

ERR.INAM in DO.

If a match is found, it returns 4 bytes after the call with D0O=0 (on SMS and SMSQ/E), otherwise DO is

smashed.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 16 - 6

Vector $E8 Direct queue handling I0U.SSQ

$EA General I/O handling IOU.SSIO
Call parameters Return parameters
D1 Standard IOSS value D1 Standard IOSS value
D2 Standard IOSS value D2.L Standard IOSS value
D3 Standard IOSS value D3.L ?7?7?
A0 Standard IOSS value A0 Preserved
A1 Standard IOSS value A1 Standard IOSS value
A2 A2 ?7?7?
A3 A3 ?7?7?

Error returns:
IPAR Undefined action

ICHN Or errors returned from supplied routines

These routines must be called from supervisor mode, with A6 pointing to the base of system variables. It
may not be called from a task which services an interrupt.

I0U.SSQ is a direct queue handling routine. When the channel definition block is set up for simple I/O then
the 7th and 8th long words should be set to point to the queues for input and output respectively. If either
input or output is prohibited, then the corresponding pointer should be zero.

I0U.SSIO should be called with the standard IOSS values in DO, D1, D2, D3, A0 and A1.

For serial I/O where the operations for byte input and output are not so simple, the routine IOU.SSIO may be
called. The call instruction should be followed by three long words, these being the entry addresses for

testing for pending byte input, (next byte in D1)
fetch byte, (byte in D1)
send byte. (byte in D1)

The use of absolute addresses for these may prove awkward; so the entry to this routine is best included in
the physical definition block for the driver:

at $28(A3) or similar or
MOVE . W $EA, A4 DC.L TEST
JSR (A4) DC.L FETCH
DC.L TEST DC.L SEND
DC.L FETCH RTS
DC.L SEND
RTS
invoked by
JSR $28(A3) PEA $28(A3)
MOVE . W $EA, Ad
JMP (A4)

For the calls to the three service routines DO should be returned as the error code, D1 to D3 and A1 to A3
inclusive are volatile.

Both of these calls treat actions 0, 1, 2, 3, 5 and 7, the header set and read actions and load and save; for
undefined actions they return ERR.IPAR.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 7

Vector $124 Read a sector MD.READ [q
$126 Write a sector MD.WRITE (q;
$128 Verify a sector MD.VERIF o
$12A Read a sector header MD.RDHDR o

Call parameters
D1
D2
D7

A0

A1 Pointer to start of buffer
A2

A3 $18020

Error returns:

MD.WRITE None

MD.READ, MD.VERIF Normal
Return+2

MD.RDHDR Normal
Return+2
Return+4

Return parameters

D1 File number (read/verify)

D2 Block number (read/verify)
D7 Sector number (read header)

A0 ?7??
A1 Standard I0SS value
A2 7??
A3 $18020
Failed
OK
Bad medium

Bad sector header
OK

The microdrive support routines are vectored to simplify the writing of file recovery programs.

On entry A3 must point to the microdrive control register, and the interrupts must be disabled.

All registers except A3 and A6 are treated as volatile.

These routines do not set DO on return but have multiple returns.

Before calling MD.WRITE the stack pointer must point to a word: the file number and the block number of the
sector to be written are in the high and low byte respectively.

These vectors point to $4000 before the actual entry point.

The following code may be used to read a header:

MOVE . W D2, -(sp) ;
MOVE . W MD .RDHDR, An ;
JSR $4000(An)

BRA.S bad_medium ;
BRA.S bad_sector ;
MOVEQ #0, DO :
RTS

QDOS/SMS Reference Manual v. 4.9

store block number and sector number on stack
Vector

bad medium error handler

bad sector header handler
all is fine

31.03.2025 Section 16 - 8

Vector $CO Allocate common heap area

Call parameters

D1.L space required
D2

D3

A0
A1
A2
A3
A6 pointer to system variables

Error returns:

IMEM Out of memory

The condition code is not cleared on success on all ROM versions

Return parameters

D1.L
D2
D3

A0
A1
A2
A3
A6

MEM.ACHP

space allocated
?7?7?
???

base of area allocated

?7?7?

?7?7?

??? (unmodified in [SMSQ/E])
?7?7?

This routine must be called from supervisor mode. It may not be called from a task which services an

interrupt.

The space requested must include room for the heap entry header. For simple heap entries, this is 16 bytes

long, for IOSS channels this is 24 bytes long.

The address of the heap area is the base of the area allocated, not the base of the area which may be used

(contrast with TRAP #1, D0=$18 and $19).

The area allocated is cleared to zero.

Call parameters

D1.L Length required
D2

D3

A0 Pointer to pointer to free space
A1
A2
A3

Error returns:

IMEM No free space large enough

Vector $D8 Allocate an area in a heap

MEM.ALHP

Return parameters

D1
D2.L
D3.L

A0
A1
A2
A3

Length allocated
?7??
?7?

Base of area allocated
2?7
?2?7?
?2?7?

The condition code is not cleared on success on all ROM versions

See Section 4.1 for details of the heap allocation mechanism. The area allocated is not cleared.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 9

Vector $D2 Link an item into a list

$D4 Unlink an item from a list

Call parameters
D1
D2
D3

AO Base of item (un)linked
A1 Pointer to previous item
A2
A3

Return parameters

D1
D2.L
D3.L

A0
A1
A2
A3

Preserved
Preserved
Preserved

Preserved
Updated

Preserved
Preserved

MEM.LLST
MEM.RLST

These routines are provided for handling linked lists.

These routines use A0 to pass the base address of the item to be linked or unlinked and A1 to pass a pointer

which points to either the pointer to the first item in the list, or to an item in the list.

When an item is linked in, it will be linked in at the start of the list or if A1 pointed to an item in the list, after
that item. When starting a new list, A1 must be zero.

When an item is removed, A1 may point to the pointer to the first item in the list or to any item in the list

before the item to be removed.

When starting a new list, the pointer to the first item in the list must be zero.

Each item in the list must have 4 bytes reserved at the start for the link pointer.

An example of MEM.RLST is given in Section 7.2.2

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 10

Vector $C2 Release common heap space

Call parameters
D1
D2
D3

AO Base of area to release
A1
A2
A3

A6 Pointer to system variables

Return parameters

D1 ?77?
D2.L ???
D3.L ???
AO ?77?
A1 7??
A2 ?7??
A3 ?7??
A6 7?7

MEM.RCHP

This routine must be called from supervisor mode. It may not be called from a task which services an

interrupt. See entry for MEM.ACHP.

Vector $DA Link a free space (back) into a heap

Call parameters

Return parameters

MEM.REHP

D1.L Lengthtolinkin D1 ??7?
D2 D2.L ?7??
D3 D3.L ?7?
AO Base of new space AO ads
A1 Pointer to pointer to free space A1 77
A2 A2 ?77?
A3 A3 ?77?
QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 11

Vector $C4 Set up a window using a supplied name OPW.WIND

$C6 Set up console window

$C8 Set up screen window

Call parameters
D

D2

D3

A0 Pointer to name (OPW.WIND only)
A1 Pointer to parameter block

A2

A3

Error returns:

INAM Bad device name (window only)
IMEM Out of memory

ICHN Out of channels

ORNG Window is off-screen

OPW.CON
OPW.SCR

Return parameters

D1
D2
D3

AO
A1
A2
A3

?77?
777
?77?

channel ID
7?7
7?7
???

The above three routines, which must be called in user mode, set up console or screen windows using a
parameter list, pointed to by A1.

In the first case, the window is opened using a name which has been supplied, a block of parameters
defining the border, and the paper, strip and ink colours. The window is set up and cleared for use.

The parameter block is as follows:

For the second and third routines a further four words will need to be added to the parameter block to define

$00 border colour (byte)
$01 border width (byte)
$02 paper/strip colour (byte)
$03 ink colour (byte)
the window:

$04 width (word)
$06 height (word)
$08 X-origin (word)
$0A Y-origin (word)

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 12

Vector $11C Executes an operation QA.OP
$11E Executes a list of operations QA.MOP

Call parameters Return parameters

D0.W Operation (QA.OP) DO.L Error code

D1 D1 Preserved

D2 D2 Preserved

D3 D3 Preserved

A0 A0 Preserved

A1 pointer to Rl stack (rel. AB) A1 Updated

A2 A2 Preserved

A3 Absolute pointer to operation list (QA.MOP) A3 Preserved

A4 Pointer to base of variables area (rel. AB) A4 Preserved

Error returns:

OVFL Arithmetic overflow

All addresses except A3 (for QA.MOP only) passed to these routines must be relative to A6.

The arithmetic package is available for general use through two vectors: the first executes a single operation,
the second executes a list of operations.

The package operates on floating point numbers on a downward stack pointed to by (A6,A1.L). It operates
on the top of the stack (TOS) which is pointed to by (A6,A1.L), and the next on the stack (NOS) at
6(A6,A1.L).

See Section 9.5 for details of the floating point format.

There are two types of operation codes which can be passed to the interpreter to be executed.

Operation codes between $02 and $30 (inclusive) carry out various arithmetic operations on the stack, with
the result being stored at 0(A6,A1.L).

Operation codes between $FFFF and $FF31 allow you to access intermediate results and variables stored
on a second stack, the top of which is pointed to by 0(A6,A4.L). If an odd opcode is used (bit 0 is set), then
the top six bytes of the maths stack are copied across to opcode-1(A6,A4.L) and A1 increased by 6,
removing' the number from the maths stack (NOS becomes the new TOS). If an even opcode is used (bit O
is clear), then the six bytes stored at opcode(A6,A4.L) are copied across to the top of the maths stack (A1 is
decreased by 6 creating a new TOS).

For QA.OP the operation code should be passed as a word in DO. For QA.MOP the operation codes are in a
table of bytes pointed to by A3. The table is terminated by a zero byte.

Note: For the function EXP, D7 should be set to zero or an erroneous value will be returned.

The operation codes for the interpreter are as follows:

CODE Function Change to A1
$02 ga.nint round fp to Nearest INTeger +4

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 13

$04
$06
$08
$0A
$oC
$OE
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30

qa.int
qa.nlint
qa.float
qa.add
qa.sub
qa.mul
qa.div
qa.abs
ga.neg
qa.dup
ga.cos
qa.sin
qa.tan
qa.cot
qa.asin
ga.acos
qa.atan
qa.acot
qa.sqrt
qa.log
qa.l10
ga.exp
qa.pwrf

truncate fp to INTeger

round fp to Nearest Long INTeger
FLOAT integer

ADD (top of stack to next of stack)
SUBtract (tos from nos)

MULtiply (tos by nos)

DIVide (tos into nos)

ABSolute value

NEGate

DUPlicate

COSine

SINe

TANgent

COTangent

ArcSINe

ArcCOSine

ArcTANgent

ArcCOTangent

SQuare RooT

Log (Natural)

Log base 10

Exponential

raise to PoWeR (Floating point)(nos to power of tos)

In addition, SMSQ and Minerva support the following function codes:

$01
$03
$05
$o07

$09
$0D

ga.one
ga.zero
ga.n
qa.k

qa.fltli
qga.halve

push constant one
push constant zero
followed by a signed byte, to push FP -128 to 127

plus a byte, nibbles select mantissa and adjust exponent

Following byte values may be:
qa.pi180 $56
ga.loge $69

ga.pi6 $79

ga.In2 $88-$100
ga.sqrt3 $98-$100
qa.pi $A8-$100
qa.pi2 $A7-$100

float a long integer
TOS /2

QDOS/SMS Reference Manual v. 4.9 31.03.2025

+4
+2

+6
+6
+6
+6

© ©O O O O O © O O © O O 4§

+
(o]

Section 16 - 14

$OF ga.doubl TOS*2
$11 ga.recip 1/TOS

$131 qa.roll (TOS)B, C, A =>(TOS)A, B, C (roll third to top)
$15 qga.over NOS -6
$17 qa.swap NOS <=>TOS 0
$25 qa.arg arg(TOS,NOS)=a, solves TOS=k*cos(a) & NOS=k*sin(a) +6
$27 ga.mod sqrt(TOSA2+NOS*2) +6
$29 ga.squar TOS*TOS 0
$2F qa.power NOS * TOS, where TOS is a signed short integer +2

Vector $11A Reserve Room on Arithmetic Stack QA.RESRI

Call parameters Return parameters

D1.L Number of bytes required D1 ?7?7?

D2 D2.L ?7?

D3 D3.L ???

AO AO Preserved

A1 Pointer to Rl stack (rel. A6) [QDOS] A1 ??7?

A2 A2 Preserved

A3 A3 Preserved

Error returns:

none Nothing useful: the content of DO on return from this call is spurious, see below.

All addresses passed to this routine must be relative to A6.

QA.RESRI is used to reserve space on the arithmetic stack..

One should not test the value of DO on return from this call, the value returned is spurious.

Since not only the stack but the whole S*Basic area may move during the call, the arithmetic stack pointer
should be saved in SB_ARTHP(A6) (=BV_RIP(A6)), whence it should be retrieved after the call has been
completed.

On SMSQ/E it is not necessary for A1 to contain the ARI stack pointer before calling this vector and this call
might fail if there is not sufficient memory. In this case, though, the call to this vector will not return to the
caller when the error IMEM is generated, but will be diverted to the general SMSQ/E SBasic error handling

routines.

NOTE: Under SMSQ/E at least, this call simply does nothing when called from a compiled job.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 15

Vector $112 S*Basic get Integer parameter(s) SB.GTINT

$114 S*Basic get Floating point parameter(s) SB.GTFP
$116 S*Basic get String parameter(s) SB.GTSTR
$118 S*Basic get Long Integer parameter(s) SB.GTLIN
Call parameters Return parameters
D1 D1 ?7?7?
D2 D2.L ???
D3 D3.W Nbr of parameters fetched
D4 D4 ??7?
D6 D6 ?7?7?
AO AO ?7??
A1 A1 Pointer to Rl stack (rel. A6)
A2 A2 ?77?
A3 Pointer to name table entry for 1st A3 Preserved
parameter (rel. A6)
A4 A4 Preserved
A5 Pointer to name table entry for last A5 Preserved

parameter (rel. A6)

Error returns:

Standard, condition codes set

All addresses passed to these routines must be relative to A6.

These routines are used to get the values of actual parameters to S*Basic procedures or functions onto the
arithmetic stack.

Each routine assumes that all the parameters will be of the same type, as follows:

SB.GTINT 16-bit parameter

SB.GTFP Floating point

SB.GTSTR String

SB.GTLIN Floating point: convert to 32-bit long integer

The values are returned in the order on the arithmetic stack (A6,A1) with the first parameter at the top
(lowest address) of the stack.

The separator flags in the name table entries are smashed by this routine.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 16

Vector $110 |Initialise S*Basic procedures and functions SB.INIPR

Call parameters Return parameters
D1 D1 Preserved
D2 D2 ?7?7?

D3+ Preserved

A0 A0 Preserved
A1 Pointer to Procedure / Function table A1 ?7?

A2+ Preserved

Error returns:
IMEM No room for table

SB.INIPR is used to link in a list of Procedures and Functions to be added to the S*Basic name table. Once
added, the functions can be called from S*Basic in the same way as the Procedures and Functions built into
the ROM.

The structure of the Procedure / Function table is defined in the following form:

word approximate number of procedures (see below)

for each procedure

word pointer to routine — here

byte length of name of procedure

characters name of procedure

word 0

word approximate number of functions (see below)

for each function

word pointer to routine - here
byte length of name of function
characters name of function

word O

The "approximate number" of Procedures or Functions is used to reserve internal table space, which can be
calculated with the following formula:

INT ((total number of characters used in procedures or functions + 6)/7)
The pointers to the routines are relative to the address of the program counter, e.g.

DC.W ENTRY-*

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 17

Vector $120 S*Basic put Parameter SB.PUTP
Call parameters Return parameters
D1 D1 ?77?
D2 D2.L ?7?
D3 D3.L ???
AO AO ?7?7?
A1 Pointer to value to be assigned (rel. A6) A1 77
A2 A2 ?2?7?
A3 Pointer to name table entry (rel. A6) A3 Preserved
Error returns:
Standard error code

All addresses passed to this routine must be relative to A6.

SB.PUTP assigns a value to be associated with an entry in the S*Basic name table. For details of the value
to be assigned see Section 9.10. A1 and A3 should be on word boundaries.

The type of the entity to be assigned (and hence its length) is determined by the type in the name table
entry.

BV_RIP(A6) must point to the value to be returned (top of arithmetic stack). BV_RIP will be updated on
return by SB.PUTP.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 18

Vector $E6 Compare two strings UT.CSTR

Call parameters Return parameters
D0.B Comparison type DO.L -1,0o0r+1
D1 D1 Preserved
D2 D2 Preserved
D3 D3 Preserved
AO Base of string 0 (rel. A6) AO Preserved
A1 Base of string 1 (rel. A6) A1 Preserved
A2 A2 Preserved
A3 A3 Preserved
A6 Base address register A6 Preserved

All addresses passed to this routine must be relative to A6.
DO (and the status register) is set negative if the string at (A6,A0) is less than the string at (A6,A1) etc.

The string comparison routine used by the directory system, and the Basic interpreter, uses an extended
interpretation of the value of a string and has four modes of operation.

Order of Strings

Since comparison may be used to sort strings into order as well as checking for equality or equivalence, the
order must be well defined. A form of dictionary order is attempted - this will require to be modified for foreign
character sets.

Space is the first character. Punctuation is in ASCII order (except "." which is the last). All punctuation is
defined to be before all letters or digits (e.g. A. before AA.). Optionally, embedded numbers may be taken in
numerical order (e.g. Case5A before Case10A, and also Case5.10 before Case5.5).

All digits or numbers are defined to be before all letters (e.g. bat1 before bath1).

An upper case letter comes before the corresponding lower case letter but after the previous lower case
letter (e.g. Bath is before bath but after axe).

Optionally, an upper case letter is treated as equivalent to a lower-case letter.

SPACE

"#$%&'()*+,-/:;<=>?@[*_£{|}~©

Digits or numbers
AaBbCcDdEeFfGgHhliJjKkLIMMNNOoPpQgRrSsTtUuVVWwXxYyZz
Foreign characters

Comparisons

The relationship of one string to another may be

Equal All characters or numbers are the same or equivalent.

Lesser The first part of the first string, which is different from the corresponding character in the
second string, is before it in the defined order.

Greater The first part of the first string, which is different from the corresponding character in the

second string, is after it in the defined order.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 19

Types of Comparison

Comparisons may be:

Type O Made directly on a character by character basis

Type 1 Made ignoring the case of the letters

Type 2 Made using the value of any embedded numbers

Type 3 Both ignoring the case of letters and using the value of embedded numbers

File and variable name comparisons use type 1.

Basic <, <=, =, >=, > and <> operators use type 2.

Basic == (equivalence) operator uses type 3.

Call parameters
DO.L Error code
D1

D2

D3

AO Channel ID (UT.WERMS only)
A1

Error returns:

All the usual I/O errors

Vector $CA Write error message to channel 0

$CC Write error message to given channel

Return parameters

DO.L
D1
D2
D3

AO
A1+

Preserved
Preserved
Preserved

Preserved

Preserved

All preserved

UT.WERSY
UT.WERMS

UT.WERMS should be called from user mode. If A0=0, it can be called in Supervisor mode.

These routines exist for writing simple messages to a channel. They are basic error message handlers which
write a standard or device driver supplied error message to either the command channel 0, or else to a

defined channel.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 16 - 20

Vector $CE Write an integer to ASCII and sent it to the defined channel UT.WINT

Call parameters Return parameters
D1.W Integer parameter D1 ??7?

D2 D2.L ???

D3 D3.L ?7?

AO Channel ID or 0 AO Preserved
A1 A1 ??7?

A2 A2 Preserved
A3 A3 Preserved

Error returns:

All the usual I/O errors

This routine ought usually to be called from user mode. It can be called in Supervisor mode if A0=0.

Vector $DO0 Send a message to a channel UT.WTEXT
Call parameters Return parameters

D1 D1 ?7?7?

D2 D2.L ?7??

D3 D3.L ?7??

A0 Channel ID A0 Preserved

A1 Base of message A1 77

A2 A2 Preserved

A3 A3 Preserved

Error returns:

All the usual I1/0
Condition codes set (sometimes - see below for QDOS v. 1.03 and earlier)

This routine ought usually to be called from user mode.

The message is in the form of a text string: number of characters (word) followed by the characters in ASCII.
If a newline is required at the end of the message, this should be included in the message. If the channel is 0
then D3 will be returned 0, otherwise D3 will be returned to -1.

In QDOS version V1.03 and earlier, DO is set to the error return but is not tested so the condition codes will
not be correct. As a special concession, interrupt servers and other supervisor mode routines can call these
routines with A0=0. If the command channel is in use, they will attempt to use channel 1. This operation is
not recommended, but it does seem to work!

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 16 - 21

16.1.

reference
mem.achp $00c0
mem.rchp $00c2
opw.wind $00c4
opw.con $00c6
opw.scr $00c8
ut.wersy $00ca
ut.werms $00cc
ut.wint $00ce
ut.wtext $00d0
mem.list $00d2
mem.rist $00d4
cv.datil $00d6
mem.alhp $00d8
mem.rehp $00da
ioq.setq $00dc
iog.test $00de
iog.pbyt $00e0
ioq.gbyt $00e2
ioq.seof $00e4
ut.cstr $00e6
iou.ssq $00e8
iou.ssio $00ea
cv.ildat $00ec
cv.ilday $00ee
cv.fpdec $00f0
cv.iwdec $00f2
cv.ibbin $00f4
cv.iwbin $00f6
cv.ilbin $00f8
cv.ibhex $00fa
cv.iwhex $00fc
cv.ilhex $00fe
cv.decfp $0100
cv.deciw $0102
cv.binib $0104
cv.biniw $0106
cv.binil $0108
cv.hexib $010a

Allocate space in Common HeaP
Return space to Common HeaP
Open WINDow using name

Open CONsole

Open SCReen

Write an ERror to SYstem window
Write an ERror MeSsage

Write an INTeger

Write TEXT

Link into LiST

Remove from LiST

DATE and time (6 words) to Integer Long [SMS]

AlLlocate in HeaP
REturn to HeaP
SET up a Queue in standard form

TEST a queue for pending byte / space available

Put a BYTe into a queue

Get a BYTe out of a queue

Set EOF in queue

Compare STRings

Standard Serial Queue handling
Standard Serial 10

Integer (Long) to DAte and Time string
Integer (Long) to DAY string
Floating Point to ascii DECimal
integer (word) to ascii decimal
integer (byte) to ascii binary
integer (word) to ascii binary
integer (long) to ascii binary
integer (byte) to ascii hexadecimal
integer (word) to ascii hexadecimal
integer (long) to ascii hexadecimal
decimal to floating point

decimal to integer word

binary ascii to integer (byte)
binary ascii to integer (word)
binary ascii to integer (long)
hexadecimal ascii to integer (byte)

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Vectored Routines - numerical order with page

11
12
12
12
20
20
21
21
10
10

O
—_

©

N N N DN N DN ®W W WWWWwWwWwwSNSN-=2 > > &b b -

Section 16 - 22

cv.hexiw $010c

cv.hexil $010e
sb.inipr $0110
sh.gtint $0112
sbh.gtfp $0114
sh.gtstr $0116
sb.gtlin $0118
ga.resri $011a
ga.op $011c
ga.mop $011e
sh.putp $0120
iou.dnam $0122
md.read $0124
md.write $0126
md.verif $0128

md.rdhdr $012a

hexadecimal ascii to integer (word)
hexadecimal ascii to integer (long)
INITialise PRocedure table

GeT INTeger

GeT Floating Point

GeT STRing

GeT Long Integer

QL Arithmetic Reserve Room on stack
QL Arithmetic Operation

QL Arithmetic Multiple Operation
PUT Parameter

decode Device NAMe

read a sector [QL]

write a sector [QL]

verify a sector [QL]

read a sector header [QL]

QDOS/SMS Reference Manual v. 4.9 31.03.2025

17
16
16
16
16
15
13
13
18

© 0 0 ©

Section 16 - 23

17. Things Eexmsmsar

Things are general-purpose resources which may be used by any code in the system, either from device
drivers or directly from programs. In principle a Thing may be shareable by a finite or "infinite" number of
"users", or restricted to one user at a time. A run-time system will be infinitely shareable, a two-port serial
chip may have two users, and so on. The operating system provides suitable facilities for adding, removing
and using Things.

Things are kept in a linked list, each one being identified by a name which must be unique. A new thing is
added by setting up a suitable linkage block and then calling the operating system routine to link it into the
list: the new thing will be rejected if its name is not unique. The linkage block must be in the common heap
so that it may be discarded correctly when the Thing is removed. Each Thing has a version ID which will be
returned to any Job which uses the Thing: this may be the familiar ASCIlI number, e.g. "1.03", or a bit map of
implemented facilities, e.g. %10000101.

A piece of code that wishes to use a Thing supplies the system routine with the name of the Thing, and any
additional parameters the Thing itself may require: this is very similar to the I0OSS open call, except that the
result returned is an address, not an "ID". The meaning of this address depends on what the Thing is. If the
call to use a Thing is successful, then a new entry is made in the Thing's "usage list", marking the Thing as
used by the given Job.

A piece of code may "free" a given Thing either by an explicit call to do so, or, if it is a Job, by being
removed. As the code may "own" more than one instance of a thing (e.g. two serial ports), parameters may
be passed to the Thing's FREE code to signal which instance is to be discarded.

If the owner is a Job which is being removed, a special "Forced FREE" routine is called. If a Thing is freed on
behalf of another job, then that Job will be removed.

If a Thing is not in use it may be removed from the list by the system routine provided, and its linkage block
discarded. An attempt to remove a Thing that is in use will cause an error, in which case its linkage block
must not be discarded. A Thing may supply a "remove" routine to tidy itself up before removal - for instance,
a parallel I/O port would be set to all inputs.

A routine is provided to "force remove" a Thing. If the Thing is in use, then all Jobs using it will also be

removed (with the exception of the Job that is doing the forced remove, unless that Job is owned by a Job
that is itself using the Thing). In this case the linkage block is automatically returned to the common heap.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 1

17.1. Thing structures
171.1. Thing linkage format

Items from TH_THING onwards (inclusive) must be filled in by the initialisation code before a new thing is
added with the SMS.LTHG routine.

TH_NXTTH $00 long points to NeXT THing linkage block
TH_USAGE $04 long USAGE list

TH_FRFRE $08 long code called when Force Remove FREes a thing
TH_FRZAP $0c long code called when thing owner is removed *
TH_THING $10 long points to THING itself

TH_USE $14 long code to invoke to USE the thing, or 0
TH_FREE $18 long code to invoke to FREE the thing, or 0
TH_FFREE $1c long code to Force FREE a thing, or 0
TH_REMOV $20 long code to tidy up before REMOVing a thing, or 0
TH_NSHAR $24 byte byte set if Thing Not SHAReable

TH_VERID $26 long version ID, e.g. "1.03" or %1011101
TH_NAME $2a string NAME of thing

17.1.2. Thing header format

All offsets are relative to the address of the flag.

THH_FLAG $00 4 bytes flag signalling standard header: value "THG%"
THH_TYPE $04 long type of Thing:
-1=the THING code itself
O=utility code (free format)
1=executable code
2=shared data (free format)
3=extension code (user mode)
4=extension code (supervisor mode)
bit 24 is set if the set if the Thing has a list Things within it.

17.1.3. List of Things Header

THH_NEXT $08 long offset of next Thing in list (0 for last)
THH_EXID $0c long extra ID

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 2

17.1.4. Executable Thing Header

THH_HDRS $08 long offset to start of header

THH_HDRL $0c long size of header

THH_DATA $10 long data space

THH_STRT $14 long offset of start of code or 0 to start at (copy of) header

17.1.5. Extension Thing Header

THH_PDEF $10 long offset to parameter definitions (or 0)
THH_PDES $14 long offset to parameter descriptions
THH_CODE $18 entry point for extension code - should exit with RTS

17.2. Different sorts of Thing

Things may take many forms, but it may be useful to mention a few "tricks" relating to specific ones here. In
particular, the programer who wishes to make use of Things must cater for the eventuality that his Thing will
be removed, probably forcibly.

Things in ROM will often link themselves in at boot: it may be desirable to have a S*Basic procedure to re-
link them if removed, but otherwise no special problems present themselves.

Things loaded into the resident procedure area act in a very similar way to ROM Things, except that if
removed there is wasted RAM where the Thing is loaded.

Things loaded into the Transient Program area as active or inactive Jobs can have the space used reclaimed
when they are removed. There are two ways in which such a Thing can be removed, one is by a Thing call
(RTHG or ZTHG) and the other is via a remove Job call (FRJB).

The Thing remove code must ensure that if the Job is removed, the Thing goes away, and vice versa.

This may be accomplished by ensuring that the Job owns the Thing linkage block and that the Thing remove
code:

(a) Sets the job's pc to some code which will cause it to remove itself
(b) Sets the job's priority to 127
(c) Releases it from any current suspension.
Note that as the Thing remove code is called from supervisor mode, it must not itself remove the Job.

Things loaded into common heap are the easiest to deal with.

The easiest case is where the Thing can be loaded into a suitably extended Thing linkage block, in which
case no special code is required.

If this is not possible, the Thing remove code must release the heap entry containing the Thing. While it is
conceivable that the heap containing the Thing will be released by some outside agency without calling a
Thing remove routine, any such action may be regarded as so incredibly hostile that no precautions need be
taken against it.

This contrasts with the "unexpected" removal of a Job, which may be regarded as a fairly normal occurrence.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 3

Hardware Things will frequently have some code or workspace in one or other of the above areas of RAM.
The same comments thus apply, with the extra requirement that the hardware be placed in a "safe" state
when the Thing controlling it is removed. Ideally this safe state will be the same as that obtained by resetting
the computer.

17.3. Thing vectors

Whilst it was initially foreseen that the routines to use Things would be set up as TRAP#1 calls for SMSQ/E,
this never happened. Versions 2.03 onwards of the HOTKEY System I, and SMSQ/E, thus add a strange
Thing to the end of the Thing list. This Thing has the name “THING” and is not accessible using the Thing
system and so may not be removed.

The THING Thing is $18 bytes long:

THH_FLAG $00 Long 'THG%'

THH_TYPE $04 Long -1

THH_ENTR $08 Long Absolute address of TH_ENTRY routine
THH_EXEC $0C Long Absolute address of TH_EXEC routine

To find the THING Thing, pick up the pointer SYS_LTHG ($B8 on from the base of the system variables),
and follow the linked list to the end. The last item in the list should be the THING Thing.

The way to use Things thus is as follows: Find the THING Thing entry, get the Thing vector from there and
call that with DO used in the usual way to determine which vector should be used. You can use the code
given as an example in section 17.4 below, but it is strongly suggested that you use the “ut _thjmp” utility
routine in the SMSQ/E sources to do that (in the util_gut_subdirectory).

In this case, your code to use and then free an extension thing could be as follows (it is supposed that the
extension you want to use is called “INFO”):

move.l #'INFO',d2 ; extension to use
lea thing_name, a0 ; point to name of thing
moveq #-1,d3 ; wait forever
moveq #-1,d1 ; I will use the thing
moveq #sms.uthg, do ; signal “use thing” vector
jsr gu_thjmp ; on return A2= ptr thg header, al to thg
move.l do, d1 ; use thing call ok?
bne.s err_out ; no, return error!
move.1l al, a0 ; this is an extension thing
(possibly setup parameters to which A1 will have to point)
jsr thh_code(a0) ; call extension thing
move.1l do, d5 ; keep error
lea thing_name, a0
moveq #sms.fthg, do ; free thing
moveq #-1,d1
jsr gu_thjmp ; get vector and call with do
tst.1l d5 ; did extension call go ok?
(...)

thing_name
dc.w thn_end-*-2
dc.b ‘THING NAME'

thn_end

(...)

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 4

D1
D2
D3

A0
A1
A2

D0=$29

Free a thing

Call parameters

User job id
Parameter
Parameter

Name of thing to free
Parameter
Parameter

Error returns:

ITNF

Thing was not found

Return parameters

D1
D2
D3+

A0
A1
A2
A3+

Any returns from Thing's FREE code

SMS.FTHG (susqjexn

Preserved
Returned result
All preserved

Preserved

27?7

Returned result
All preserved

QDOS/SMS Reference Manual v. 4.9

31.03.2025 Section 17- 5

D0=$26
Link in new Thing
Call parameters
D1 D1
D2 D2
D3 D3
D4+
AO A0
A1 Address of thing linkage A1
A2 A2
A3+
Error returns:
FEX Thing of this name already exists

Return parameters

SMS.LTHG (susqjexm

Preserved
Preserved
Preserved

All preserved

Preserved
Preserved
Preserved

All preserved

The linkage block should have:

TH_THING
TH_USE
TH_FREE
TH_FFREE
TH_REMOV
TH_VERID
TH_SHARE
TH_NAME

filled in before this call is made.

It must be allocated in the common heap so that SMS.ZTHG, or SMS.RTHG called from another program,
can de-allocate the linkage block correctly.

The name in the linkage block is set to lower case, to speed searching.

QDOS/SMS Reference Manual v. 4.9

31.03.2025 Section 17 - 6

D0=$2B SMS.NTHG smsajEexT
Next Thing
Call parameters Return parameters
D1 D1 Preserved
D2 D2 Preserved
D3 D3 Preserved
D4+ All preserved
A0 Thing name or 0 A0 Preserved
A1l A1 Next thing linkage
A2 A2 Preserved
A3+ All preserved
Error
returns:
ITNF Thing was not found

This routine allows code to scan the Thing list to find out what Things are available.

On each call the address of the next thing linkage block in the list is returned.

If a zero pointer to a thing name is passed then the first block in the list will be returned.

The following code will thus scan the entire Thing list:

SUB. L AQ, AO ; start of list
SLOOP
MOVEQ #SMS.NTHG, DO ; find next Thing
JSR gu_thjmp ; jump via vector!!!
MOVE . L DO, - (SP)
BSR proc ; process it
MOVE.L (SP)+, DO ; was there another Thing?
BNE.S SDONE ; ho
LEA TH_NAME (A1), A0 ; point to this Thing's name
BRA.S SLOOP ; and find the next Thing
SDONE
QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 17 - 7

D0=$2C SMS.NTHU [smsqiexT
Next Thing User
Call parameters Return parameters
D1 D1 Preserved
D2 D2 Owner of usage block
D3 D3 Preserved
D4+ All preserved
AO Thing name AO Preserved
A1 Thing usage block or 0 A1 Next usage block
A2 A2 Smashed
A3+ All preserved
Error
returns:
ITNF Thing was not found
IJOB usage block was not found

This routine allows code to scan the usage list of a given Thing to find out which Jobs are using it. It returns
in D2 the ID of the owner of the usage block passed.

Note that the format of the usage block may change, so the returned address should only be used as a
parameter for this routine.

Note also that a Job may cease using the Thing between calls to this routine. The usage list of a Thing may
be scanned thus:

LEA name, A ; point to Thing name

SUB.L AQ, AO ; start with first usage block
SLOOP

MOVEQ #SMS.NTHU, DO ; find next user

JSR gu_thjmp ; jump via vector:

MOVE. L DO, - (SP)

BSR proc ; process this user

MOVE.L (Sp)+,D0O ; was there another Thing?

BEQ.S SLOOP ; yes!
SDONE

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 8

D0=$27

Remove Thing from list

Call parameters
D1
D2
D3

AOQ Name of thing to remove
A1
A2

Error returns:
FDIU Thing is in use
ITNF Thing not found

SMS.RTHG [SMSQ][EXT]

Return parameters

D1
D2
D3
D4+

A0
A1
A2
A3+

Preserved
Preserved
Preserved

All preserved

Preserved
Preserved
Preserved

All preserved

This routine removes a Thing from the system, if it is not in use.

It will be of use where a different version of some Thing is required.

The Thing linkage block will have been returned to the common heap if this call succeeds.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 17 - 9

D0=$28
Use Thing

Call parameters

D1 Job ID

D2 Parameter or Extension ID
D3 Timeout

AQ Name of thing to use

A1

A2 Parameter

Error returns:
ITNF
NIMP

Thing was not found

Extension not found

Any returns from Thing's USE code

SMS.UTHG [SMSQ][EXT]

Return parameters

D1 Job ID

D2 Returned result

D3 Version

D4+ All preserved

A0 Preserved

A1l Address of thing or extension
A2 Pointer to thing linkage

A3+ All preserved

Request the use of a Thing for a given Job. Various extra parameters may be required for the Thing's USE
code to determine whether the request can be granted. It is up to the provider of the Thing to document what
these parameters are. Similarly, extra results may be returned. For an Extension Thing, D2 should be 0 or

the required Extension ID.

D0=$2A

Zap Thing

Call parameters
D1
D2
D3

A0
A1
A2

Name of thing to zap

Error
returns:

ITNF Thing was not found

SMS.ZTHG (smsqjexm

Return parameters

D1 Preserved
D2 Preserved
D3+ All preserved
A0 Preserved
A1 ???

A2+ All preserved

This routine removes a Thing and all Jobs using it. The call may not return, if the Job that called it was
removed as a result of the zap. Because of this, it may not be called from supervisor mode under QDOS.
The Thing linkage block is returned to the common heap by this call.

QDOS/SMS Reference Manual v. 4.9

31.03.2025 Section 17 - 10

17.4. Thing Entry Points

17.4.1. TH_ENTRY

Entry point is for calling from user mode. Under QDOS, all calls to SMS.ZTHG must be made in user mode,
as must calls to FTHG on behalf of another Job.

17.42. TH_EXEC

This executes the code of an executable thing, setting the standard parameter string and opening a file for
the job if required. It returns an error code in DO, and is called with D1 holding the owner ID, 0, or -1.

The MSW of D2 should contain the priority of the job to be executed, and the LSW should contain the
timeout. AO must contain a pointer to the Thing name, A1 is a pointer to the parameter string.

17.4.3. Example of entries to the Thing Vector system

; Jump to Thing Utility through HOTKEY System II

14
; Copyright 1989 Tony Tebby / Jochen Merz
; Note this only works if a HOTKEY System version 2.03 or later is present.
; Entry Exit
; di owner Job ID
; dz2 priority/timeout preserved
; ao thing name preserved
; al parameter string preserved
; Condition codes set
4
ut_thjmp
move.l a4, -(sp)
move.l do, - (sp)
moveq #thh_entr, do ; thing vector required
bsr.s gu_thvec ; get THING vector
bne.s gut_ex4 ; there's nothing to jump to!
move.l (sp)+,do
jsr (a4) ; do it
gut_exit
move.l (sp)+,a4
tst.l do
rts
gut_ex4
addq.1l #4,sp ; skip operation
bra.s gut_exit

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 11

Entry
do vector required

a4

Error returns: err.nimp
Condition codes set

(©Q ~= N2 N2 N= N= N2 Ns N= ~N= ~-

u_thvec
movem. 1l d1-d3/d7/a0, -(sp)
move.w do, d3
moveq #sms.info, dO
trap #do.sms2
move .w sr,d7
trap #0
move.l sys_thgl(a0),d1
beq.s thvec_nf
move.l di, a0
thvec_lp
move.l (a®@),d1
beq.s th_found
move.1l di, ao
bra thvec_1lp
thvec_nf
moveq #err.nimp, dO
bra.s thvec_rt
th_found
move.l th_thing(a0), a0
cmp.l #-1,thh_type(a0)
bne.s thvec_nf
move.l (a0,d3.w), a4
thvec_rt
move.w d7, sr
movem. 1l (sp)+,d1-d3/d7/a0
tst.1l do
rts

The following example demonstrates how to create and link in a Thing. Two areas
the Thing contents,

are allocated, one for
contents may already be present in

Find Thing utilitiy vector of HOTKEY System II.
Note this only works if a HOTKEY System version 2.03 or later i

S present.

Exit
error code
Thing Utility Vector

THING does not exist

; get system variables

save current SR

into supervisor mode
this is the Thing list
empty list, very bad!

Ns Ns Ns ~=

; get next list entry
; end of list? Should be THING!
; next link

; THING does not exist

get start of Thing

is it our special THING?
sorry, it isn't

this is the vector we look for

Ns Ns Ns ~=

; back into previous state

one for
RAM or ROM/EPROM,

in RAM. The demonstration Thing is a simple translation table.

move.l #8+264,d1
bsr demo_achp
bne demo_exit
move.l ao, -(sp)
moveq #$38,d1
bsr.s demo_achp
move.l a0, al
move.l (sp)+, a0
beq.s demo_lact
move.l do, - (sp)
moveq #sms.rchp, do
trap #do.sms2
move.l (sp)+,do
bra.s demo_exit

QDOS/SMS Reference Manual v. 4.9

; thh_flag+thh_type+tra_table
; allocate heap
; failed!

; room for linkage

the linkage
that's the Thing address
linkage allocated
preserve error
second ACHP failed,

NE Ns N= N= N.

; return error to calling code

31.03.2025

the Thing 1linkage.
but the linkage has to be

return first

Section 17 - 12

demo_lact

lea th_thing(al), a2 ; fill in linkage
move.l a0, (a2)+ ; pointer to Thing
clr.1l (a2)+ ; no special use
clr.l (a2)+ ; and no special free
clr.l (a2)+ ; and no special force free
clr.1l (a2)+ ; also no special remove code
clr.w (a2)+ ; it's shareable
move.l #'1.00', (a2)+ ; version
move .w #3$09, (a2)+ ; length of name
move.l #'Tran', (a2)+ ; nhame
move.l #'slat', (a2)+ ; name
move.b #'e', (a2)
move.l #'THG%', (a0)+ ; standard Thing flag
move.l #2,(a0)+ ; Type data
move.w #$4afb, (a0)+ ; now fill in TRA table
move.w #6, (a0)+ ; first offset
move.w #262, (a0)+ ; second offset
moveq #0,d0O
demo_loop
move.b do, (a0)+ ; fill in 1 to 1 translation
addq.b #1,d0 ; for all 256 characters
bne.s demo_1loop
clr.w (a0) ; end word
moveq #thh_entr,do ; thing vector required
bsr.s gu_thvec ; get THING vector
bne.s demo_exit ; there's nothing to jump to!
Lea th_name(al), a0 ; hame
moveq #sms.zthg, do
jsr (a4) ; zap it (in case, it exists)
moveq #sms.1lthg, do ; link it
jsr (a4)
demo_exit
rts
demo_achp
moveq #sms.achp, do ; allocate heap
moveq #0,d2 ; for system
trap #do.sms2
tst.1 do ; failed?
rts
QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 13

17.5. Extension Things

This chapter defines a standard mechanism for a procedure interface that can, in principle, provide
extensions to any programming language. The structure allows several related procedures to be stored in
one Thing. This simplifies maintenance and reduces the system overheads.

Parameters are passed to the extension using conventions similar to the C programming language. The
parameter list contains keys and values passed to the routine and pointers to more complex parameters.
The parameter list itself should not be modified. Each extension can have its own definition of the parameter
list: there is both a formal definition to provide automatic interfacing to high level languages, and an informal
description to provide user help texts.

The interface provides for procedures only. If a procedure has one principal return parameter, this should be
defined as the last parameter in the list. A high level language interface can then identify this easily if the
extension procedure is called as a high level language function. Note that this is different from calling a high
level language procedure as a function where the error return would be expected as the function value.

Extension procedures should not normally allocate memory for the return parameters, the call mechanism
provides that the amount of memory available for a return parameter is either fixed by the parameter type or
is specified for a particular call.

If a procedure requires to return a variable size parameter, with no limit on its size, and the space pre-
allocated is not sufficient, then it should return the error ERR.BFFL and the parameter list must be defined in
such a way that procedure may be re-called. In this case it is unlikely that an automatic interface from the
high level language will be appropriate.

The aim of this definition is not to provide a universal interface which will cover all eventualities, but to make
the interface in the majority of cases automatic, while keeping the interface simple and efficient.

17.5.1. Extension Thing Header

All offsets are relative to the address of the flag.

thh_flag $00 4 bytes Flag signalling standard header: value "THG%"

thh_type $04 Long Type of thing: value $01000003

thh_next $08 Long Offset of next thing in list (0 for last)

thh_exid $0C Long Extension ID

thh_pdef $10 Long Offset to parameter definitions (or 0)

thh_desc $14 Long Offset to description

thh_code $18 Entry point for extension code - should exit with RTS

17.5.2. Level 1 Extension Thing Parameter Definition

The parameters for an extension thing are defined as a table of words. Each word defines the type of
parameter that is possible. The table is terminated by a zero word. In general, a single call value or key is
denoted by a positive word, while a pointer to a parameter value is negative. The value -1 is used to delimit a
group of repeated parameters. The value -character is used to start a "keyed" group of parameters. Because
extra information on pointer parameters is passed to the extension procedure, these parameters can be
allowed to be one of a list of possible types.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 14

Note that extension procedures with optional or repeated parameters may have ambiguous definitions.
Ambiguous parameter definitions cannot be handled by general purpose interface code from a high level
language, so that such routines will require individually coded interfaces.

17.5.3. Call Values and Keys

The simplest parameters are call values or keys. The parameter definitions for these are all low value,
positive words. The distinction between a key and a call value is that the former has a significance which is
defined internal to the extension procedure, while the latter has a numerical value. However, it appears that
keys don’t exist in the current Thing mechanisms.

thp.key $0001 Key NOTE : doesn't exist.
thp.char $0004 Character

thp.ubyt $0008 Unsigned byte
thp.sbyt $000A Signed byte

thp.uwrd $0010 Unsigned word
thp.swrd $0012 Signed word

thp.uing $0020 Unsigned long
thp.sing $0022 Signed long

thp.fp8 $0042 Eight byte floating point
thp.str $0100 String

thp.sstr $0200 Sub-string

thp..opt 12 Bit set if parameter optional

thp..nnl 11 Bit set if null parameter is negative (-1)

17.5.4. Pointer Parameter Usage

For parameters where the item in the parameter list is a pointer to a value, the situation is rather more
complex.

For each parameter, there may be a number of possibilities. The word in the list is formed by ORing all the
possibilities together. There are bits that define that the parameter is a pointer and defines whether the
parameter is call, return, updated or specified by the calling code.

thp..pointer 15 Bit set for pointer parameter
thp..cal 14 Bit set for call parameter
thp..ret 13 Bit set for return parameter
thp.upd $E000 Updated parameter
thp.call $C000 Call parameter

thp.ret $A000 Return parameter

thp.pointer $8000 Call or return parameter (specified by calling code)

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 15

17.5.5. Optional Parameter
If the parameter is optional, then the optional bit should be set (or the word is ORed with the optional key
value).

thp..opt 12 Bit set if parameter is optional
thp.opt $1000 Optional

17.5.6. Array Parameter

The parameter could be an array of given type with a standard header: note that the standard interface code
will always allow a single value to be used in its place.

thp..arr 11 Bit set for array
thp.arr $0800 Array

17.5.7. Parameter Types

To finish of the definition word, the values defining each of the possible types of parameter should be ORed
with the word so far. Note that, provided there is at most one signed value possible, the values representing
the parameter usage, option, array and types may be ADDed together rather than ORed. Note also that a
you may not have both unsigned and signed values.

thp..sgn 1 Bit set if value is signed

thp..chr 2 Bit set if character allowed

thp..byt 3 Bit set if byte value allowed/required
thp..wrd 4 Bit set if word value allowed/required
thp..Ing 5 Bit set if long value allowed/required
thp..str 8 Standard string

thp..sst 9 Sub-string

thp.char $0004 Character

thp.ubyt $0008 Unsigned byte

thp.sbyt $000A Signed byte

thp.uwrd $0010 Unsigned word

thp.swrd $0012 Signed word

thp.ulng $0020 Unsigned long

thp.sing $0022 Signed long

thp.fp8 $0042 Eight byte floating point

thp.str $0100 String

thp.sstr $0200 Sub-string

17.5.8. Example Parameter Definitions

COPY
dc.w thp.call+thp.str pointer to source file
dc.w thp.call+thp.str pointer to destination file
dc.w ©

SER_BUFF
dc.w thp.opt+thp.ulng optional unsigned long
dc.w thp.opt+thp.ulng optional unsigned long
dc.w ©

PRT_USE$
dc.w thp.ret+thp.str pointer to return string
dc.w 0O

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 16

17.5.9. Parameter List

For each parameter that is passed there is one or two long words in the parameter list. For a key it is just the
key in a long word. The procedure itself will determine how much of the key is significant.

For a call value, the value is in the least significant part of the long word, the rest of the long word is ignored.
If a key or call parameter is marked as optional, then the interface code should provide a default value
(normally zero or -1 depending on thp..nnl) if the parameter is missing

For a pointer there are eight bytes: two words followed by a long word. The first word specifies the usage of
the parameter. If it was an optional parameter and it is missing, the value is 0.

Otherwise thp..pointer and either or both thp..cal and thp..ret are set. The thp..arr bit will be set if the
pointer is to an array. In addition, one of the lower bits must be set to define the type of parameter. The
thp..sng and thp..key bits should be clear.

The next word is zero for most parameters, but for a return string it is the maximum space available, and for
a call sub-string it is the length of the sub-string.

The next long word is the pointer to the parameter value (or array definition). If it is a missing optional
parameter the value is ignored, but, for future compatibility, zero should be supplied.

A repeated group of parameters is prefaced by a long word with the number of repeats.

17.5.10. Defining Extension Things

Extension Things do not need to be written to strict rules. Since it can be assumed that the code calling the
Extension Thing is fully aware of the requirements and behaviour of the Extension Thing, an Extension Thing
can be any routine. It is, however, advantageous to be more strict than this. If the Extension Thing is defined
with an unambiguous parameter definition and it accepts a parameter list in the standard form described
above, and it is clean to the extent of preserving all registers except D1 and A1 (meeting the S*Basic
interpreter requirements for A6 and A7 as well) and it returns a standard error code (-ve) or escape code
(+ve) or zero in dO, and it has at most one return parameter, then it will usually be possible to interface to the
Extension Thing automatically.

The format of an Extension Thing does not allow more than a four character ID. This is to simplify access. It
is up to the high level language itself to define a suitable name although the name in the informal description
may be used.

One requirement of the definition of an Extension Thing is that it must be shareable.

17.5.11. Accessing Extension Things

Depending on the extent to which an Extension Thing is to be used, an application can either USE the
Extension Thing during initialisation and save the address of the Extension Thing (and possibly the Thing
linkage) or it can USE the Extension Thing as required and FREE it immediately afterwards. The latter is
simpler, the former is more efficient for small, frequently used Extension Things.

17.5.12. When to Use Extension Things

There are many ways of extending the operating system. Using an Extension Thing is just one. There are
two cases where it is appropriate to add an extension thing.

The first is where the extension is provided to access some hardware dependent facility or other facility

which is an optional extra. Provided that the Extension Thing has an unambiguous parameter definition and
a clean interface, it should be possible to add such an extension to any high level language.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 17

The second case is where there is a facility which is likely to be required to be called from a number of
languages and involves a considerable amount of code. In this case, it is not so important that the facility has
either a unambiguous definition or a clean interface.

The SER_PAR _PRT extension things are good examples of the first. These are very simple extensions
which are linked to the serial and parallel port drivers. The FILE_SELECT extension is a good example of
the latter, this is a very complex, but useful procedure.

An Extension Thing may not be appropriate if the procedure is just a direct interface to a operating system
facility (e.g. INK, PAPER, CLS etc.).

17.6. Thing-supplied code

More complex Things may need to provide code to be invoked when the Thing is used, freed and removed.
The addresses of any such routines must be filled in in the Thing linkage block before the SMS.LTHG
routine is called to add the Thing into the list. If a routine address is zero then the internal routines will be
used - these cater for the most frequent case of an infinitely-shareable thing. All the following routines will be
called in Supervisor mode, and should end with an RTS instruction. Note that as a result of this, they must
not call any of the non-atomic TRAPs.

Thing use routine TH USE

Call parameters Return parameters

D1 Job ID D1 ??7?

D2 Additional parameter D2 Additional result

D3 Additional parameter D3 ???
D4+ 7?77

AO AO Usage block

A1 Thing linkage block A1 ?77?

A2 Additional parameter A2 Additional result
A3-A5 ???

A6 System variables A6 77

Error returns:

DO and the status register must be set

This routine will be called from within the SMS.UTHG routine to generate a non-standard usage block. If the
Thing cannot be used, or the parameters supplied are incorrect, then an error may be returned instead.

The usage block pointed to by AO should be a standard heap entry as allocated by the MEM.ACHP vector
(A0 points to the header, not the "usable memory), of which the first $18 bytes (heap header + 8) are
reserved for the use of the operating system.

Additional parameters passed by the calling code in D2/D3/A2 are unchanged, and results may be returned
to the calling code in D2 and A2.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 18

Thing free routine TH FREE

Call parameters Return parameters

D1 Job ID D1 ?77?

D2 Additional parameter D2 Additional result

D3 Additional parameter D3 ?7?7?
D4+ ??7?

AO Usage block AO Usage block to unlink

A1 Thing linkage block A1 ??7?

A2 Additional parameter A2 Additional result
A3-A5 ?7?7?

A6 System variable A6 ?77?

Error returns:

It is assumed that this routine always succeeds

This routine will be called from within the SMS.FTHG routine to remove a non-standard usage block.

AO points to the first usage block in the Thing's usage list that is owned by the Job specified - depending on
the passed parameters this may or may not be the usage block to be removed.

When the correct usage block has been found, any internal tidying up should be performed, and the block
should be returned to the heap. Its address should then be returned so that it may be unlinked from the
usage list.

Thing forced free routine TH FFREE
Call parameters Return parameters
D1+ 7?7?72
A0 Usage block A0 Preserved
A1 Thing linkage block A1 ??7?
A2-A5 ??7?
A6 System variable A6 7
Error returns:
It is assumed that this routine always succeeds

This routine will be called from within the operating system when the Job that owns the usage block pointed
to is force removed. One call will be made for each usage block in the Thing's usage list.

As with the standard free routine, the usage block should be returned to the heap by this routine.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 17 - 19

Thing remove routine

Call parameters

A0

A1 Thing linkage block

A6 System variable

Error returns:

Return parameters

D1+

A0
A1
A2-A5
A6

?77?

272
272
272
272

It is assumed that this routine always succeeds

TH_REMOV

This routine is called from the SMS.RTHG and SMS.ZTHG routines when a Thing is to be removed entirely.

It should ensure that everything associated with the Thing is in a "safe" state: this would include setting

hardware to a suitable state, freeing any extra heap entries and so on.

It must also return the Thing linkage block to the heap.

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 17 - 20

18. Keys

The following Section contain keys for various features of QDOS and SMSQ/E. These keys provide a
definition for several of the data structures within QDOS and SMSQ/E.

18.1. Error keys

The following keys indicate error messages already defined in the system. A large positive error code is
taken as the address of a user-supplied error message with bit 31 set. See the Concepts manual for a fuller
description of the way in which these are used by the procedures built into S*Basic.

err.nc -1 operation Not Complete

err.ijob -2 Invalid Job ID

err.imem -3 Insufficient MEMory

err.orng -4 parameter Outside permitted RaNGe (c.f. err.ipar)
err.bffl -5 BuFfer FulLl

err.ichn -6 Invalid CHaNnel id

err.fdnf -7 File or Device Not Found
err.itnf -7 ITem Not Found

err.fex -8 File already EXists

err.fdiu -9 File or Device or In Use

err.eof -10 End Of File

err.drfl -1 DRive FuLl

err.inam -12 Invalid file, device or thing name
err.trns -13 TRaNSmission error

err.prty -13 PaRiTY error

err.fmtf -14 ForMaT drive Failed

err.ipar -15 Invalid PARameter (c.f. err.orng)
err.mchk -16 file system Medium CHecK failed
err.iexp -17 Invalid EXPression

err.ovfl -18 arithmetic OVerFLow

err.nimp -19 operation Not IMPlemented
err.rdo -20 ReaD Only permitted

err.isyn -21 Invalid SYNtax

err.rwf -22 Read or Write Failed [SMS2]
err.noms -22 No error message [SMSQ]
err.accd -23 Access denied [SMSQ]

18.2. System variables

The following list gives the offset of each system variable from the base of the system variables (whose
position can be found using the SMS.INFO trap), together with the length of the variable.

sys_idnt $0000 Long system variables identifier

sysid.ql $D2540000 QL (QDOS) system variable identifier
sysid.at 'S2AT SMS Atari system variable identifier
sysid.sq 'SMSQ' SMSQ identifier

sysid.th $DC010000 Thor (ARGOS) system variable identifier

The following variables are the pointers which define the current state of the memory map.

sys_chpb $0004 Long Common HeaP Base
sys_chpf $0008 Long Common HeaP Free space pointer
sys_fsbb $000C Long Filing system Slave Block area Base

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 1

sys_sbab
sys_tpab
sys_tpaf
sys_rpab
sys_ramt
sys_mxfr
sys_rtc
sys_rtcf

sys_rand
sys_pict
sys_dtyp
sys_dfrz
sys_qlmr
sys_qlir
sys_rshd
sys_nnnr

The following system variables

sys_exil
sys_poll
sys_shdl
sys_iodl
sys_fsdl

sys_ckyq
sys_ertb

$0010
$0014
$0018
$001C
$0020
$0024
$0028
$002C

$002E
$0030
$0032
$0033
$0034
$0035
$0036
$0037

$0038
$003C
$0040
$0044
$0048

$004C
$0050

Long
Long
Long
Long
Long
Long
Long
Word

Word
Word
Byte
Byte
Byte
Byte
Byte
Byte

'QL S*Basic' Area Base

Transient Program Area Base

Transient Program Area Free space pointer
Resident Procedure Area Base

User RAM Top (+1)

Maximum return from free memory call [SMS]
Real time (seconds) [SMS]

Real time fractional, count down [SMS]

RANDom number

Polling Interupt CounT

Display TYPe (O=normal, 1=TV 625, 2=TV 525)
Display FRoZen (T or F)

QL Master chip Register value (Copy of MC_STAT)
QL Interrupt Register value (Copy of PC_INTR)
True to reschedule [SMS]

Network Node NumbeR

are pointers to the list of tasks and drivers.

Long
Long
Long
Long
Long

Long
Long

EXternal Interrupt action List
POLled action List
ScHeDuler loop action List
IO Driver List

Filing System Driver List

Current Keyboard Queue
Exception Redirection Table Base

The following system variables are pointers to the resource management tables. The slave block tables have
8 byte entries, whilst the others have 4 byte entries.

sys_sbrp
sys_sbtb
sys_sbtt

sys_jbtg
sys_jbtp
sys_jbpt
sys_jbtb
sys_jbtt

sys_chtg
sys_chtp
sys_chpt
sys_chtb
sys_chtt

sys_frbl
sys_tsdd

$0054
$0058
$005C

$0060
$0062
$0064
$0068
$006C

$0070
$0072
$0074
$0078
$007C

$0080
$0084

Long
Long
Long

Word
Word
Long
Long
Long

Word
Word
Long
Long
Long

Long
Byte

Slave Block Running Pointer
Slave Block Table Base
Slave Block Table Top

Next JoB TaG

Highest JoB in table (ToP one)
Current JoB PoinTer

JoB Table Base

JoB Table Top

Next CHannel TaG

Highest CHannel in table (ToP one)
Last checked CHannel PoinTer
CHannel Table Base

CHannel Table Top

FRee Block List (to be returned to common heap) [SMS]
Thor flag [THOR only]

The following variables contain information about how to treat the keyboard, and about other aspects of the
IPC and serial port communications.

sys_caps
sys_lchr
sys_rdel
sys.rdel
sys_rtim
sys.rtim

QDOS/SMS Reference Manual v. 4.9

$0088

$008A

$008C
25

$008E
2

Word
Word
Word

Word

CAPS lock (0 if off, msbyte set if on)
Last CHaRacter (for auto-repeat)
Repeat DELay (20ms units)

Default value

Repeat TIMe (20ms units)

Default value

31.03.2025 Section 18 - 2

sys_rcnt $0090 Word Repeat CouNTer (decremented every 20ms)

sys_swtc $0092 Word SWiTch queues Character

sys_qlbp $0096 Byte QL BeePing

sys_brk $0097 Byte set by keyboard break [SMSQ]

sys_ser1 $0098 Long Receive channel 1 queue address [QL]

sys_ser2 $009C Long Receive channel 2 queue address [QL]

sys_tmod $00A0 Byte ZX8302 transmit mode (includes baudrate)
(copy of PC_TCTRL) [QL]

sys_ptyp $00A1 Byte Processor TYPe $00=68000/8, $30=68030 etc. [SMSQ]

sys.mtyp $1E Machine ID bits

sys.immu $01 Internal MMU

sys.851m $02 68851 MMU

sys.ifpu $04 Internal FPU

sys.88xf $08 68881 68882 FPU

sys_csub $00A2 Long Subroutine to jump to on capslock

sys_stmo $00A6 Word Serial xmit timeout [QL]

sys_dmiu $00A6 Byte DMA in use [SMS2, ST, SMSQ]

sys_stiu $00A6 Byte msb Sector transfer in use [SMSQ]

sys_mtyp $00A7 Byte Machine TYPe / emulator type [SMS,ST]

sys.mtyp $1E Machine ID bits

sys.mblt +1 Blitter fitted [SMSQ, ST]

sys.herm +1 Hermes fitted [SMSQ, QL]

sys.mst $00 Ordinary ST

sys.mstr $02 Mega ST or ST with RTC

sys.msta $04 Stacy

sys.mste $06 Ordinary STE

sys.mmste $08 Mega STE

sys.mgold $0A Gold card

sys.msgld $oC SuperGold card

sys.mfal $10 Falcon

sys.mq40 $11 Q40/Q60

sys.mq68 $12 Q68

sys.mq0 $13 Qzero

sys.java $14 SMSQmulator

sys.mtt $18 TT

sys.mgem $1A Q-Emulator

sys.mgxl $1C QXL

sys.qpc $1E QPC

sys.mdsp %11100000 Display type mask

sys.mfut %00000000 Futura emulator or none

sys.mmon %00100000 Monochrome monitor

sys.mext %01000000 Extended 4 Emulator

sys.mvme % 10000000 QVME emulator or QL mode LCD

sys.mvga %11000000 VGA

sys.maur %10000000 Aurora

sys_stmv $00A8 Word Value of serial timeout (1200/baud+1, i.e. 11=75 bps, 5=300
bps, 3=600 bps, 2=1200 bps, 1=2400 bps+) [QL]

sys_polf $00A8 Word Polling frequency [SMSQ]

sys.polf 50 ... assumed polling frequency

sys_cfst $00AA Word Flashing cursor status

Filing system defaults

sys.defo $70 Offset to make defaults <$80

sys_prgd $00AC Long Pointer to PRoGram Default [EXT][SMSQ]
sys_datd $00B0O Long Pointer to DATa Default [EXT][SMSQ]
sys_dstd $00B4 Long Pointer to DeSTination Default [EXT][SMSQ]
sys_thgl $00B8 Long Pointer to THInG List [EXT][SMSQ]

sys_psf $00BC Long Primary stack frame pointer [SMSQ]

sys_200i $00CO Byte 200 Hz in servicelinterrupt 2 in service [SMSQ]

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18- 3

sys_50i $00C1 Byte 50 Hz in service [SMSQ][Atari][Qx0]

sys_qlsd $00C1 Byte QLSD hardware in use [QL][EXT{]
sys_plrq $00C3 Byte Poll requested (-ve for request) [SMSQ]
sys_clnk $00C4 Long Pointer to console linkage [SMSQ]
sys_castat $00C8 Byte -1 cache on, +1 instruction cache temp off [SMSQ]
sys_casup $00C9 Byte Cache suppressed timer [SMSQ]
sys.casup 26 Byte 25 full ticks

sys_iopr $00CA Word I/O priority [SMSQ]

sys_cbas $ooccC Long Current basic (copy of sys_jbpt) [SMSQ]
sys_fpu $00D0 16 Bytes [SMSQ] (seem unused but do not touch)
sys_prtc $00EO0 Byte Set if real time clock protected [SMSQ]
sys_pmem $00E1 Byte Memory protection level [SMSQ, ST]
sys_slug $00E2 Word Slug level [SMSQ]

sys_klock $00E4 Byte Key lock [SMSQ]

sys..shk 0 Suppress HOTKEY

sys..ssf 1 Suppress screen freeze

sys..ssq 2 Suppress switch queue

sys..sbk 4 Suppress BREAK

Sys..Ssr 6 Suppress keyboard soft reset

sys..shr 7 Suppress keyboard hard reset
sys_mtick $00E6 Word Mini tick counter [SMSQ]

sys_kink $00E8 Long Pointer to keyboard linkage [SMSQ/E]

Fixed filing system working area [QL, Q68, Qx0]

sys_filw $00EE to $0100

sys_qgx0c $00EE Byte Qx0 in Copyback (=0) or Writethrough (<>0) mode [Qx0]
sys_cdiu $00EE Byte Q68 flag for card in use [Q68]

sys_mdrn $00EE Byte Which MDV drive is running? [QL]

sys_mdct $00EF Byte MDYV run-up run-down counter [QL]

sys_mdid $00F0 8*Byte Drive ID*4 of each microdrive [QL]

sys_q8ct $00F0 Word Q68 card type for cards 1 & 2 (a byte each) [Q68]
sys..q8un $80 undetermined (card uninitialised)

sys..q8sd 9 simple SD card

sys..q8hc 0 SDHC card (or higher)

sys_mdst $00F8 8*Byte Status: 0=no pending ops [QL]

Filing system tables

sys_fsdd $0100 16*Long Pointers to Filing System Drive Definitions

sys_fsdt $0140 Filing System drive Definition table Top

sys.nfsd $10 Max Number of Filing System Drive definitions

sys_fsch $0140 Long Linked list of Filing System CHannel blocks

sys_xact $0144 Byte Set if XLATE active [QDOS V1.10+, SMSQ, not SMS2]

sys_xtab $0146 Long Pointer to XLATE table [QDOS V1.10+, SMSQ, not SMS2]

sys_erms $014A Long Pointer to (QDOS) error message table [QDOS V1.10+, SMSQ,
not SMS2]

sys_mstab $014E Long Pointer to (SMSQ) message table [SMSQ]. This is a pointer to a

256 long word table of pointers to message groups. All
undefined message groups have a zero pointer.

sys_taskm $0154 4 Long Used by Taskmaster - conflicts with

sys_turbo $0160 Long Used by Turbo

sys_qsound $0164 Long Used by QSound

sys_ldmist $0168 Long Language dependent module list [SMSQ]
sys_lang $016C Word Current language [SMSQ]

sys_vers $0170 Long Operating system version [SMSQ]

sys_rthg $017D Byte use RECENT Thing (<>0 if yes) [SMSQ/E 3.24+]

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 4

sys_xdly $017E Byte Suspend delay after executing another job [SMSQ/E 3.13+]
sys_ouch $017F Byte Ouch flag (currently used to activate SGC debug) [SMSQ]
sys_top $0180 Top of System Variables - bottom of Supervisor Stack

The following area, between $180 and $480 is reserved for the supervisor stack. There is no explicit stack
protection in the code, although the stack should be of sufficient size for most normal purposes.

18.3. SuperBasic Variables

This table is for the variables of QDOS Superbasic. There are (some slight, some not so slight) differences
with the variables for SMSQ/E.

bv_start $00 Start of pointers

bv_bfbas $00 Long Buffer base

bv_bfp $04 Long Buffer running pointer

bv_tkbas $08 Long Token list

bv_tkp $0C Long

bv_pfbas $10 Long Program file

bv_pfp $14 Long

bv_ntbas $18 Long Name table

bv_ntp $1C Long

bv_nlbas $20 Long Name list

bv_nlp $24 Long

bv_vvbas $28 Long Variable values

bv_vvp $2C Long

bv_chbas $30 Long Channel table

bv_chp $34 Long

bv_rtbas $38 Long Return table

bv_rtp $3C Long

bv_Inbas $40 Long Line number table

bv_Inp $44 Long

bv_chang $48 Change of direction marker

bv_btp $48 Long Backtrack stack during parsing
bv_btbas $4C Long

bv_tgp $50 Long Temporary graph stack during parsing
bv_tgbas $54 Long

bv_rip $58 Long Arithmetic stack

bv_ribas $5C Long

bv_ssp $60 Long System stack (real one!)

bv_ssbas $64 Long

bv_endpt $64 End of pointers

bv_linum $68 Word Current line number

bv_lengt $6A Word Current length

bv_stmnt $6C Byte Current statement on line

bv_cont $6D Byte Continue ($80) or stop (0) processing
bv_inlin $6E Byte Processing in-line clause or not loop (1), other ($FF) or off (0)
bv_sing $6F Byte Single line execution on ($FF) or off (0)
bv_index $70 Word Name table row of last in-line loop index read
bv_vvfre $72 Long First free space in variable value table
bv_sssav $76 Long Save sp for out/mem to go back to
bv_rand $80 Long Random number

bv_comch $84 Long Command channel

bv_nxlin $88 Word Which line number to start after

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18- 5

bv_nxstm $8A Byte Which statement to start after

bv_comin $8B Byte Command line save ($FF) or not (0)

bv_stopn $8C Word Which stop number set

bv_edit $8E Byte Program has been edited ($FF) or not (0)

bv_brk $8F Byte There has been a break (0) or not ($80)

bv_unrvl $90 Byte Need to unravel ($FF) or not (0)

bv_cnstm $91 Byte Statement to continue from

bv_cnlno $92 Word Line to continue from

bv_dalno $94 Word Current data line number

bv_dastm $96 Byte Current data statement number

bv_daitm $97 Byte Next data item to read

bv_cnind $98 Word In-line loop index to continue with

bv_cninl $9A Byte In-line loop flag for continue

bv_Isany $9B Byte Whether checking list ($FF) or not (0)

bv_lsbef $9C Word Invisible top line

bv_Isbas $9E Word Bottom line in window

bv_lsaft $A0 Word Invisible bottom line

bv_lenin $A2 Word Length of window line

bv_maxin $A4 Word Max number of window lines the 2 words immediately follow-
fing this will be overwritten on changing lenln and maxin

bv_totin $A6 Word Number of window lines so far

bv_auto $AA Byte Whether auto/edit on ($FF) or off (0)

bv_print $AB Byte Print from prtok ($FF) or leave in buffer (0)

bv_edlin $AC Word Line number to edit next

bv_edinc $SAE Word Increment on edit range

bv_tkpos $BO Long Position of A4 in tklist on entry to PROC

bv_ptemp $B4 Long Temp pointer for GO_PROC

bv_undo $B8 Byte Undo rt stack IMMEDIATELY then redo procedure

bv_arrow $B9 Byte Down ($FF) or up ($01) or no (0) arrow

bv_lsfil $BA Word Fill window when relisting at least to here

bv_wrino $BC Word When error line number [QDOS V1.10+]

bv_wrstm $BE Byte When error statement [QDOS V1.10+]

bv_wrinl $BF Byte When error in-line ($FF) or not (0) [QDOS V1.10+]

bv_wherr $CO Byte Processing when error ($80) or not (0) [QDOS V1.10+]

bv_error $C2 Long Last error code [QDOS V1.10+]

bv_erlin $C6 Word Line number of last error [QDOS V1.10+]

bv_wvnum $C8 Word Number of watched (WHEN) variables [QDOS V1.10+]

bv_wvbas $CA Long Base of WHEN variable table wrt VVBAS [QDOS V1.10+]

bv_end $100

18.4. SBasic Variables [SMSQ/E]

This table is for the variables of SMSQ/E SBasic. There are (some subtle, some not so subtle) differences
with the variables for QDOS.

sb_bufft -$64 long input (etc) buffer top

sb_cmdit -$5¢ long command line top
sb_srcet -$54 long source program top
sb_nmtbt -$4c long name table top

sb_nmist -$44 long name list top

sb_datal -$3c long pointer to list of data blocks

sb_chant -$34 long channel table top

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18- 6

sb_retst -$2c long return stack top

sb_backl -$20 long parser backtrack stack limit
sb_grphl -$18 long parser graph stack limit
sb_chkhp -$14 long address of check heap patch
sb_arthl -$10 long arithmetic stack limit
sb_sbjob -$0c long SBASIC Job

sb_prstl -$08 long processor stack limit
sb_flag -$04 long SBASIC flag

sb.flag 'SBAS'

sb.toffp -$68 top pointer offset from pointer

sb.loffp -$68 limit pointer offset from pointer

sb.bofpu -$04 base pointer offset from pointer (upwards)
sb.bofpd $04 base pointer offset from pointer (dn stacks)
sb.dnspr $10 spare space above downward stacks

sb_buffb $00 long input (etc) buffer base

sb_buffp $04 long ... and pointer

sb_cmdlb $08 long command line (parsed) buffer base
sb_cmdlp $0c long ... and pointer

sb_srceb $10 long source program base

sb_srcep $14 long ... and pointer

sb_nmtbb $18 long name table base

sb_nmtbp $1c long ... and pointer

sb_nmisb $20 long name list base

sb_nmisp $24 long ... and pointer

sb_datab $28 long data area base (first block)
sb_datap $2c long ... sb_datap-sb_datab is total area allocated
sb_chanb $30 long channel table base

sb_chanp $34 long ... and pointer

sb_retsb $38 long return stack base

sb_retsp $3c long ... and pointer

sb_backp $48 long parser backtrack stack pointer

sb_backb $4c long ... and base

sb_grphp $50 long parser graph stack pointer
sb_grphb $54 long ... and base

sb_arthp $58 long arithmetic stack pointer
sb_arthb $5c long ... and base

sb_prstp $60 long processor stack pointer
sb_prstb $64 long ... and base

sb_line $68 word line number

sb_stmt $6¢c byte statement number

sb_cont $6d byte set to continue, 00 to stop
sb_cmdst $6e byte command line statement number
sb_cmdl $6f byte set if command line

sb_cmdt2 $70 word the offset from cmdst to token (or 0)
sb_frdat $72 long free space pointer for data area
sb_pmipt $76 long program interface pointer
sb_pmidt $7a long program interface data

sb_pmint $7e byte program interface flag
sb.pmint $ff
sh.pmist $01

sb_clc0 $7f byte set if channel zero to be closed on run
sb_rand $80 long random number

sb_cmdch $84 long command channel

sb_nline $88 word next line

sb_nstmt $8a byte next statement

sb_actn $8c word action number

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18- 7

sb.clear $00
sb.new $02
sh.stop $04
sb.run $06
sb.lrun $08
sb.load $0a
sb.mrun $0c
sb.merge $0e
sb.cont $10
sb.nact $12

sb_edt $8e byte

sb.edt $ff program edited

sb.edtn $80 new names have been set

sb.edtp $01 program has been pre-compiled
sb_break $8f byte msb clear if break

sb_cstmt $91 byte continue statement

sb_cline $92 word continue line

sb_dline $94 word current data line

sb_dstmt $96 byte current data statement

sb_ditem $97 byte current data item

sb_cmppg $98 byte compile program as well as command line
sb_auto $aa byte set for auto line number

sb_pline $ab byte set to print expanded line

sb_edlin $ac word next edit line

sb_edinc $ae word edit increment

sb_flags $b0 long flags

sb_cinst $b0 byte msb set if case dependent instr
sb_redo $b8 byte clear return stack and redo procedure / function
sb_Isfil $ba word fill list window to here?

sb_rtmde $bc byte ret stack mode (1 = line/statement no)
sb_colrm $bd byte colour specification mode (0 or iow.papx)
sb_wherr $be word when error clause line number
sb_wheiu $c0 byte when error in use

sb_inint $c1 byte in interpreter

sb_erno $c2 long error number

sb_eline $c6 word error line

sb_estmt $c8 byte error statement

sb_pcerp $cc long error position during parsing / compiling
sb_pcern $d0 long error number during parsing compiling
sb_hichn $d4 long command line history channel ID
sb_glibe $dc il QLiberator error table

sb_cheap $e0 il common heap pointer

sb_glibc $e8 il QLiberator configuration

sb_glibr $ec e QLiberator runtimes

sb_zero $fc zero

sb_dmbuf $100 dummy buffer

Note: | deliberately left out the SBasic variables which have more to do with compiling the code .

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18- 8

18.5.
18.5.1.

Offsets on BASIC Channel Definitions

Basic channel definitions and tokens

The following Section gives the format of an entry in the S*Basic channel table. These entries can be
monitored or modified by user-defined S*Basic procedures which need to have a channel attached using a

'#n' construct.

ch.id
ch.ccpy
ch.ccpy
ch.angle
ch.pen
ch.chpos
ch.width
ch.spare
ch.lench

18.5.2.

$00
$04
$0A
$10
$16
$20
$22
$24
$28

Long Channel id
Float Current cursor position, y
Float Current cursor position, x
Float Turtle angle
Byte Pen status (0 is up, 1 is down)
Word Character position on line
Word Width of line in characters

.. Spare ..

Length of channel definition block

BASIC Token Values

The following Section defines the token values used for the internal storage of a S*Basic program.

tkb.space
tkw.keyw
tkw.end
tkw.for
tkw.if
tkw.rep
tkw.sel
tkw.when
tkw.def
tkw.proc
tkw.fn
tkw.go
tkw.to
tkw.sub
tkw.err
tkw.rest
tkw.next
tkw.exit
tkw.else
tkw.on
tkw.ret
tkw.rmdr
tkw.data
tkw.dim
tkw.loc
tkw.let
tkw.then
tkw.step
tkw.rem
tkw.mist
tkb.odds
tkw.lequ
tkw.coln
tkw.hash
tkw.comma
tkw.Ipar

$80
$81
$8101
$8102
$8103
$8104
$8105
$8106
$8107
$8108
$8109
$810A
$810B
$810C
$810E
$8111
$8112
$8113
$8114
$8115
$8116
$8117
$8118
$8119
$811A
$811B
$811C
$811D
$811E
$811F
$84
$8401
$8402
$8403
$8404
$8405

spaces in the listing - two bytes: token, count

all sorts of keywords:
END

FOR

IF

REPeat
SELect
WHEN
DEFine
PROCedure
FuNction
GO

TO

SuUB

ERRor
RESTORE
NEXT

EXIT

ELSE

ON

RETurn
REMAINDER
DATA

DIM

LOCal

LET

THEN
STEP
REMark
MISTake

All sorts of separators:
(LET) =

#

(

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 18- 9

tkw.rpar
tkw.lbrc
tkw.rbrc
tkw.space
tkw.eol

tkb.oper
tkw.plus
tkw.minus
tkw.mulf
tkw.divf
tkw.ge
tkw.gt
tkw.apeq
tkw.eq
tkw.ne
tkw.le
tkw.It
tkw.bor
tkw.band
tkw.bxor
tkw.power
tkw.cnct
tkw.or
tkw.and
tkw.xor
tkw.mod
tkw.div
tkw.instr

tkw.neg
tkw.pos
tkw.bnot
tkw.not
tkb.name

$8800

tkw.quote
tkw.apost
tkw.text

tkb.Ino
tkb.seps
tkw.scoma
tkw.scoln
tkw.bslsh
tkw.bar
tkw.sto

$8406
$8407
$8408
$8409
$840A

$85
$8501
$8502
$8503
$8504
$8505
$8506
$8507
$8508
$8509
$850A
$850B
$850C
$850D
$850E
$850F
$8510
$8511
$8512
$8513
$8514
$8515
$8516

$8601
$8602
$8603
$8604

$8B22
$8B27
$8C00

$8D00
$8E

$8EO01
$8E02
$8E03
$8E04
$8E05

)

{

}

Space (significant)
End of line

All sorts of operators:
+

1] IIV}{*'

A
1N v

A

&&

AN
A

&

OR
AND
XOR
MOD
DIV
INSTR

Negate
Positive!!

Name: The name token is followed by a word index to the name table

String delimited by "quotes"

String delimited by 'apostrophes’

Text (after REMark)The string and text tokens are followed by a word (nr. of
chars) and the characters (with a pad byte if odd)
line number (word)

All sorts of formatting separators:

Separator comma

Semicolon

Backslash

Bar

Separator TO

In S*Basic, a literal number is represented as a 6 bytes floating point number by $Feee:mmmmmmmm with
$0eee:mmmmmmmm (eee: exponent, mmmmmmmm: mantissa) being the actual floating point number
(each e and m is one nibble).

[smsa/E] In addition, SBASIC allows for integer literal numbers to be entered as a binary or hexadecimal
literal in the SBasic code if preceded by a % or a $, respectively. Their values are stored as floating point
numbers in the tokenised program, the same as for literal decimal numbers, except that the token values are
$Deee for binary, and $Eeee for hexadecimal.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 10

18.6. Job Header and Save Area Definitions

The location of the job table can be found by looking at the system variables SYS_JBTB and SYS_JBTT.
Each entry in the table is a Longword pointing to a block of $68 bytes in the format given here.

jcb_len * $0000 Long LENgth of job in tpa

jcb_strt $0004 Long STaRT address

jcb_ownr $0008 Long OWNEeR of this job

jeb_rflg $000C Long Pointer to job Released FLaG (cleared on release)

jeb_tag * $0010 Word Job TAG (set by MT.CJOB)

jcb_pacc $0012 Word Priority ACCumulator set to zero when the job is executing,
incremented on each scheduler call if the job is active but not
executing

jb_pinc $0013 Byte Priority increment [QL] the actual priority of the job, set to zero if
the job is inactive. S*Basic activates jobs at priority $20

jcb_wait * $0014 Word Job WAIT counter: >0 number of frame times to release

jcb.nsus 0 not suspended

jcb.wait -1 wait forever

jcb.wjob -2 wait for job

jcb_rela $0016 Byte Set if next 10 call is RELative Address

jcb_wflg $0017 Byte Set if there is a job waiting on completion of this one

jcb_wijid $0018 Long Waiting Job ID

jcb_exv $001C Long Pointer to EXeption vector

jcb_save $0020 Job SAVE area

jcb_do $0020 Saved DO

jcb_d1 $0024 Saved D1

jcb_d2 $0028 Saved D2

jcb_d3 $002C Saved D3

jcb_d4 $0030 Saved D4

jeb_d5 $0034 Saved D5

jcb_d6 $0038 Saved D6

jcb_d7 $003C Saved D7

jcb_a0 $0040 Saved A0

jcb_a1 $0044 Saved A1

jcb_a2 $0048 Saved A2

jcb_a3 $004C Saved A3

jcb_a4 $0050 Saved A4

jcb_a5 $0054 Saved A5

jcb_a6 $0058 Saved A6

jcb_a7 $005C Saved A7

jcb_sr $0060 Saved Sr

jcb_ccr $0061 Saved CCR

jcb_pc $0062 Saved PC

jcb_reln $0066 Byte set if next I/O call is RELative Address [SMS2]

jcb_evts $0066 Byte 8 bit event vector [SMSQ 2.71+]

jcb_evtw $0067 Byte 8 bit events waited for [SMSQ 2.71+]

jcb_end $0068 End of header

Thus the Job identified by job_ID starts at ((SYS_JBTB)+4*job_ID.w), and the most significant word of
job_ID must match the tag held at JCB_TAG on from this address (otherwise that job no longer exists). A
negative job_ID implies that the job no longer exists, as does a value of job_ID.w which is greater than the
length of the job table held in SYS_JBTP.

Entries marked by * should not be modified. Other entries may be modified by a trap, or may be changed
directly with caution.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 11

18.7. Slave Memory Block Table Definitions

The following keys define the format of a slave block table entry.

sbt_stat $00 Byte STATus of block - see below
sbt_phys $01 Byte PHYsical sector on drive [DD2]
sbt_prio $01 Byte block priority [QL]

sbt_phyg $02 Word PHYsical group on drive [DD2]
sbt_sect $02 Word sector number (Microdrive*2) [QL]
sbt_file $04 Word FILE number

sbt_blok $06 Word BLOcK number

sbt_end $08

sbt.len $0008 Length of slave block table entry
sbt.size $0200 Size of slave block

The most significant 4 bits of the status byte contain the pointer to the physical device block SYS_FSDD, the
least significant are the status codes: status byte usage

sbt.unav %0000 Block is unavailable to the file system
sbt.mpty %0001 Block eMPTY

sbt.read %1001 Awaiting READ

sbt.true %0011 Block is TRUE representation of file

sbt.veri %1011 Awaiting VERIfy

sbt.writ %0111 Awaiting WRITe (updated)

Masks:

sbt.driv %11110001+$FFFFFFO00 Mask of pointer to DRIVe
sbt.drvv %11110011+$FFFFFFO0 Mask of DRiVe Valid bits
sbt.stat %00001111 Mask of STATus bits
sbt.actn %00001100 Mask of ACTioN bits
sbt.inus %00001110 Mask of IN USe bits

slave block status bits (least significant four)

sbt..fsb 0 Filing System Block
sbt..rrq 3 Read ReQuest
sbt..wrq 2 Write ReQuest
sbt..vld 1 Block is VaLiD

18.8. Channel Definitions

The position of a channel definition block corresponding to a given channel ID can be found using a similar
method to that used for finding the block for a job described in Section 3.1

The relevant system variables are SYS_CHTB and SYS_CHTT.
Channel definition header for all channels:

chn_len $0000 Long LENgth of channel block

chn_drvr $0004 Long address of driver linkage

chn_ownr $0008 Long OWNEeR of this channel

chn_rflg $000C Long Pointer to channel Closed FLaG in channel table, MSB set to $ff on close
chn_tag $0010 Word Channel TAG

chn_stat $0012 Byte STATus 0 ok, $ff waiting (A1 abs), $80 waiting (A1 rel AB)

chn_actn $0013 Byte I/O action (stored value of d0)

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 12

chn_jbwt $0014 Long JoB WaiTing for IO
chn_end $0018 End of header

Extended channel definition for Pipes (plain serial queues):

chn_qin $0018 Long Pointer to input queue (or 0 if output pipe)

chn_qout $001C Long Pointer to output queue (or 0 if input pipe)

chn_gend $0020 End of definition (for input pipe) or queue header followed by queue
(for output pipe)

Device driver header:

chn_next $0000 Long Pointer to next driver
chn_inot $0004 Long Entry for input and output
chn_open $0008 Long Entry for open

chn_clos $000C Long Entry for close

The following are for directory devices (file system) only:

chn_slav $0010 Long Entry for slaving blocks
chn_renm $0014 Long Entry for rename [QL]

chn_frmt $001C Long Entry for format medium
chn_dfin $0020 Long Length of physical definition block
chn_dnam $0024 String Drive name

18.9. File System Definition Blocks

18.9.1. 18.Standard channel block for filing system

chn_link $0018 Long LINKed list of channel blocks
chn_accs $001C Byte ACCeSs mode

chn_drid $001D Byte DRive ID

chn_qdid $001E Word QDOS thinks this is file ID
chn_fpos $0020 Long File POSition

chn_feof $0024 Long File EOF

chn_csb $0028 Long Current slave block
chn_updt $002C Byte File UPDaTed

chn_usef $002D Byte File USE Flags [DD2]

chn..usd 7 file used

chn..dst 0 date set

chn..vst 1 version set
chn_name $0032 String File NAME

chn.nmin $24 max file NaMe LeNgth

chn_ddef $0058 Long Pointer to physical definition block [DD2]

chn_drnr $005C Word DRive NumbeR [DD2]

chn_flid $005E Word FiLe ID [DD2]

chn_sctl $005E Word SeCTor Length (direct sector 10) 0:128 1:256 etc [DD2]
chn_opwk $0060 Long $40 (hdr.len) bytes of working space for open [DD2]
chn_sdid $0062 Word (Sub-)Directory ID [DD2]

chn_sdps $0064 Long (Sub-)Directory entry PoSition [DD2]

chn_sdef $0068 Long (Sub-)Directory End of File (wrong if IOA.KDIR) [DD2]
chn_spr $0070 $30 Bytes spare [DD2]

chn_fend $00A0 File system channel end [DD2]

chn_nchk $00B0 Long no 'in use' check in OS open code... [SMSQ/E]
chn.nchk 'NCHK' ... if set to this value

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 13

18.9.2.

fs.nmlen
fs.hdlen
fs_drivr
fs_drivn
fs_mname
fs_files

18.9.3.

md_fail

md_spare
md_map
md_lsect
md_pendg
md_end

18.9.4.

iod_ftyp
iod.ql5a
iod.qlwa
iod.qird
iod.drct
iod_rdin
iod_rdid
iod.rdid
iod_allc
iod_totl
iod_free
iod_hdrl
iod_rdfs
iod_drst
iodd.mod

iod_wprt
iod_sctl
iod_map
iod_remv
iod_xsbs

iod.plen

The common part of a physical definition block

$24
$40
$10
$14
$16
$22

Max length of file name
Length of file system header
Long Pointer to driver

Byte Drive number
String Medium name (maximum ten characters)
Byte Number of files open

Microdrive Physical Definition Block (q

$24

$25
$28
$226
$228
$428

Byte Failure count - this increases by 1 with every revolution for each
operation until it either reaches 4 (for write or verify) or 8 (for read), after
which the system notifies a file error.

3 Bytes
$FF*2 Byte Microdrive sector map
Word Number of last sector allocated

$100 Word Map of pending operations - a word for each sector

Other Filing System Physical Definition Block (susqjexT

$0023 byte Format TYPe

0 0=QL5A

1 1=QLWA

2 2=QL ROM disk

-1 -vedirect
$0024 long Root Directory LeNgth
$0028 word Root Directory file ID

1 implicit value for QL5A disks
$002a word ALLoCation size (bytes)
$002c long TOTaL allocation units
$0030 long FREE allcation units
$0034 long inbuilt file HeaDeR Length
$0038 long Root Directory First Slave block
$003c byte DRive Status : 0 unused, -ve OK
1 medium modified (format or direct sector)
other +ve drive specific (error) flags

$003d byte set if Write PRoTected
$003e word SeCTor Length (for direct sector access)
equ $0040 long
$0044 long pointer to def block / map remove code.
$0048 word eXtra Slave Blocks required for each sector
$50 length of standard part of physical definition

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 14

18.10.

Device Driver Linkage Block

for details refer to Section 7.1

iod_sqfb
iod..ssr
iod..swi
iod..sfi
iod..sdl
iod..ssb
iod..scn
iod..sfm
iod..sdd

iod_sqio
iod.sqio

iod_xilk
iod_xiad
iod_pllk
iod_plad
iod_shlk
iod_shad
iod_iolk
iod_ioad
iod_open
iod_clos
iod_iend
iod_fslv
iod_spr1
iod_cnam
iod_frmt
iod_plen
iod_dnus
iod_dnam

18.10.1.

sd_xmin
sd_ymin
sd_xsiz
sd_ysize
sd_borwd
sd_xpos
sd_ypos
sd_xinc
sd_yinc

sd_font
sd_scrb

sd_pmask
sd_smask
sd_imask

QDOS/SMS Reference Manual v. 4.9

-$08
0

1

2

8

16
18
19
20

-$04

$00
$04
$08
$0C
$10
$14
$18
$1C
$20
$24
$28
$28
$2C
$30
$34
$38
$3C
$42

Screen Driver Data Block Definition

$18
$1A
$1C
$1E
$20
$22
$24
$26
$28

$2A
$32

$36
$3A
$3E

Long

Long

Long
Long
Long
Long
Long
Long
Long
Long
Long
Long

Long

Long
Long
Long
String
String

Word
Word
Word
Word
Word
Word
Word
Word
Word

2*Long
Long

Long
Long
Long

SMSQ I/0O facility bit

Bit set for serial

Bit set for window operations

Bit set for filing system operations
Bit set for delete

Bit set for slave block

Bit set for channel name

Bit set for format

Bit set for directory device

SMSQ I/O compatible flag
'sqio’

External interrupt linkage

External interrupt service routine address
Polling interrupt linkage

Polling interrupt service routine address
Scheduler loop linkage

Scheduler loop service routine address
I/O driver linkage

Input / output routine address

Open routine address

Close routine address

End of minimum device driver linkage
Forced slaving address

Spare

Set channel name

Format routine address

Physical definition block LENgth

Device Name (current USage)

Device NAMe [SMSQ]. These two are standard SMSQ/E strings of 1 to 4
characters. Beware : they may be used by some drivers for other information (eg.

NET device).

Window top LHS
Window size

Border width
Cursor position

Cursor increment

Font addresses

Base address of screen
Paper colour mask

Strip colour mask
Ink colour mask

31.03.2025

Section 18 - 15

sd_cattr $42 Byte Character attributes

sd..unot 0 Underline mode

sd..flsh 1 Flash mode

sd..strp 2 Transparent strip

sd..xor 3 XOR mode

sd..hi 4 Double height characters
sd..wide 5 Extended width characters
sd..dbl 6 Double width characters
sd..grf 7 Graphics positioned character

sd_curf $43 Byte Cursor flag O=suppressed, >0=visible, <0 invisible
sd_pcolr $44 Byte Paper colour byte

sd_scolr $45 Byte Strip colour byte

sd_icolr $46 Byte Ink colour byte

sd_bcolr $47 Byte Border colour byte

sd_nista $48 Byte New line status (>0 implicit, <0 explicit) [SMS]
sd_nista $48 Byte New line status (>0 pending, <0 done). [QDOS]

sd_fmod $49 Byte Fill mode (0=off, 1=0on)

sd_yorg $4A Float Graphics window y-origin

sd_xorg $50 Float Graphics window x-origin

sd_scal $56 Float Graphics scale factor

sd_fbuf $5C Long Pointer to fill buffer

sd_fuse $60 Long Pointer to user-defined fill vectors [QL]
sd_linel $64 Word Line length in bytes [QDOS V1.10+]
sd_end $68 Length of screen driver [QODS V1.10+]
sd_end $66 ... in QDOS before V1.10

18.10.2. Serial Channel Definition Block |q;

ser chnq $18 Word Port number: 1 or 2

ser_par $1A Word Parity: 0 none, 1 odd, 2 even, 3 mark, 4 space
ser_thxs $1C Word Transmit handshake flag: -1 ignore, 0 handshake
ser_prot $1E Word Protocol flag: -1 for R, 0 for Z, +1 for C

ser_rxq $20 $62b Receive queue header followed by queue
ser_txq $82 $62b Transmit queue header followed by queue
ser_end $E4

18.10.3. Network Channel Definition Block (q

net_hedr $18 Byte Destination station number

net_self $19 Byte Number of station which opened channel
net_blkl $1A Byte LSB of data block number

net_blkh $1B Byte @ MSB of data block number

net_type $1C Byte Packet type: O for data, 1 last packet (EOF)
net_nbyt $1D Byte Number of bytes in data block

net_dchk $1E Byte Data checksum

net_hchk $1F Byte Header checksum

net_data $20 $FF B Data block

net_rpnt $11F Byte Pointer to current position in data block
net_ end $120

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 16

18.11.

Queue Header Definitions

The following is the format of the header of a queue manipulated using the system's built-in queue handling

routines.

q_eoff
q_nextq
q_end
q_nextin
q_nxtout
q_queue

18.12.

$00
$00
$04
$08
$0C
$10

Byte End of file flag (MS bit)

Long Link to next queue

Long Pointer to end of queue

Long Pointer to next location to put byte in
Long Pointer to next location to take byte from
Start of queue

Arithmetical Interpreter Operation Codes

The following are the codes for the operations which can be performed on the QL through the vectored
routines which access the arithmetic interpreter. (NB TOS = Top Of Stack, NOS = Next On Stack)

qa.end
qa.nint
qa.int
qa.nlint
qa.float
qa.add
qa.sub
qa.mul
qa.div
qa.abs
qa.neg
qa.dup
qa.cos
qa.sin
qa.tan
qa.cot
qa.asin
gqa.acos
qa.atan
ga.acot
qa.sqrt
qa.log
qa.l10
qa.exp
qa.pwrf

$00
$02
$04
$06
$08
$0A
$0C
$0E
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$22
$24
$26
$28
$2A
$2C
$2E
$30

ga.maxop $30

END of multiple operation

round FP to Nearest INTeger
truncate FP to INTeger

round FP to Nearest Long INTeger
FLOAT integer

ADD (top of stack to next of stack)
SUBtract (TOS from NOS)
MULtiply (TOS by NOS)

DIVide (TOS into NOS)

ABSolute value

NEGate

DUPlicate

COSine

SINe

TANgent

COTangent

ArcSINe

ArcCOSine

ArcTANgent

ArcCOTangent

SQuare RooT

Log (Natural)

Log base 10

Exponential

Raise to PoWeR (Floating point) (NOS to power of TOS)

The following arithmetic-keys are available only in SMS2, SMSQ and Minerva:

ga.one
qa.zero
qa.n
qa.k

$01
$03
$05
$07

Push constant 1 (float)
Push constant O (float)
Followed by a signed byte, to push -128 to 127 (float)
Plus a byte, nibbles select mantissa and adjust exponent.
Following byte values may be:

gak.pi180 $56

qak.loge $69

gak.pi6 $79

gak.In2 $88-$100

gak.sqrt3 $98-$100

gak.pi $A8-$100

qak.pi2 $A7-$100

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 17

qa.flong $09 Float a long integer

qa.halve $0D TOS/2

qa.doubl $OF TOS*2

qa.recip $11 1/TOS

qa.roll $13 (TOS)B, C, A->(TOS)A, B, C (roll 3rd to top)
ga.over $15 Adjust stack, NOS-> TOS

gqa.swap $17 NOS <->TOS

qa.arg $25 Arg(TOS,NOS)=a, solves TOS=k*cos(a) & NOS=k*sin(a)
ga.mod $27 SQRT(TOSA2+NOS2)

gqa.squar $29 TOS* TOS

qa.power $2F NOS *TOS, where TOS is a signed short INT
qa.load $00 Keys for load and store

qa.stor $01

18.13. IPC Link Commands

These can be used with the SMS.HDOP trap.

rset_cmd 0 Systemreset [QL]
stat_cmd 1 Report input status [QL]
opsl_cmd 2 Open RS232 channel 1 [QL]
ops2_cmd 3 Open RS232 channel 2 [QL]
cls1_cmd 4 Close RS232 channel 1 [QL]
cls2_.cmd 5 Close RS232 channel 2 [QL]
rds1_cmd 6 Read RS232 channel 1 [QL]
rds2_cmd 7 Read RS232 channel 2 [QL]
rdkb_cmd 8 Read keyboard [QL]
kbdr_cmd 9 Keyboard read directly

inso_cmd 10
kiso_cmd 11
mdrs_cmd 12
baud_cmd 13
rand_cmd 14
test_cmd 15

Initiate sound process

Kill sound process

Microdrive reduced sensitivity [QL]
Change baud rate [QL]

Random number generator [QL]
Test [QL]

18.14. Hardware Keys

The following are the addresses of the registers within the QL hardware. [QL]

pc_clock $18000 Real time clock in seconds (long word)

The following are the masks used to access the transmit control register (pc_tctrl and sys_tmod).

pc_tctrl $18002 Transmit control

pc..sern 3 Serial port number or 0=mdv, 1=net
pc..serb 4 O=serial 10, 1=mdv or net

pc..diro 7 Direct output bit

pc.bmask %00000111 System baud rate

pc.notmd %11100111 All bits except mode control

pc.mdvmd %00010000 Microdrive mode (set if you can access microdrives)
pc.netmd %00011000 Network mode (set if you can access net)
pc_ipcwr $18003 IPC write

pc.ipcwr %00001100 IPC write bit

pc..ipcw 1 1

pc.ipcrd %00001110 IPC read bit

QDOS/SMS Reference Manual v. 4.9

31.03.2025 Section 18 - 18

The following is the format of the microdrive control/systems register.
pc_mctrl $18020 Microdrive control status and IPC status
If you write to this register, the following bits can be used:

pc..sel 0 Microdrive select bit

pc..sclk 1 Microdrive select clock bit

pc..writ 2 Microdrive write (set=enable write)
pc..eras 3 Microdrive erase (set=enable erase)

The following masks can therefore be useful:

pc.read %0010 Read (or idle) mode

pc.select %0011 Select bit set

pc.desel %0010 Select bit not set

pc.erase %1010 Enable erase/stop write to drive
pc.write %1110 Enable both erase and write to drive

If you read the register, you will however, have access to the following information in the specified bits:

pc_ipcrd $18020 IPC read (is the same)

pc..txfl 1 Set if microdrive Xmit buffer is full
pc..rxrd 2 Set if microdrive read buffer is ready
pc..gap 3 Gap

pc..dtr1 4 DTR on port 1 (clear if device is ready)
pc..cts2 5 CTS on port 2 (clear if device is ready)
pc..ipca 6 IPC acknowledge

pc..ipcd 7 IPC data bit

The following is the format of the interrupt register.

pc_intr $18021 Interrupt control/status
pc.intrg %00000001 Gap interrupt
pc.intri %00000010 Interface interrupt

pc.intrt %00000100 Transmit interrupt
pc.intrf %00001000 Frame interrupt
pc.intre %00010000 External interrrupt
pc.maskg %00100000 Gap mask
pc.maski %01000000 Interface mask
pc.maskt %10000000 Transmit mask

pc_tdata $18022 Transmit data
pc_trak1 $18022 Microdrive read track 1
pc_trak2 $18023 Microdrive read track 2

The following is the format of the display control register.

mc_stat $18063 Display control register

mc..bink 1 Blanks display

mc..m256 3 Sets MODE 8 (256 pixels across)

mc..scrn 7 Sets the screen base ($20000 or $28000, if set)

The following is a list of addresses available when a QIMI (QL Internal Mouse Interface) is installed in a QL.

Warning: you should not access the mouse via these hardware addresses, you should always
access it by using the Pointer Interface!

mi_button $1BF9C Mouse button state
mib..left 4 Left button

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 19

mib..rigth 5 right button

mi_status $1BFBC Status register
mis..diry 0 Y direction
mis..intx 2 Interrupt X direction
mis..dirx 4 X direction
mis..inty 5 Interrupt Y direction

mi_clrint $1BFBE Clear interrupt service

18.15. Trap Keys

This Section gives a summary of all of the QDOS ftraps, together with their access keys passed in DO. All
keys are in hex. Traps are sorted by the DO key.

18.15.1. Trap 1 Keys (System Traps)

do.sms2 1 SMS2 trap entry

do.smsq 1 SMSQ trap entry

sms.myjb -1 SMS key for MY JoB

sms.info $00 get INFOrmation on SMS
sms.crjb $01 CReate JoB

sms.injb $02 get INformation on JoB

sms.rmjb $04 ReMove JoB

sms.frjb $05 Forced Remove JoB

sms.frtp $06 find largest FRee space in Tpa
sms.exv $07 set EXception Vector

sms.ssjb $08 SuSpend a JoB

sms.usjb $09 UnSuspend a JoB

sms.acjb $0A AcCtivate a JoB

sms.spjb $0B Set Priority of JoB

sms.alhp $0C Allocate in HeaP

sms.rehp $0D RElease to HeaP

sms.arpa $0E Allocate in Resident Procedure Area
sms.dmod $10 setor read the Display MODe
sms.hdop $11 do a Hardware Dependent Operation
sms.comm $12 set COMMuncation baud rate etc.
sms.rrtc $13 Read Real Time Clock

sms.sric $14 Set Real Time Clock

sms.artc $15 Adjust Real Time Clock
sms.ampa $16 Allocate space in S*Basic area
sms.rmpa $17 Release space in S*Basic area
sms.achp $18 Allocate space in Common HeaP
sms.rchp $19 Release space in Common HeaP
sms.lexi $1A Link in EXternal Interrupt action
sms.rexi $1B Remove EXternal Interrupt action
sms.lpol $1C Link in POLled action

sms.rpol $1D Remove POLled action

sms.Ishd $1E Link in ScHeDuler action
sms.rshd $1F Remove ScHeDuler action
sms.liod $20 Linkin IO Device driver

sms.riod $21 Remove IO Device driver
sms.Ifsd $22 Linkin Filing System Device driver
sms.rfsd $23 Remove Filing System Device driver
sms.trns $24 Set translation and error messages
sms.xtop $25 eXTernal Operation [SMSQ]

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 20

sms.iopr $2E 10 PRiority [SMSQ]

sms.cach $2F CACHe handling [SMSQ]

sms.lldm $30 Link in Language Dependent Module [SMSQ]
sms.lenq $31 Language ENQuiry [SMSQ]

sms.Iset $32 Language SET [SMSQ]

sms.pset $33 Printer translate SET [SMSQ]

sms.mptr $34 find a Message PoinTeR [SMSQ]

sms.fprm $35 Find PReferred Module [SMSQ]

sms.schp $38 Shrink alloaction in common heap [SMSQ]
sms.sevt $3A Send event to job [SMSQ]

sms.wevt $3B Wait for event [SMSQ]

18.15.2. Trap 2 Keys (I/O Allocation Traps)

do.ioa 2 Trap #2

do.rlioa 4 Trap #4

ioa.open $01 OPEN IOSS channel

ioa.clos $02 CLOSe I0SS channel

ioa.frmt $03 FoRMaT medium on device
ioa.delf $04 DELete file from device

ioa.sown $05 Set OWNer of channel

ioa.cnam $06 Fetch channel name

Ownership keys

no.owner 0

myself -1

IOA.OPEN keys (D3.B)

ioa.kexc $00 Key for EXClusive use (read/write)
ioa.kshr $01 Key for SHaRed access (read only)
ioa.knew $02 Key for NEW file (empty, read/write)
ioa.kovr $03 Key for OVeRwrite (delete contents if it exists)
ioa.kdir $04 Key for DIRectory file

ioa.krn $05 Key for ReNaMe [DD2]

18.15.3. Trap 3 Keys (I/O Traps)

do.io 3 Trap #3

do.relio 4 Trap #4

lob.test $00 TEST input

lob.fbyt $01 Fetch BYTe from input

lob.flin $02 Fetch LINe from input

lob.fmul $03 Fetch MULtiple characters/bytes
lob.elin $04 Edit LINe of characters

lob.sbyt $05 Send BYTe to output

lob.suml $06 Send a string of untranslated bytes [SMSQ/E]
lob.smul $07 Send MULtiple bytes

low.xtop $09 eXTernal OPeration on screen
low.pixq $0A PIXel coordinate Query
low.chrq $0B CHaRacter coordinate Query
low.defb $0C DEFine Border

low.defw $0D DEFine Window

low.ecur $0E Enable CURsor

low.dcur $0F Disable CURsor

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 18 - 21

low.scur
low.scol
low.newl
low.pcol
low.ncol
low.prow
low.nrow
low.spix
low.scra
low.scrt
low.scrb
low.pana
low.panl
low.panr
low.clra
low.cirt
low.cirb
low.clrl
low.clrr
low.font
low.rcir
low.spap
low.sstr
low.sink
low.sfla
low.sula
low.sova
low.ssiz
low.blok
low.donl
log.dot
log.line
log.arc
log.elip
log.scal
log.fill
log.sgcr
lof.chek
lof.flsh
lof.posa
lof.posr
lof.minf
lof.shdr
lof.rhdr
lof.load
lof.save
lof.rnam
lof.trnc
lof.date
lof.mkdr
lof.vers
lof.xinf
low.papp
low.strp
low.inkp
low.borp
low.papt
low.strt
low.inkt
low.bort
low.papn

$10
$11

$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1E
$1F
$20
$21

$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31

$32
$33
$34
$35
$36
$40
$41

$42
$43
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51

$52
$53
$54
$55
$56
$57
$58

Set CURsor position (character coordinates)
Set cursor COLumn

put cursor on a NEW Line

move cursor to Previous COLumn
move cursor to Next COLumn

move cursor to Prevous ROW

move cursor to Next ROW

Set cursor to PIXel position

SCRoll All of window

SCRoll Top of window (above cursor)
SCRoll Bottom of window (below cursor)
PAN All of window

PAN cursor Line

PAN Right hand end of cursor line
CLeaR All of window

CLeaR Top of window (above cursor)
CLeaR Bottom of window (below cursor)
CLeaR cursor Line

CLeaR Right hand side of cursor line
set / read FOuUNT (font U.S.A.)
ReCoLouR a window

Set PAPer colour

Set STRip colour

Set INK colour

Set FLash Attribute

Set UnderLine Attribute

Set OVerwrite Attributes

Set character SlZe

fill a BLOcK with colour

DO a pending newline

draw (list of) DOTs

draw (list of) LINEs

draw (list of) ARCs

draw EllIPse

set graphics SCALe

set area FILL

Set Graphics CuRsor position
CHECcK all pending operations on file
FLuSH all buffers

set file POSition to Absolute address
move file POSition Relative to current position
get Medium INFormation

Set file HeaDeR

Read file HeaDeR

(scatter) LOAD file

(scatter) SAVE file

ReNAMe file [EXT, DD2]

TRuNCate file to current position [EXT, DD2]
set or get file DATEs [EXT,DD2]
MaKe DiRectory [DD2]

set or get VERSion [DD2]

get eXtended INFormation [DD2]

Set paper colour (palette) [SMSQ/E]
Set strip colour (palette) [SMSQ/E]
Set ink colour (palette) [SMSQ/E]

Set border colour (palette) [SMSQ/E]
Set paper colour (24 bit) [SMSQ/E]
Set strip colour (24 bit) [SMSQ/E]
Set ink colour (24 bit) [SMSQ/E]

Set border colour (24 bit) [SMSQ/E]
Set paper colour (native) [SMSQ/E]

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 18 - 22

IOW.STRN $59 Set strip colour (native) [SMSQ/E]
IOW.INKN $5A Set ink colour (native) [SMSQ/E]
IOW.BORN $5B Set border colour (native) [SMSQ/E]
IOW.BLKP $5C Fill block with colour (palette) [SMSQ/E]
IOW.BLKT $5D Fill block with colour (24 bit) [SMSQ/E]
IOW.BLKN $5E Fill block with colour (native) [SMSQ/E]
IOW.PALQ $60 Define QL colour palette [SMSQ/E]
IOW.PALT $61 Define 8-bit colour palette [SMSQ/E]
IOW.SALP $62 Set the alpha blending weight for window

Please note ; there also exist keys higher than $62. They are for pointer-driven CON devices. Please refer to
the QPTR manual.

Timeout keys

no.wait 0
forever -1

18.16. List of Vectored Routines

The following is a list of the vectored routines, together with the addresses of their associated vectors.

mem.achp $00CO Allocate space in Common HeaP
mem.rchp $00C2 Return space to Common HeaP
mem.alhp $00D8 AlLlocate in HeaP

mem.rehp $00DA REturn to HeaP

mem.list $00D2 Link into LiST

mem.rist $00D4 Remove from LiST

opw.wind $00C4 Open WINDow using name

opw.con $00C6 Open CONsole

opw.scr $00C8 Open SCReen

ut.wersy $00CA Write an ERror to SYstem window
ut.werms $00CC Write an ERror MeSsage

ut.wint $00CE Write an INTeger

ut.wtext $00D0 Write TEXT

ut.cstr $00E6 Compare STRings

ioq.setq $00DC SET up a Queue in standard form
ioq.test $00DE TEST a queue for pending byte / space available
ioq.pbyt $00EO0 Put a BYTe into a queue

iog.gbyt $00E2 Get a BYTe out of a queue

iog.seof $00E4 Set EOF in queue

iou.ssq $00E8 Standard Serial Queue handling
iou.ssio $00EA Standard Serial 10

iou.dnam $0122 decode Device NAMe

cv.datil $00D6 DATE and time (6 words) to Integer Long [SMS]
cv.ildat $00EC Integer (Long) to DAte and Time string
cv.ilday $00EE Integer (Long) to DAY string

cv.fpdec $00F0 Floating Point to ascii DECimal
cv.iwdec $00F2 integer (word) to ascii decimal
cv.ibbin $00F4 integer (byte) to ascii binary

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 23

cv.iwbin $00F6 integer (word) to ascii binary

cv.ilbin $00F8 integer (long) to ascii binary
cv.ibhex $O0FA integer (byte) to ascii hexadecimal
cv.iwhex $00FC Integer (word) to ASCII hexadecimal
cv.ilhex $O0FE Integer (long) to ascii hexadecimal
cv.decfp $0100 decimal to floating point

cv.deciw $0102 decimal to integer word

cv.binib $0104 binary ascii to integer (byte)
cv.biniw $0106 binary ascii to integer (word)
cv.binil $0108 binary ascii to integer (long)
cv.hexib $010A hexadecimal ascii to integer (byte)
cv.hexiw $010C hexadecimal ascii to integer (word)
cv.hexil $010E hexadecimal ascii to integer (long)
sb.inipr $0110 INITialise PRocedure table
sb.gtint $0112 GeT INTeger

sb.gtfp $0114 GeT Floating Point

sb.gtstr $0116 GeT STRing

sb.gtlin $0118 GeT Long INteger

sb.putp $0120 PUT Parameter

qa.resri $011A QL Arithmetic Reserve Room on stack
qa.op $011C QL Arithmetic OPeration

qa.mop $011E QL Arithmetic Multiple OPeration

From now on add $4000 to all.

md.read $0124 Microdrive: read a sector [QL]

md.write $0126 Microdrive: write a sector [QL]

md.verif $0128 Microdrive: verify a sector [QL]

md.rdhdr $012A Microdrive: read a sector header [QL]
sb.parse $012C parse; (a2) points to table

sb.graph $012E main syntax graph

sb.expgr $0130 expression graph

sb.strip $0132 strip spaces from tokenised line

sb.paerr $0134 parser error

sb.ledit $0136 edit line into program (just line number deletes)
sbh.expnd $0138 expand / print line(s) (+$4004 A4 points to program)
sb.paini $013A initialise parser

18.17. Keys for Things

The following are keys for the Thing linkage block. The items marked with * are filled in by LTHG.

th_nxtth * $00 Long link to NeXT THing

th_usage * $04 Long thing's USAGE list

th_frfre * $08 Long address of "close" routine for FoORced FREe
th_frzap * $0C Long address of "close" routine for FoRced ZAP
th_thing $10 Long pointer to THING itself

th_use $14 Long code to USE a thing

th_free $18 Long code to FREE a thing

th_ffree $1C Long code to Force FREE a thing

th_remov $20 Long code to tidy before REMOVing thing
th_nshar $24 Byte Non-SHAReable Thing if top bit set
th_check * $25 Byte CHECK byte

th_verid $26 Long version ID

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 24

th_name $2A String name of thing
th.len $2C basic length of thing linkage

Usage list header/entry

thu_link $10 Long link to first/next usage block
thu.ulnk $20 size of usage list header/entry

Standard Thing header (offsets are relative to thh_flag)

thh_flag $0 Long Thing header flag

thh.flag "THG%' standard value of thing header flag
thh_type $04 Long type of thing

tht..Ist 24 bit set for list of things

tht.util $00000000 utility thing

tht.exec $00000001 executable thing

tht.data $00000002 shared data

tht.extn $01000003 extensions (user mode)

tht.exts $01000004 extensions for system (supervisor mode)

Thing Itself Header (after Standard Thing Header)

thh_entr $08 Thing ENTRY routine
thh_exec $0c Thing EXEC routine

List of Things header (after Standard Thing Header)

thh_next $08 Long Offset of next (or 0)
thh_exid $0c Long Extraid

Executable Thing header extension (after Standard Thing Header)

thh_hdrs $08 Long Offset of start of header

thh_hdrl $0c Long Length of header

thh_data $10 Long Size of data area tried

thh_strt $14 Long Offset of start of code (0 to start at header)

Extension Thing Header (after Standard Thing Header and List of Things Header)

thh_pdef $10 Long Offset of parameter definitions or 0
thh_pdes $14 Long Offset of parameter descriptions or 0
thh_code $18 Start of code

Thing parameter definitions

thp.rep $FFFF Start and end delimiter for repeated group
thp..pointer 15 Bit set for pointer parameter

thp..cal 14 Bit set for call parameter

thp..ret 13 Bit set for return paramter

thp..opt 12 Bit set if parameter is optional

thp..nnl 11 Bit set if negative for null - not thp..pointer
thp..arr 11 Bit set for array - thp..pointer

thp..sgn 1 Bit set if value is signed

thp..chr 2 Bit set if character allowed

thp..byt 3 Bit set if byte value allowed/rired

thp..wrd 4 Bit set if word value allowed/rired

thp..Ing 5 Bit set if long value allowed/rired

thp..cid 6 Bit set for channel id

thp..fp8 7 Bit set for eight byte floating point

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 25

The following bits are only allowed for pointer parameters:

thp..str 8 Standard string
thp..sst 9 Sub-string
thp.char $0004 Character
thp.ubyt $0008 Unsigned byte
thp.sbyt $000a Signed byte
thp.uwrd $0010 Unsigned word
thp.swrd $0012 Signed word
thp.ulng $0020 Unsigned long
thp.sing $0022 Signed long
thp.chid $0040 Channel id

thp.fp8 $0082 Eight byte floating point
thp.str $0100 String

thp.sstr $0200 Sub-string
thp.nnul 1<<thp..nnl Negative null (-1)
thp.arr 1<<thp..arr Array

thp.opt 1<<thp..opt Optional

thp.upd 1<<thp..pointer+1<<thp..cal+1<<thp..ret Updated parameter
thp.call 1<<thp..pointer+1<<thp..cal Call parameter
thp.ret 1<<thp..pointer+1<<thp..ret Return parameter

thp.pointer 1<<thp..pointer

18.18. Keys for HOTKEY Thing

HOTKEY linkage block:

Call or return parameter

hk.fitem $0014 Find item

hk.crjob $0018 Hotkey create job

hk.kjob $001C Hotkey kill job

hk.set $0020 Hotkey set

hks.off -1 Turn off

hks.on 0 Turnon

hks.rset 1 Reset

hks.set 2 Set

hk.remov $0024 Hotkey remove

hk.do $0028 Hotkey do

hk.stbuf $002c Hotkey stuff buffer

hk.gtbuf $0030 Hotkey get buffer (D0=0 current -1 previous)
hk.guard $0034 Hotkey guardian / Grabber (v2.04 onwards)

The HOTKEY item:

hki_id $0000 Word Hotkey ID

hki.id ‘hi’

hki_type $0002 Word Hotkey item type

hki..trn 0 Bit set if item is transient thing

hki.llrc -8 Last line recall

hki.stpr -6 Stuff keyboard with previous string from buffer
hki.stbf -4 Stuff keyboard queue from buffer

hki.stuf -2 Stuff keyboard queue with string

hki.cmd 0 Pick S*Basic and stuff command

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 26

hki.nop 2 Just do code

hki.xthg 4 Execute thing

hki.xttr 5 As hki.xthg but thing is transient
hki.xfil 6 Execute file

hki.pick 8 Pick job

hki.wake 10 Pick and wake job (execute thing if fails)
hki.wktr 11 As hki.wake but thing is transient
hki.wkxf 12 Pick and wake job (execute file if fails)

hki_pointer $0004 Long Pointer to (preprocessing) code, stuff buffer
hki_name $0008 String Iltem name

Executable program header definitions:

hkh.hlen 10 Header length for zero length name
hkh.plen 20 Preamble length

hkh_jsgd $00 JSR [$4eb9]

hkh_gard $02 ... Guardian

hkh_wdef $06 Window definition

hkh.unlk -1 Guardian window size for unlockable
hkh.nogd 0 Guardian window size for no guardian
hkh_brdr $0E Border colour

hkh_gmem $10 Memory (in KBytes)

hkh_jpa6 $12 JMP (A6) [$4ed6

18.19. Keys for format of pointer device driver definition
block

(note : B = byte ; W = word ; L = longword)

pt_lext $00 the usual links and I/O routines for a device driver)
pt_aext $04 L

pt_Ipoll $08 L

pt_apoll $0c L

pt_Ischd $10 L

pt_aschd $14 L

pt_liod $18 L

pt_aio $1c L

pt_aopen $20 L

pt_aclos $24 L

pt_wman $28 L pointer to window manager version / vector
pt_wmove $2c B top window move / resize status (0, $80, $81)
pt_keyrw $2d B last keyrow

pt_xicnt $2e W count of external interrupts

pt_accel $30 W accelerator (keyboard cursor)

pt_kaccl $32 W accelerator constant (d=1+ticks/kaccl)
pt.kaccl 8

pt_xaccl $34 W x mouse accelerator (x=x+(xinc*(xaccl+xinct)/(xaccl+1)
pt.xaccl 3

pt_yaccl $36 W Y mouse accelerator

pt.yaccl 3

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 27

pt_npos $38 L new position (set by poll)

pt_nxpos $38 w new x position

pt_nypos $3a W new y position

pt_pos $3c L current pointer position

pt_xpos $3c W current x position

pt_ypos $3e w current y position

pt_inc $40 L positional increment

pt_xinc $40 w X

pt_yinc $42 W y

pt_addr $44 L current (or old) screen address of pointer
pt_bstat $48 B button status

ptb.bnce -2 ... button bouncing

ptb.up 0 ... button up

ptb.pres 1 ... button pressed

pt_bsupp $49 B button suppressed

ptb.psup -1 ... press suppressed

ptb.ssup 1 ... stroke suppressed

pt_bpres $4a B button pressed (space/HIT or ENTER/DO)
pt_bcurr $4b B button currently pressed (becomes stroke)
pt_wake $4c B external interrupts to wake up pointer
pt.wake 3

pt_relax $4d B relaxation time before pointer falls onto kbd input
pt.relax 25

pt_reltm $4e B relaxation timer

pt_kprtm $af B keypress timer

pt_pstat $50 B pointer status - 0 visible, -ve pending, +ve immovable
pt.supky 1 keyboard input - suppress forever
pt.show -1 show pointer next time around

pt.supio -128+20 IO - if no ptr read within 20 ticks - suppress
pt.supmd 1 suppress for mode

pt.supcc 1 suppress on ctrl ¢

pt.supsr pt.supio save or restore - suppress as 10

pt.clrdq 20 wait before clear dummy queue
pt_pmode $51 B previous mode

pt_schfg $52 B scheduler flag, true if scheduler updated pointer record
pt_change $58 L address of screen size / colour depth change routine
pt_pfrx $5¢ W x position, fractional part

pt_pfry $5e Wy position, fractional part

pt_psprt $60 L pointer to sprite

pt_spsav $64 L sprite save area size in pixels

pt.spspx 64 64x64 pixels

pt.spspy 64

pt_head $68 L head pointer to linked list of primary windows
pt_tail $6¢c L tail pointer to linked list of primary windows
pt_dumq1 $80 L pointer to first dummy queue

pt_kqoff $84 L offset of keyboard queue from (a0)
pt_copen $88 L pointer to standard console open

pt_Istuf $8c B last button press for stuffer

pt_stuf1 $8d B first character to stuff

pt.stuf1 $ff

pt_stuf2 $8e B second character to stuff

pt.stuf2

pt_offscr $8f B bits set if pointer on limits of screen

pt..otop 3

pt..obot 2

pt..oleft 1

pt..oright 0

pt_rec $90 L current pointer record

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 18 - 28

pt_cchad
pt_cwstt
pt_cwbsy
pt.cwbsy
pt_supcr
pt_bpoll
pt_kypol
pt_svers
pt_mvers
pt_randi
pt.randm
pt.randa
pt_spbuf
pt_spbsz
pt_hbase
pt_kyrwr
pt_ptrok
pt_nuldr
pt_aiorm
pt_aoprm
pt_aclrm
pt_romdr
pt_ochad

pt_dmode
pt_ptlim
pt_ckeyw
pt_ckey
pt_minxy
pt_maxxy

(old names)

pt_sbase
pt_bytes
pt_bytel
pt_ssize
pt_ssizx
pt_ssizy

(new names)

pt_scren
pt_scrsz
pt_scinc
pt_xscrs
pt_yscrs

pt_xtotl
pt_xvref
pt_ytotl
pt_yvref
pt_frate

pt_bgstp
pt_bgcim
pt_sfnt1
pt_sfnt2
pt_spcch
pt_palql
pt_pal256

$a8
$ac
$ad
10

$ae
$af
$af
$b0
$b1
$b2

$e72b
3

$b4
$b8
$bc
$c0
$c4

$c8
$cec
$d0

$d4

$dc
$dd
$de
$df
$e0
$e4d

$e8
$ec
$f0
32
32
$f4

$e8
$ec
$f0
$f2
$f4

$f6
$f8
$fa
$fc
$fe

$102
$104
$108
$10c
$110
$114
$118

SOWWWwW WWr

rrrrr

current channel address (the window the pointer is in)

current window status +1 wrong mode, -1 key input

current window busy count

number of scheduler loops before true busy

suppress cursor key stuffing

buttons set on poll

same for ptr_gen- buttons set on poll

dynamic Sprite VERSion

Max count for this sprite VERSion

RANDom number Initial value (for spray)
RANDom amount to Multiply by
RANDom amount to Add on

pixel SPray BUFfer

pixel SPray Buffer SiZe

hardware bas

pointer to keyrow read code

points to OK

pt_ptrok-pt_aclos+pt_liod

L
L
L

pt_a

—I

SSODwww

==

rrrreres sSs=s=

pointer to ROM I/O routine
pointer to ROM openroutine
pointer to ROM close routine

iorm-pt_aio+pt_liod

old current channel address

display mode

set if pointer movement limited (temporary)

clear if cursor keys move pointer on a window basis
clear if cursor keys move pointer

X pointer limit

y pointer limits

screen base
bytes per screen
bytes per line
screen size

address of visible SCREeN
SCReen SiZe in bytes
SCreen row INCrement

X SCReen Size in pixels

Y SCReen Size in pixels

X total pixels

X visible reference for xtotl
Y total pixels

Y visible reference for ytotl
frame rate

background stipple
background colour mask
pointer to Standard FONT 1
pointer to Standard FONT 2
pointer to sprite cache
pointer to QL palette
pointer to 256 colour palette

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 18 - 29

pt_pspck
pt_bgcld
pt_wdata
pt_ident
pt.ident
pt_drtab
pt_cdpth
pt_cdtab
pt_sstb
pt_asprt
pt_vecs
pt_cjob
pt_swwin
pt_spszy
pt_bgdat
pt_end

18.20.

$14a

$11c
$120

$128
'PTR2'

$154
$158

L
L
$124 L
L
$12¢ 5*L
$140 B
$141 5B
$146 L
Float
$150 L
L
W
$15a W
L

$15¢
$160

pointer to pointer sprite for checking
background colour definition

pointer to WMAN data area
identifier

driver installation routine addresses (5*long)
current colour depth

modes for each resolution (5*byte)

pointer to system sprite table

float pixel aspect ratio (float = 6 bytes)
pointer to block with vectored routines
pointer to cursor sprite job table

current window no in pile during CTRL+C switch
pointer sprite save area y size

pointer to memory for background I/O data
length of pointer linkage block

Hard disk format: QLWA

QL formatted hard disks, as well as the “QXL.WIN” container files which mimic such disks, use a file
allocation table (FAT) and cluster based approach. Sector 0 of the disk contains general information about
the disk itself and the start of the FAT. Note that in QL parlance, the FAT is a “map”, and a cluster is a

“group”.

Mnemonic
gqwa.map
qwa_id
qwa.id
qwa.pflg
qwa_name

qwa_spr0
qwa_uchk
qwa_intl
qwa_sctg
qwa_sctt
qwa_trkc
qwa_cyld
qwa_ngrp
qwa_fgrp
qwa_sctm
qwa_nmap
qwa_free
qwa_root
qwa_rlen
qwa_fcyl
qwa_fsct
qwa_park
qwa_gmap

QDOS/SMS Reference Manual v. 4.9

Offset

$0

$0000
'QLWA'
$01515741

$0004

$001a
$001c
$0020
$0022
$0024
$0026
$0028
$002a
$002¢c
$002e
$0030
$0032
$0034
$0036
$003a
$003a
$003e
$0040

Size Description
first map sector
long ID
standard ID for this kind of disk
partition flag
string up to 20 characters space padded name. This is a
standard string, i.e. preceded by a length word
2 bytes spare - set to zero

long update check (removable media only)

word interleave factor (0 SCSI)

word sectors per group

word sectors per track (0 SCSI)

word tracks per cylinder (number of heads) (0 SCSI)
word cylinders per drive

word number of groups

word number of free groups

word sectors per map

word number of maps

word first free group

word root directory number

long root directory length

word first cylinder number (ST506)
long first sector for this partition (SCSI)
word park cylinder

group map: each entry is number of next group, or zero if
there is no next group

31.03.2025 Section 18 - 30

19. SMSQJ/E

This chapter deals specifically with SMSQ/E. It is a separate chapter so that you can see the advantages of
SMSQ/E at one glance. All the descriptions listed here will be referenced from the other chapters and
additional traps are also put into the right chapters 13 to 15.

As SMSQ/E is a growing system which will be expanded depending on user's requirements, this manual can
reflect the features of SMSQ/E at the current situation only. It is quite possible that a number of features are
not available on earlier versions of SMSQ/E. At the time of writing, the version of SMSQ/E is V3.29. In case
features are not supported by earlier versions, there should be no serious problem: unused system variables
were set to 0, non-existing traps will either return ERR.IPAR or ERR.NIMP, or the call will have no effect at
all.

19.1. Language handling in SMSQ
19.1.1. Principles

During normal operation, the "language" dependent parts of the operating system are maintained as tables
appropriate to the "current" language. In order to ensure that the current language may be changed, the
system also maintains a list of language dependent modules. When the current language is changed, the list
is scanned to find the appropriate language modules to be made current.

The language dependent module list, and the modules themselves, may be maintained in the filing system or
in memory. The module structure is the same in either case.

19.1.2. Classification of Language Dependent Modules

The language dependent modules are classified according to their contents rather than their usage.

19.1.2.1. Printer Translate Tables

An "old format" printer translate table has a "table of tables" which is the language code (word) and two word
pointers (relative to the address of the language code) to two translate tables. The first translate table has
256 bytes of direct single byte translates.

The second translate table has a byte entry count followed by 4 byte entries terminated by a zero byte. For
each non-zero character, if the first translate table entry is zero, then the second table is searched. The first
byte of each four byte entry is the untranslated character, followed by the three bytes this character should
be translated to.

19.1.2.2. Keyboard Tables

A keyboard table has a table of tables which is the language code (word) and two word pointers (relative to
the address of the language code) to two keyboard tables.

The first keyboard table is four sets characters generated by each key for the four combinations of the "shift"
and "control" keys: no shift and no ctrl ; shift and ctrl; ctrl and no shift; shift and ctrl.

The second is a table of "non-spacing idents" (*, ~ etc.) which is normally 256 bytes of zero. The form of
these keyboard tables depends on the type of keyboard and the associated driver.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.1

19.1.2.3. Message Tables

A message table is the language code (word) followed by a table of word pointers (relative to the address of
the language code) to error or other messages. Messages are numbered from 1.

The message codes are formed by combining the message number and the message group (shifted) and
negating the result to form a code. The offset of a message pointer from the language code is twice the
message number.

To provide compatibility with older formats, the first message (number = -1) follows directly after the table.
This means that the first word in the table also defines the size of the table.

The system can have several message tables: the message codes are grouped. At present, there is a limit of
256 message groups (numbered from 0 to 1020 in steps of 4) with a maximum of 128 messages per group.

In order to find the "correct" message, a message code is split into a message group and offset.

neg.w do ; make the code positive

moveq #$7£,d1

and.w do,dl ; bits 0 to 6 are the message number
sub.w dl,do ; bits 7 to 14 are the message group
add.w dl,d1 ; shift to get offset in message table
lsr.w #5,d0 ; shift to get group number

or

add.w d0,do ; double up code

neg.w do ; and make positive20

moveq #0,d1

move.b do,d1 ; offset in message table

clr.b do ; clear message number from group
lsr.w #6,d0 ; and shift to get group number

Language Preference Tables

A language preference table defines the preferred default languages to be used if the required language
modules cannot be found.

Idp_ireg $00 4 chars international car registration code, space filled
Idp_defs $04 n words table of preferred language codes, terminated by 0

The international car registration code makes it possible to specify the language, for example, as "D" for
German.

In general, the first preferred language code in the table will be the same as the language code in the
module linkage structure.

The default of last resort is the first language preference table in the language dependent module list.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

19.1.3. Language Dependent Module Structure

There is a common structure which is used as a link for all the types of module. The first word of this
structure is only used when linking in new language dependent modules. It allows several modules to be
defined in one block and for them all to be linked in at the same time.

Idm_type $00 Word Type of module:

0 = preference table

1 = keyboard table

2 = printer translate table

3 = message table
Idm_group $02 Word Module group e.g. for messages table modules, the message group.
Idm_lang $04 Word Language code - usually the international dialing code of the country of origin
Idm_next $06 Word Relative pointer to next module in this block, 0 for the last module in the block
Idm_module $08 Long Relative pointer to the module itself

19.1.4. Language Specification

A language may be specified either by an international dialling code or an international car registration code.
These codes may be modified by the addition of a digit where a country has more than one language.

Language Code Car Registration Language and Country
33 F French (in France)

39 I Italian (in Italy)

44 GB English (in England)

49 D German (in Germany)

19.1.5. Implementation

The initial implementation is memory resident and uses a table of pointers to the language dependent
modules rather than a true list. Each of the pointers points to a language dependent module. If the table
overflows, it is re-allocated.

In general, new language dependent modules are add to the end of the list, thus ensuring that the first
language variation for each module that is linked in is the default default.

All the language preference tables are, however, placed at the start of the list: not only is the appropriate

language preference table always available before the list is scanned, but also the system "default of
defaults" is replaced by any user preferences added to the list.

19.1.6. System Variables
See section 18.2 above, variables from $0144 to $014e and $0168 to $16C.

19.1.7. Additional Trap #1 Calls

There are a number of SMSQ OS Trap #1 entries for handling language dependencies.

SMS.TRNS $24 QDOS compatible (MT.TRA) entry
SMS.LLDM $30 Link in language dependent modules
SMS.LENQ $31 Enquire language code

SMS.LSET $32 Set current language

SMS.PSET $33 Set printer translate tables
SMS.MPTR $34 Find message pointer

SMS.FPRM $35 Find preferred module

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.3

Trap #1 D0=$24 SMS.TRNS
QDOS compatible translate

Call parameters Return parameters
D1.L printer translate code D1 ?77?
D2.L message table address or O D2 Preserved

D3+ All preserved

Error returns:
IPAR D2 is odd or does not point to $4AFB flag

If D2 is not zero and it points to a message table with language code $4AFB, this address is used for
message group 0. The printer translate tables are then set according to the value in D1 (see SMS.PSET).

Trap #1 D0=$30 SMS.LLDM
Link in Language Dependent Module

Call parameters Return parameters

A1 Pointer to language dependent module A1 Preserved

Error returns:

Always okay

This links all the language dependent modules in the list (pointed to by A1) into the language dependent
module list.

Trap #1 D0=$31 SMS.LENQ
Language Enquiry

Call parameters Return parameters
D1.L Language code or O D1 Language code
D2.L Car registration (space filled) or 0 D2 Car registration

D3+ All preserved

Error returns:

Always okay

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

This finds the car registration code corresponding to the the language code in D1 (if not zero) or the
language code corresponding to the international car registration letters (in the most significant bytes of D2,
space filled) or, if both D1 and D2 are 0, the current language and car registration letters. The current
language code is not changed. If no corresponding language code can be found, the default language (the
first language preference linked in by SMS.LLDM) is returned.

Trap #1 D0=$32 SMS.LSET
Language Set

Call parameters Return parameters
D1.L Language code or O D1 Language code
D2.L Car registration (space filled) or 0 D2 Car registration

D3+ All preserved

Error returns:

Always okay

This finds the car registration code corresponding to the the language code in D1 (if not zero) or the
language code corresponding to the international car registration letters (in the most significant bytes of D2,
space filled) or, if both D1 and D2 are 0, the current language and car registration letters.

The current language code is set to the returned value of D1. If no corresponding language code can be
found, the default language (the first language preference linked in by SMS.LLDM) is set.

Trap #1 D0=$33 SMS.PSET

Set Printer Translate

Call parameters Return parameters
D1.L Printer translate code D1 77?7

Error returns:

Always okay

This sets the printer translate tables according to the value in D1. There are three printer translate codes
which provide backwards compatibility with the QDOS MT.TRA call.
» Todisable translate, D1 should be 0.
* To (re-)enable translate, D1 should be 1.
* To set a user translate, D1 should be the address of a special translate table (language code
$4AFB).

With D1 = 1, the operation is not fully QDOS compatible in that, if a user translate has been requested then
the call to (re-)enable the translate will retain the user translate address. This is a facility which was not
available in QDOS.

There are two new codes to set a language dependent table and two to set language independent
translates:
* To select a language dependent translate without enabling the translate, the language code should
be in the MSW of D1 and the LSW should be -1.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.5

* To select a language dependent translate and enable the translate, the language code should be in
the MSW of D1 and the LSW should be 1.
* To select, IBM or GEM translates, D1 should be 3, or 5 respectively.

Trap #1 D0=$34 SMS.MPTR

Find Message Pointer

Call parameters Return parameters

A1 Message code (negative) A1 Pointer to message

Error returns:

Always okay

This takes the message code in A1 (which may be an address with the MSB set or it may be the message
group + message number negated) and finds the pointer to the message (or to an "unknown error"
message).

Trap #1 D0=$35 SMS.FPRM
Find Preferred Module

Call parameters Return parameters
D1.L Language code or O D1 Preserved
D2.L Car registration (space filled) or 0 D2 Preserved
D3.L Group number / module type D3 Preserved

Error returns:

Always okay

This finds the preferred language module of the type and group requested.

19.2. Additional Trap #3 calls

SMSQ/E introduced additional trap #3 calls. These are documented in the general description of all Trap#3
calls. As a reminder, the traps introduced are:

IOW.FONT D0=%$25 Set or reset the default system fount
I0B.SUML D0=%$06 Send a string of untranslated bytes

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

19.3. SMSQ Cache Handling
19.3.1. Principles

SMSQ is implemented on many distinct hardware platforms with a number of variations using four different
MC68000 series processors: MC68000, MC68020, MC68030 and MC68040. Of these processors, only the
MC68000 does not suffer from cache problems.

19.3.1.1. MC68020

The MC68020 has a single instruction cache which treats supervisor mode addresses as being distinct from
user mode addresses. Since there is little, if any, code which is executed in both supervisor mode and user
mode, the cache is very small (<100 instructions), and this code is unlikely to be modified, the distinction
between supervisor mode and user mode will at worst result in some efficiency.

The instruction cache will need to be cleared whenever executable code is loaded on top of executable code
which is already in the cache. As executable code can be LOADed and CALLed or it can be EXECUTED,
the instruction cache must be invalidated on every IOF.LOAD operation, and, possibly, on every IOB.FMUL
operation. As any /O operation will have enough instructions to completely overwrite the cache, and will
usually be called from user mode, there is no serious overhead associated with invalidating the cache on
every |/O operation.

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the cache on every
job activation call, and any call to set up interrupt, polled or scheduled tasks. This will occur automatically if
the caches are invalidated on every entry.

Self modifying code in programs should not pose a problem, but the precaution of disabling the caches and
suspending the scheduler for a few ticks after starting a job has proved valuable for the MC68040 and
should be retained for all processors.

19.3.1.2. MC68030

The MC68030 has separate instruction and data caches which treat supervisor mode addresses as being
distinct from user mode addresses. This seems to be a fundamental design error in the processor which it is
necessary to circumvent. The data cache supports only cache write through memory updates. This means
that the memory is always up to date with the data cache. The instruction cache will not necessarily be up to
date with the memory. Even worse, supervisor mode entries in the cache may not be up to date with user
mode entries and vice versa. For operating system code to be able to access data set or modified in user
mode (i.e. any output operation and many management operations) it is necessary to invalidate the data
cache on every operating system entry.

The instruction cache will need to be cleared whenever executable code is loaded on top of executable code
which is already in the cache. As executable code can be LOADed and CALLed or it can be EXECUTED,
the instruction cache must be invalidated on every IOF.LOAD operation, and, possibly, on every IOB.FMUL
operation. As any /O operation will have enough instructions to completely overwrite the cache, and will
usually be called from user mode, there is no serious overhead associated with invalidating the cache on
every |/O operation.

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the cache on every
job activation call, and any call to set up interrupt, polled or scheduled tasks. This will occur automatically if
the caches are invalidated on every entry.

Self modifying code in programs should not pose a problem, but the precaution of disabling the caches and

suspending the scheduler for a few ticks after starting a job has proved valuable for the MC68040 and
should be retained for all processors.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.7

The data cache will also need to be invalidated if there is a DMA access. For external caches, this should be
performed automatically by the external cache hardware. The internal caches need to be invalidated on any
DMA read operation.

19.3.1.3. MC68040

The MC68040 has separate instruction and data caches which are accessed by the real address.

Unlike the MC68020 and MC68030, code in supervisor mode can read data written in user mode and vice
versa. There is, therefore, no need for the caches to be invalidated on every operating system entry.

The MC68040 also provide "snooping" to detect other "bus masters" which may update the memory (e.g.
DMA devices). The designers, however, failed to notice that the "Harvard" architecture of the MC68040
requires the implementation of the processor as two separate bus masters, which of course, should require
to snoop each other as well as the external bus. (As the instruction unit is a read only bus master, the data
unit bus master will, however, never need to snoop the instruction unit.) As a result, the instruction cache will
not necessarily be up to date with either the memory or the data cache.

The instruction cache will need to be cleared whenever executable code is loaded on top of executable code
which is already in the cache. As executable code can be LOADed and CALLed or it can be EXECUTED,
the instruction cache must be invalidated on every iof.load operation, and, possibly, on every iob.fmul
operation (this is not done in current versions).

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the cache on every
job activate call, and any call to set up interrupt, polled or scheduled tasks.

Self modifying code in programs should not pose a problem, but the precaution of disabling the caches and
suspending the scheduler for a few ticks after starting a job has proved valuable for this processor.

The data cache should not need to be invalidated if there is a DMA access: the bus snooping should take
care of this.

It is assumed that the data cache will be in write through mode.

19.3.1.4. MC68060

The cache architecture of the MC68060 is, in most respects, compatible with the MC68040. The branch
cache should be handled the same as the instruction cache.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

19.3.2. Cache Manipulations

Not all of the fundamental operations are required for cache handling.

Name Operation Usage

CINVB Invalidate both caches Change from user to supervisor mode
CINVD Invalidate data cache Before or after DMA read

CINVI Invalidate instruction cache Before executing new code i.e.

on resetting vectors
on load operations

CDISB Disable both caches User CACHE-OFF request
CDISI Disable instruction cache Before activating a job
CENAB Enable both caches User CACHE_ON request
CENAI Enable instruction cache 17 ticks after activating a job

Note that either the CDIS or the CENA operations must include a cache disable operation. For simplicity this
is included in the CENA operations only.

Most of these operations are performed with one or two MOVEC instructions.

$4E7An0O2 MOVEC CACR, Dn Get cache control register
$4E7Bn0O2 MOVEC Dn, CACR Set cache control register

The main problem is that the different processors have different organisations of the cache control register

31 30 29 28 27 23 22 21 15 14 13 12 11 10 9 8 4 3 2 1 O

020 i 1C IF IE
030 DB DI DC DF DE IB Il IC IF IE
040 DE IE

060 DE DF DS DP D2 BC BI BIU IE IF 12

Where: |. is the instruction cache
is the data cache

is the branch cache

is enable when set

is freeze when set

O mm®0

is clear entry when set

is invalidate (clear all) when set

U is invalidate user mode entries when set
.B is burst access enabled when set

.S is write store buffer enabled when set

P is push without invalidate when set

2 is half cache mode when set

The absence of invalidate bits in the MC68040 and MC68060 means that a separate instruction is required
for this.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.9

19.3.3. Encoding the Cache Operations

CINVB
MC68020 MC68030
MC68040 MC68060
$4E7ANOOG2 MOVEC CACR, Dn Not required
OR.W #$808, Dn
$4E7BnOG2 MOVEC Dn, CACR
CINVD
MC68020 MC68030
MC68040 MC68060
$4E7AnOO2 MOVEC CACR, Dn $F458 CINVA D
OR.W #$800, Dn
$4E7BnOO2 MOVEC Dn, CA
CINVI
MC68020 MC68030
MC68040 MC68060
$4E7An0O2 MOVEC CACR, Dn $F498 CINVA I
OR.W #$8, Dn
$4E7Bn002 MOVEC Dn, CACR
CDISB
MC68020 MC68030
MC68040 MC68060
MOVEQ #0,Dn MOVEQ #0,Dn
$4E7BnOO2 MOVEC Dn, CACR $4E7Bn0OG2 MOVEC Dn, CACR
CDISI
MC68020
MOVEQ #0,Dn
$4E7Bn0GO2 MOVEC Dn, CACR
MC68030 MC68040
MC68060
$4E7An0O2 MOVEC CACR, Dn $4E7AnO02 MOVEC CACR, Dn
CLR.B Dn
$4E7Bn0O2 MOVEC Dn, CACR $4E7BnOO2 MOVEC Dn, CACR

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

CENAB
MC68020 MC68030
MC68040 MC68060

MOVE .W #$1919, Dn $F4D8 CINVA DI
$4E7BNn0O0O2 MOVEC Dn, CACR MOVE.L #$C0808000,Dn
$4E7Bn00O2 MOVEC Dn, CACR

CENAI
MC68020 MC68030
MC68040 MC68060

MOVE .W #$1819, Dn $F4D8 CINVA I
$4E7Bn00O2 MOVEC Dn, CACR MOVE.L #$C0808000,Dn
$4E7Bn00O2 MOVEC Dn, CACR

19.3.4. Using The Cache Operations

The operating system and device driver code makes no assumptions about the nature of the processor: no
cache dependencies are embedded in the code.

19.3.4.1. CINVB

CINVB is used on all trap #0, #1, #2 and #3 entries. It is implemented as a stub of code before the standard
vector entry. For the MC68020 and MC68030 processors, the vector is moved by 10 bytes to include the
cache invalidate.

19.3.4.2. CINVD

A call to CINVD is built into the any device drivers which use DMA. CINVD is implemented as a routine, in
the base area, set up for the particular processor.

19.3.4.3. CINVI

A call to CINVI is built into the 10 sub-system for the IOB.FMUL and IOF.LOAD operations. Since all 10
operations will have invalidate both caches for the 020 and 030, this is only necessary for the 040 and 060. It
is also called by any code which resets executable action routine vectors (e.g. DV3_SETFD). CINVI is
implemented as a routine, in the base area, set up for the particular processor.

19.3.4.4. cDhisB

A call to CDISB is built into the "set cache" operating system call. CDISB is implemented as a routine, in the
base area, set up for the particular processor.

19.3.4.5. CDISI

A call to CDISlI is built into the "activate job" operating system call. CDISI is implemented as a routine, in the
base area, set up for the particular processor.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.11

19.3.4.6. CENAB

A call to CENAB is built into the "set cache" operating system call. CENAB is implemented as a routine, in
the base area, set up for the particular processor.

19.3.4.7. CENAI

A call to CENAI is built into the polled scheduler entry. CENAI is implemented as a routine, in the base area,
set up for the particular processor.

19.3.4.8. System Variables

sys_castat $C8 word MSB set if cache fully enabled
sys_casup $C9 byte cache suppressed timer, counts down to -1

Testing the word sys_castat will yield

NZ If the caches are enabled or may be enabled,
GT If the instruction cache is temporarily suppressed,
LT If the instruction cache is enabled,

Z If the caches are disabled or there is no cache.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

20. The HOTKEY System Il exm

The concept and function of HOTKEY System Il is not described here, there are many manuals available
how to use it (from the end-user's point of view). This Section explains how to use the HOTKEY System I
from machine code.

The HOTKEY System Il is an exclusive Thing, so the code which uses the Thing should free it preferably
very soon. There should be a timeout of about 2 seconds, otherwise the use-routine should give up. A
sample how to get the HOTKEY linkage block (which is necessary for all routines using the HOTKEY System
) is

moveq #sms.uthg, d0 ; we want to use

moveq #sms.myjb,dl ; for me

moveq #127,d3 ; wait for use

lea hk thing,al ; name of thing

jsr gu_thjmp ; do it

move.l al,a3 ; the HOTKEY linkage must be in A3
tst.1l dO

rts

hk thing dc.w 6, 'Hotkey'

The HOTKEY linkage contains vectors for the various facilities of the HOTKEY System II:

hk.fitem $0014 find item

hk.crjob $0018 hotkey create job

hk.kjob $001c hotkey kill job

hk.se $0020 hotkey set

hks.off -1 turn off

hks.on 0 turn on

hks.rset 1 reset

hks.set 2 set

hk.remov $0024 hotkey remove

hk.do $0028 hotkey do

hk.stbuf $002c hotkey stuff buffer

hk.gtbuf $0030 hotkey get buffer (d0=0 current -1 prev)
hk.guard $0034 hotkey guardian / grabber (2.04 onwards)

To call a routine, get the vector and JSR it. To stuff a string into the Stuffer Buffer, get the HOTKEY linkage,
load the registers, then call the routine:

move.l hk.stbuf (a3),a2 ; get vector
jsr (a2) ; call it

Finally, free the HOTKEY system as soon as possible!

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.1

Find a HOTKEY item HK.FITEM

Call parameters Return parameters
D1 D1.W HOTKEY
D2 D2.W HOTKEY number (-ve if off)

D3+ Preserved

A1 HOTKEY item name A1 Pointer to HOTKEY item
A2 A2 Preserved
A3 Linkage block A3 Preserved

Error returns:
ITNF Item not found

This routine finds a hotkey item given a pointer to a name or key string and removes references from the
hotkey table and pointer list.

Create the HOTKEY job HK.CRJOB

Call parameters Return parameters
D1+ Preserved

A3 Linkage block A3 Preserved

Error returns:

All system errors related to jobs

Kill the HOTKEY job HK.KJOB

Call parameters Return parameters

D1+ Preserved

A3 Linkage block A3 Preserved

Error returns:
Always succeeds

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

Set or reset a HOTKEY HK.SET

Call parameters Return parameters
D0.B -1 Off
0 On
1 Reset
2 Set
D1.W New Key Reset: D0=1 D1.W HOTKEY
Set: DO0=2

D2+ Preserved
A1 Pointer to item (Set)
Pointer to key or name (Off, On, Reset)
A2
A3 Linkage block A3 Preserved

Error returns:
FDNF Hotkey not found (Off, On, Reset)
FDIU Hotkey in use (Reset, Set)

This routine can reset the state of a Hotkey to On or Off.
It can Reset the Hotkey character for a current Hotkey.
It can Set a new Hotkey item.

Remove HOTKEY item HK.REMOV

Call parameters Return parameters

D1+ Preserved

A1 Pointer to item name A1 ?7?7?
A2 A2 Preserved
A3 Linkage block A3 Preserved

Error returns:
ITNF Item not found

Remove Hotkey ITEM, this always removes the key and pointer.

For defined stuffer items, it also returns the ITEM to the common heap.

For NOP, execute file or pick, it also returns the ITEM to the common heap.
For executable Thing items, it also returns the ITEM and the THING

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.3

"DO" a HOTKEY item HK.DO

Call parameters Return parameters
D1+ Preserved

A1 Pointer to HOTKEY item A1 Preserved
A2 A2 Preserved
A3 Linkage block A3 Preserved

A6 Bottom limit of stack (for pick/wake job) A6 Preserved

Error returns:
ITNF Iltem not found

Set a string in the stuffer buffer HK.STBUF
Call parameters Return parameters
D2.W Number of characters to stuff D2.W Preserved

D3+ Preserved

A1 Pointer to characters A1 Preserved
A2 A2 Preserved
A3 Linkage block A3 Preserved

Error returns:

Always succeeds

Set a new string in the stuffer buffer. It does not stuff a new string if this is the same as the previous string.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

Get stuffer buffer contents HK.GTBUF

Call parameters Return parameters

D0.B Key: -1=Previous string

0 = Current
D2.wW D2.W Length of string
D3.W Preserved
A1 A1 Pointer to characters
A2 A2 Preserved
A3 Linkage block A3 Preserved

Error returns:

Always succeeds

Open and clear guardian window HK.GUARD

All registers preserved.

Opens and clears guardian window. The definition must immediately follow the call. Then, if next word is
non-zero, grab all but memory specified.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents p.5

20.1.1. The HOTKEY Item

The HOTKEY Item has two words identifying the HOTKEY, followed by a pointer and then the name. The
name is a composite which can include a considerable variety of information about the HOTKEY.

hki_id $0000 word Hotkey ID

hki.id hi'

hki_type $0002 word Hotkey item type

hki..trn 0 Bit set if item is transient thing

hki.llrc -8 Last line recall

hki.stpr -6 Stuff keyboard buffer with previous string from buffer
hki.stbf -4 Stuff keyboard queue from buffer

hki.stuf -2 Stuff keyboard queue with string

hki.cmd 0 Pick S*Basic and stuff command

hki.nop 2 Just do code

hki.xthg 4 Execute thing

hki.xttr 5 As hki.xthg but thing is transient

hki.xfil 6 Execute file

hki.pick 8 Pick job

hki.wake 10 Pick and wake job (execute thing if fails)
hki.wktr 11 As hki.wake but thing is transient

hki.wkxf 12 Pick and wake job (execute file if fails)
hki_pointer $0004 long Pointer to (preprocessing) code, stuff buffer
hki_name $0008 string Item name

For last line recall and stuffing the keyboard queue from the buffer, the name is absent or irrelevant. For
stuffing a string or command, the name is the string or command.

If the Hotkey can execute a Thing or file, the item name contains the Thing name or filename.
The Thing name or filename may be followed by a semicolon then the parameter string enclosed by braces.

If there is a Wake or Job name which is different from the filename, this will be at the end of the item name,
separated by an exclamation mark (Wake name) or comma (Job name).

20.1.2. Hotkey Vectors

The Hotkey vectors are in the Hotkey Thing. These are available in all HOTKEY System Il versions.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Foreword and table of contents - 2

21. The Button Frame [EXT]

The concept of the Button Frame (built into QPAC II) is described here. QPAC Il is now freely available.
Whilst the button Frame is not really part of SMSQ/E or QDOS, it was thought helpful to set out the
documentation for it here.

This Section explains how to use the Button Frame from machine code.

The Button Frame is a shareable Thing. Every Job trying to place a Button in the Button Frame requests a
position by trying to use the Button Frame.

When the job is removed, the position in the Button Frame is automatically freed by the Thing system.

If the Job does not already have an allocation in the frame, or a new allocation is required, the use routine
looks for a hole in the Button Frame and if successful, allocates a usage block with the Size and Position of
the button.

If the Job does have an allocation, and it is big enough, then the allocation is unaltered. If it is not big
enough, then the button is re-allocated.

The name of the Thing is

dc.w 12, 'Button Frame'

Use the Button Frame BT.USE
Call parameters Return parameters

D1 User Job ID D1 Job ID

D2.L Button Size D2.wW Button Origin

D3.L 0O New allocate
-ve For re-allocate

D3 Version
AO Pointer to Thing Name AO Preserved
A1 A1 pointer to Thing
A2 A2 pointer to Thing linkage
A3 A3 ?7??

Error returns:
ORNG No room in button frame
FEX Re-allocated

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 21 - 1

After a Button has been woken, the Button Frame should be freed unless the position of the Button should

be kept for the next sleep.

The Free routine finds the appropriate usage block then frees the item in the button frame and throws the
usage block away. If it cannot find the right usage block, it throws the first one away.

Free the Button Frame

Call parameters
D1 User Job ID

D2.L Pointer to name of Thing
D3.L New allocate

AO Pointer to Thing Name
A1

A2 Base of usage block or 0 for 1st one

Error returns:

Always successful

Return parameters

D1 Preserved
+

AO Preserved
A1 Preserved
A2 7?7

A3 Preserved

BT.FREE

QDOS/SMS Reference Manual v. 4.9

31.03.2025

Section 21 - 2

22. The HOME Thlng [EXT] [SMSQ/E]

The latest version of SMSQ/E has an inbuilt support for a "HOME directory Thing". This also exists, to a less
integrated extent, for QDOS.

22.1. Purpose and facilities

2211. Home directory

The HOME Thing implements "home directories". A home directory is the directory from which an executable
file was executed. Thus, if you have a file called "fred_exe" in a directory "win1_progs_exec " the home
directory for that file will be "win1_progs_exec "

22.1.2. Home Filename

The HOME Thing also provides for the "home filename" which is the combination of the filename and the
home directory, thus making up the complete SMSQ/E filename - in the example above this would be
"win1_progs_exec_fred_exe".

Both home directory and home filename are set up once and for all when the program starts, and are deleted
when the program is removed. With one exception, they are immutable: once set, they may not be changed.
They are just removed upon removal of the program itself.

22.1.3. Current Directory

The HOME Thing also implements a "current directory”. This is inherited from the job that is setting up the
home directory (in most cases the parent job). If the calling job does not have a current directory, a copy of
the home directory is used instead.

The current directory can only point to a valid directory. Within that limit it may be set/reset or otherwise
manipulated by the job itself.

22.1.4. Default Directory for named jobs

Finally, there is also a default home directory for jobs that are executed through other means, perhaps
through file managers that don't use the HOME Thing, or, especially, through Hotkeys. Due to the enormous
variations that can exist in situations where jobs are executed from Hotkeys, and while there is no problem
when jobs are loaded from a file through a Hotkey, sometimes the job code is already in memory, but no job
with the name exists until the Hotkey is actually pressed ("executable things"), sometimes the job executes
immediately etc. In those circumstances, it will not always be possible to associate a job with a flename and
directory.

It is, however, possible to set up a default home directory for jobs with a given name. When a job, for which a
default directory was set up, executes, for example from a Hotkey, and tries to get at its home directory, a
home directory will be set up for it automatically.

Thus, whenever a job tries to find its home/current directory/file and they can't be found directly because they

haven't been defined for that job, a check is also made in the default list. If the job's name is in the default
list, then an entry for that job, with that default filename, is made in the home directory list.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 22 - 1

22.2. The HOME Thing under SMSQ/E and QDOS

For the home directory scheme to work, the cooperation of the operating system or file manager(s) is
needed: Indeed, whenever a job is executed, whoever is doing this executing must explicitly set up the home
directory for the job that is being executed. Here, there is a difference between SMSQE and QDOS.

22.21. SMSQ/E

As of version 3.11, SMSQ/E has the HOME Thing built in, and also support for it (see below for QDOS).
Typically, on an SMSQ/E system, jobs will be started upthrough the EX(ec) command variants, through file
managers such as QPAC |l or through Filelnfo. SBasic programs may also be loaded.

22.211. The EX(ec) etc commands

Whenever you use the EX command or any of its variants, the home directory for the job to be EXecuted will
be set up automatically.

22.2.1.2. QPAC Il and other file managers

QPAC Il has already be altered to take the new HOME Thing into account. All other file managers will need
to be changed to support the home directory. If you are a programmer and have programmed a file manager,
further information is given below, showing you the code that needs to be implemented for this. If a file
manager is in compiled basic (e.g. DiskMate) no further action will be necessary under SMSQ/E since the
EX commands in SMSQ/E will do whatever is necessary.

22.2.1.3. FileInfo

Filelnfo Il has been modified to use the HOME Thing, and so has .the original Filelnfo.

22.2.1.4. Basic

Under SMSQE, whenever you (q)load/(q)merge a basic program, the home directory for that basic program
is set to the file just loaded. Thus Basic is again an exception - it is the only job for which the Home directory
may change.

22.2.2. QDOS

There was a stand-alone version of the HOME Thing for QDOS users, which could be downloaded at:

http://www.lenerz.com/QL Stuff

ATM this version is no longer available.
(Thus, QDOS systems can also profit the home directories set up from QPAC Il and Filelnfo, but support for

the HOME Thing through the EX and LOAD commands will be non-existent, since that requires a change in
these commands. The same is true for file managers that are compiled basic.

To load the HOME Thing under QDOS, use:

a=RESPR (file_ length)
LBYTES <device>_home_bin, a
CALL a

or the LRESPR variants if your system has them.)

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 22 - 2

http://www.lenerz.com/QLStuff

22.3. Using the HOME Thing
22.3.1. From SBasic

There are several new SBasic keywords for this.

22.31.1. Get the home directory

result$ = HOME_DIRS$(job_id)

This function returns the home directory for the job given as job_id. To avoid programs stopping with an error
if for some unimaginable reason the home directory cannot be found, this function returns an empty string if
that error happens.

The job ID is optional. If it is omitted is defaults to -1, meaning the current job.

Example:

100 define procedure init
110 mydir$ = HOME DIRS

22.3.1.2. Get the home filename

result$ = HOME_FILES$(job_id)

Same as for the home directory, but for the home filename.
22.3.1.3. Get the current directory

result$ = HOME_CURRS$(job_id)

Same as for the home directory, but for the current directory.
22.31.4. Default names

HOME_DEF job_name$, file_name$

This sets a default filename for a job with the name given as first parameter. This is useful for "executable
things", where no filename is readily available, or for file managers that haven't integrated calls to the HOME
Thing. Please refer to the Section 22.2.1.4 above for more information on this.

With this keyword, you set up the default job name and filename that is to be used for the home/current
file/directory.

Please note that the file_name$ parameter must indeed be a FILENAME, not a directory name.

Example:
HOME_DEF "SBasic", "devl_SBasic_test_bas"

22.3.1.5. Get the version of the HOME Thing

result$ = HOME_VER$

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 22 - 3

22.3.2. From machine code

The HOME Thing implements various extensions - it is an extension thing.

There is some ready-to-use wrapper code in the SMSQ/E source tree, namely in the file
"util_gut_home_asm", or you can make use of the following:

To use the extensions, in short, first you USE the thing (A0 = thing name, D2 = extension). You might want
to make sure you use a call that returns the pointer to the thing linkage base in A2 and a pointer to the thing
in A1 as these will be expected when calling the call routine. (If you have access to the SMSQE sources, a
good vector for this is gu_thjmp). The name of the thing is, imaginatively, "HOME", and the names of the
individual extensions are as given below.

After you used the thing, you then call the thh_code routine of the thing with A2 pointing to the linkage and
A1 to a parameter list.

Each extension thus has its own parameter list. They are explained below for each extension:

GETH Get the home directory

GETF Get the home filename

GETC Get the current directory.

Call parameters Return parameters

DO DO 0O orerror

D2 D2 Buffer size needed (if err.orng)
A1 Pointer to parameter list A1 Preserved

A2 Pointer to Thing linkage preserved A2 Preserved

Error returns:

ITNF the job with the given ID doesn't have a home directory

ORNG the buffer is too small (see below)

The parameter list is as follows:

0(A1) Long word Job id of job for which info is to be gotten

4(A1) Word $A100 (corresponding to thp.str+thp.ret)
6(A1) Word Length of buffer for return string
8(A1) Long word Pointer to buffer for return string

The routine will return 0 if no error occurred, err.itnf if the job with the given ID doesn't have a home
directory and err.orng if the buffer is too small for the entire directory / filename. In this latter case, the
routine will not touch the given buffer but just return the needed size in D2.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 22 - 4

SETD Set the default directory for a given name.

Call parameters Return parameters
DO DO 0O orerror

A1 A1 Preserved
A2 Pointer to parameter list A2 Preserved

The parameter list is as follows:

0(A1) Longword $C1000000 (corresponding to thp.str+thp.call)
4(A1) Long word Pointer to string for jobname
8(A1) Longword $C1000000 (corresponding to thp.str+thp.call)
12(A1) Long word Pointer to string for filename

22.4. Setting up a home directory

Normally, jobs should not try to set up a home directory for themselves. This should be left to the system /
file manager. When a job is started with the SMSQ/E EX, EW or any of the similar commands, this is done
automatically. However, file manager writers may be interested in this information.

22.4.1. From S*Basic

HOME_SET job_id, device_and_file_name$

Set the home directory, home filename and current directory. You pass the thing the job ID of the job for
which this is to be set up and the entire flename, including the device and directory. The thing extracts the
home directory from the filename. If you want to set up the home directory for the current job, you may pass
-1 as parameter.

Since there can only be one home directory for a job and since that can only be defined once, the keyword
will give an error if the home directory is already set for this job. Otherwise, this keyword will set the home
directory, the home file and the current directory.

This keyword exists mainly for testing purposes.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section22- 5

22.4.2.

From Machine Code

SETH

Call parameters
DO

A1 Pointer to parameter list
A2 Pointer to Thing linkage preserved A2

This sets the home directory

Return parameters
DO 0O orerror
A1 Preserved
Preserved

Error returns:

FDIU job home directory is already in use

IJOB the job doesn’t exist

IPAR |no filename passed (empty string!)

any error from memory allocation routine

any error from open file

The parameter list is as follows:

0(A1) Long word
4(A1) Long word
8(A1) Long word

Job ID of the job for which this is set
$C1000000 (corresponding to thp.str+thp.call)
Pointer to string for entire filename

The following is an example of a routine that can use this to SET the home name/dir (this uses the gu_thjmp
routine from the SMSQE sources, which returns the correct values in A1 and A2). It is presumed here that,
on entry D1 contains the job ID of the job for which the directory/file is to be set and that the filename for this

job can be found at a label filename'.

homereg reg a0-a4/d0-d3
dlstak equ 4
sethome
movem. 1 homereg, - (sp)
lea home name, a0
moveq #-1,d3
moveq #-1,d1
move.l #'SETH', d2
moveq #sms.uthg, dO
jsr gu_thjmp
tst.1l do
bne.s no_thg
move. 1l al,a0
move.l dlstak(sp),dl
sub.1l #12,sp
move.1l sp,al
move.l dl, (al)
move.l #5c1000000,4 (al)

lea filename, a4

QDOS/SMS Reference Manual v. 4.9

where D1 is on stack

keep my regs

point to name of thing

wait forever

I will use the thing
extension in thing to use
use thing

on return A2= ptr thg header,
ok?

no, ignore

pointer to thing (!!!)

get job ID back

get some space

and point to it

insert ID of job
thp.call+thp.str

point to file/dirname to set

31.03.2025

al to thg

Section 22 - 6

move.l a4,8(al) ; set pointer to this string

jsr thh code (a0) ; call extn thing
add. 1l #12, sp ; reset stack
lea home name, a0 ; now free thing, ignore error on call
moveqg #sms. fthg, do
moveq #-1,d1
jsr gu_thjmp ; free thing
no_ thg
movem. 1 (sp) +, homereg ; lgnore error

(o00)

home name
dc.w 4, "HOME'

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 22 - 7

23. The RECENT Thing smsoi;

The RECENT Thing maintains lists with the names of recently opened files so that you can find out what
program recently opened files, and so that application programs may propose a list of the files the user
recently opened :

* There is one general list, which contains the name of files recently opened, irrespective of the job
which opened them.

* Then there is a list for each job that opened one or several files and which only contains the files
opened by this job.

The RECENT Thing is an extension thing. To use it, configure a copy of your SMSQ/E file and reboot with
that copy of SMSQ/E. You will see that you have a new thing, the RECENT Thing. You can use the compiled
Basic program called dev8_extras_exe_show_recents (in the SMSQ/E sources) to have a look at recently
opened files. A help file (dev8_extras_help_show_recents_txt) for this compiled basic program exists in the
SMSQ/E sources. You might need some extensions if you want to recompile the basic program, they should
normally be found at www.wlenerz.com/qlstuff.

Various ways are provided to obtain the list(s) from the thing. There is an assembler interface to the thing
and the extensions, and various SBasic keywords that map onto the extensions. Both are explained below.

23.1. Concepts

The RECENT Thing is called directly from the system's open file trap, without any user intervention.
Whenever a file is opened, its name is added to the general list and to the job's list, and then becomes the
first element of these lists.

There is no provision to delete files from the lists. However, since every list only has a finite size, when it is
full and a new file is added to it, this will push the most ancient file off the list and the newest on it. There is
also the possibility to remove an entire list for a job.

The system's open file call tries to filter out calls to open a directory, so that a directory open call does not
cause the name of the directory to be added to the list. The same is true for the SAVE file. You can configure
the size of the lists (i.e. how many files it should contain).

23.1.1. The lists

Each list is implemented as a lifo buffer : the last (most recently) opened file will be the first in the list. There
is one exception to this rule: The thing makes sure that a file only exists once in a list. So it checks the
general list and the job's list and, if it detects that a file is already in a list, it will not be put in again, NOR
WILL IT MOVE TO THE FIRST POSITION.

There is one general list and as many job lists as there are jobs that opened files, or even more than that if
lists were LOADed.

The general list is immediately adjacent to the thing itself. Its size is of:

rcnt_end + xx * rc_entryl bytes (see dev8 keys_recent_thing) where xx is the number of files configured by
the user. The general list always exists.

Job lists are in heaps, i.e. memory allocated on the common heap, one per job that opens a file. The
memory is allocated for job 0 and doesn't go away when the job is removed. Heap size is:

rcnt_hdr + xx * rc_entryl bytes (see dev8 keys recent_thing) again, xx is the number of files as
configured by the user.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 1

23.1.2. Job IDs

The primary way of identifying which list goes with which program is, of course, the job Id. Each list contains
the ID of the job that opened it, and when the same job tries to open a new file, its name is added to the list
of the job with the same Job ID. However, as a general rule, when trying to work with the RECENT Thing
and it requires a Job ID, it is better to pass it a job name:

Over the course of a session, a user will typically launch several programs which will open a variety of files.
Many of these programs will really be transient and will be removed from the system when they are done
(e.g. a quick file search with FiFi). (Note jobs started from Hotkeys are also created and removed, just as if
they were loaded from disk).h en a program is removed, its list stays in the system, for several reasons.

First it is to speed up the system - constantly removing and adding new lists (which are allocated on the
common heap) would just slow the system down (see performance penalty, below).

Second, the information should be saved when the RECENT Thing lists are saved to disk, to be re-loaded in
a later session.

Third, and most importantly, a mechanism is provided for jobs with the same name but different job Ids to
use only one list.

As an example, think of assembling all of the SMSQ/E sources. During such a run, the assembler gets called
hundreds of times (once for each file to assemble) : this means that the assembler program is executed (and
then removed after assembling one file) hundreds of time. Each time it is executed, it gets a new Job ID. So
when it tries to open its first file, the system won't find any list for it, since it has an all-new Job Id. If that
happens, the RECENT Thing tries to find a list for a job with the same name as the job calling it. If it finds
such a list, it changes the Job Id to the one calling it and adds the file to that list. (The search for a list with
the same name is made with a hash of the name).

Note that this scheme only works with jobs that keep the same name. QD, for example, changes its name
when you load a file, and Xchange also changes its name sometimes. In that case, if the job must be found
via a hash, it will not be possible to find the previous list.

The same problem also arises when LOADiIng the lists at boot time (or whenever): The lists are stored with
the Job IDs as they were when the list was saved.

In a nutshell, when trying to use the RECENT Thing, it is better to pass it a job name rather that a Job ID.
The mechanism to do that is explained below (see JoblDs and Name pointer for the INFO extension).

It is important to understand that, if two jobs have the same name, they will be using the same list (e.g.
several instances of SBasic, unless you changed their name).

23.1.3. Buffers

Whenever a buffer is required, this means an area of memory starting at an even address. The thing does
not check that the address is even, if it isn't, mayhem may ensue.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 2

23.2. The Thing interface in Assembler

The RECENT Thing is built as an extension thing. As usual, the name of the extension should be contained
in D2 when trying to USE the thing. When calling the extension, A1 points to the parameter block/list/stack.
Parameters are passed as is, without interspersing them with thp.xxx parameter qualifiers. If a call requires
a parameter, that parameter is always compulsory.

Job IDs may always be passed as -1 to denote the calling job. However, see the ***** JobIDs and Name
pointer note under the "INFO" extension.

Example for using GFFJ extension of the thing

; A0 s
; Al c S Points to a suitable buffer to hold filename
; A2-A4 S
; DO r error
; D1 c s The job ID (maybe -1)
; D2-D4 S
; D5 ¢ s The size of the buffer
got id
move.l dl,d4 ; keep jobID
move.l al, a4 ; and buffer pointer
sub.1l a5,ab ; NO name pointer **xxkxkx
move.l #'GFFJ',d2 ; extension to use
lea rcnt name, a0 ; point to name of thing
moveq #-1,d3 ; wait forever
moveq #-1,d1 ; I will use the thing
moveqg #sms.uthg, do0 ; use thing
jsr gu_thjmp ; on return A2= ptr to thg header, al to thg
tst.1l do ; ok?
bne.s gt exit ; no!
move.l al,a0 ; pointer to thing
sub.1l #14, sp ; get some space for parameters
move.l sp,al ; and point to it
move .w d5, (al) ; buffer size
movem. 1 dd/ad/ab,2 (al) ; insert buffer, jobID, name pointer
gt cont
jsr thh code (a0) ; call extn thing
add.1l #14, sp ; reset stack
move.l d0, d5 ; remember error
lea rcnt name, a0 ; free thing
moveq #sms.fthg, d0
moveq #-1,d1
jsr gu_thjmp
move.l d5,do ; restore error
gt _exit rts

rcnt name
dc.w 6, 'Recent'

e Please see the explanation of the name pointer below.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 3

23.2.1. JoblIDs and Name Pointer

With the exception of the ADDF extension, all of the extensions that use job Ids as parameter use the
following scheme

1 - If the job ID is a "genuine" Job ID, that ID is used to try to identify the list for that job. A "genuine" job ID is
a Job ID for a job that actually exists currently in the system. If no list can be found for this job, the thing tries
to find the name for this job and get the list with that name. As usual, -1 is a genuine job ID and denotes the
current job.

2 - if the job ID is passed as -2, then the next long word on the parameter stack is expected to be a long
pointer to the name of the job. This allows you to search for lists for jobs that are no longer executing (and
for which, thus, no genuine job ID exists any more). If there is no name, set a long word 0.

For the ADDF extension, a genuine Job ID is always necessary (-1 is accepted).

23.2.2. The extensions
The RECENT Thing provides the following extensions:

INFO An extension to get some information on a list.

JOBS An extension to get some info on the jobs the thing holds lists for.

ADDF An extension to add a file to the list. Should not be used.

GFFA An extension to get the first (=most recent) file name in the general list.
GFFJ An extension to get the first (=most recent) file name in the list for a certain job.
GALL An extension to get all filenames from the general list.

GALJ An extension to get all flenames from the list for a certain job.

GARR An extension to get all filenames from the general list into an array.

GARJ An extension to get all flenames from the list for a certain job into an array.
SAVE An extension to save the lists to a preconfigured file.

LOAD An extension to load the lists from a preconfigured file.

REMV An extension to remove a list from the thing.

SYNC An extension to synchronise job IDs with those in the lists.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 4

INFO
Get INFO on list

Call parameters Return parameters

D1 D1 maximum number of files per list

D2 D2 High word : max str length (NOT incl. length
word)

Low word : nbr of strings (see below)

D3 D3 pointer to heap space IF one was looking for a
job list, not the general list

A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns
IJOB there is no list for this job

Parameter list (pointed to by A1)
JobID Long use -2 if you want to check with the name

Name pointer Long pointer to job name or 0 if none

This gets some information about the list of files maintained by the thing.

If the Job ID is 0, this will be the general files list, if not, it will be the list for that job. For a jobID of -1 and -2,
see “JoblDs and Name Pointer” section above.

On return, A2 contains the buffer size for a "GALL" or a "GAFJ" extension call. The size is the size necessary
to store all strings + a length word for each string + a possible byte necessary to even out each individual
string length.

D1 contains, on return, a word with the maximum number of files in any list. All lists have the same capacity.
It is configured by the user.

On return, the high word of D2 contains the length of the longest filename currently being stored by the
Recent list. This length may vary, though, if a new file with a longer name is later opened. It will never
exceed 41 characters, though (but you should think of the necessary length word).

The number of files in the list, returned in the low word of D2, may also vary, if a new file is later opened.
However, it will never exceed the maximum number of files as configured.

If no file is yet contained in the list, D2 will be 0 (this should normally not happen).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 5

JOBS
Get a list of jobs

Call parameters Return parameters

DO DO Special return, see below
A1 Parameter list A1 Preserved

A2 Thing linkage block A2 Preserved

Error returns: see below

BUFL the buffer was too short. In this case as much as possible is filled in

Parameter list (pointed to by A1)
Length of buffer Long

Pointer to buffer Long

This gets a listing of all jobs for which the thing holds lists of files.

For each job, the listing in the buffer holds the Job ID in a long word followed by a standard string with the
job name (which my be 0 if the job has no name).

The list is terminated by a long word of -1. If the buffer is too small to hold all job names, the buffer will be
filled in as much as possible, and the error err.bufl will be returned.

There is no guarantee that any of the joblDs returned are still valid : if the job with that ID has been removed,
the jobID will no longer be valid.

The return in DO is special : unless it is a negative error code, it holds the number of jobs in the buffer.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 6

ADDF

Add a file
Call parameters Return parameters
D2 D2 7?77
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:
IJOB Invalid job ID

Parameter list (pointed to by A1)
JoblID Long The ID of the job to add the file for

Ptr to string Long Filename, normal string

This adds a file to the lists. Normally, a program should not call this routine. The adding of files is handled by
the system whenever a file is opened.

1111 Use this extension at your own risk !!!!
The joblD must be a genuine ID of a job actually executing.

NOTE: this extension goes into supervisor mode to avoid the list being modified by several jobs at once.

GFFA
Get First File for Any job
Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:

BFFL The buffer for the return string is too small - in this case nothing is copied to the buffer.

Parameter list (pointed to by A1)

Buffer length Word word with maximum length of buffer

Ptr to buffer Long

Gets the first (i.e. most recently opened) file from the general list. If the buffer is too small to contain the
filename, nothing will be copied to the buffer.

Filenames will never exceed 41 bytes (+2 bytes for the length word).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 7

GFFJ
Get First file For Job

Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:

BFFL The buffer for the return string is too small - in this case nothing is copied to the buffer.

Parameter list (pointed to by A1)

Buffer length Word (signed!) word with max length of buffer
Ptr to buffer Long

Job ID Long should be -2 if a name is supplied
Name pointer Long pointer to job name if jobID = -2, else 0

Gets the first (i.e. most recently opened) file for the job passed as parameter. For a jobID of -1 and -2, see
“JoblDs and Name Pointer” section above.

If the buffer is too small to contain the filename, nothing will be copied to the buffer.

Filenames will never exceed 41 bytes (+ 2 bytes for the length word, which the buffer should provide for). If
the list is empty, this will be a null length string. The list may be empty if there is no list for this job.

GALL
Get ALL files
Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved
Error returns:
BFFL if the buffer was too short, in this case as much as is possible is filled in

Parameter list (pointed to by A1)
Buffer length Long This is a long word

Ptr to buffer Long

This gets all filenames from the general list into a buffer. The filenames will be copied one after the other, the
name of the most recently opened file being the first one to be copied. If the filenames don't all fit, as many
as possible will be copied, and error err.bffl is returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even
address.

The buffer length is passed as a long word. The buffer must start at even an address.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 8

GALJ
Get ALl files for Job

Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:
JOB no list could be found for a job with that ID or name

BFFL the buffer was too short, in this case as much as is possible is filled in

Parameter list (pointed to by A1)

Buffer length Long This is a long word

Ptr to buffer Long

Job ID Long should be -2 if a name is supplied

Name pointer Long pointer to job name if joblD = -2, else 0

This gets all filenames from the list for a job into a buffer. The filenames will be copied one after the other,
the name of the most recently opened file being the first one to be copied. If the filenames don't all fit, as

many as possible will be copied, and error err.bufl is returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even

address. The list is ended with a 0 length word.
The buffer length is passed as a long word. The buffer must start at even an address.

For a jobID of -1 and -2, see “JoblDs and Name Pointer” section above.

QDOS/SMS Reference Manual v. 4.9 31.03.2025

Section 23 - 9

GARR
Get all files into an ARRay

Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:

IPAR The array had a null dimension or the length of the elements in the array is smaller than the
maximum length of a string in the list

Parameter list (pointed to by A1)

Ptr to array Long The pointer to array is absolute, it is NOT relative to A6
Array size Word Number of elements in array

Elemtlength Word Length of elements in array, INCLUDING length word

This is similar to the GALL call, in that all, or as many as possible, filenames will be copied. Here however,
they will be evenly spaced. If the filenames don't all fit, as many as possible will be copied, and no error is
returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even
address.

The array is just a buffer into which the filenames will be evenly spaced. It can thus be viewed as a two-
dimensional string array.

If there is still some space left between one filename and the next, the remainder will be filled with 0.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 10

GARJ

Get all files into an ARay, for a Job

Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:

IPAR The array had a null dimension or the length of the elements in the array is smaller than the
maximum length of a string in the list

Parameter list (pointed to by A1)

Ptr to array Long The pointer to array is absolute, it is NOT relative to A6
Array size Word Number of elements in array

Elemtlength Word Length of elements in array, INCLUDING length word
JobID Long Job ID should be -2 if a name is supplied

Name pointer Long name pointer pointer to job name if jobID = -2, else 0

This is similar to the GALJ call, in that all, or as many as possible, flenames will be copied. Here however,
they will be evenly spaced. If the filenames do not all fit, as many as possible will be copied, and no error is
returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even
address. The array is just a buffer into which the filenames will be evenly spaced. It can thus be viewed as a
two-dimensional string array. If there is still some space left between one filename and the next, the
remainder will be filled with 0.

For a jobID of -1 and -2, see “JoblDs and Name Pointer” section above.

SAVE
SAVE all lists to configured file
Call parameters Return parameters
A2 Thing linkage block A2 Preserved

Error returns:
Any error from file operations
FDNF No file is configured

This saves the lists for all jobs currently held in the thing, into the file configured by the user. The file is
overwritten. You can't specify another file.

The general list is NOT saved. The name of the SAVE file is NOT added to any list of files, not even the
general one, when SAVEing or LOADIng.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 11

LOAD
LOAD lists from configured file

Call parameters Return parameters
A2 Thing linkage block A2 Preserved

Error returns:
INAM The file was not a valid RECENT Thing save file
Any error from memory allocation/deallocation

Any error from file operations

This loads the lists as saved by the SAVE extension. All lists existing in the thing, except for the general list,
will be removed prior to loading. The file from which the lists are loaded is as configured by the user, you
can't specify another file.

Thus, if you LOAD the lists as the very first thing in your boot file, they will also fill up with the files opened up
during your normal boot.

If you LOAD the lists at the end of your boot file, they will replace all lists generated up to that time (except
for the general list).

When SAVEing or LOADing, the name of the SAVE file is NOT added to any list of files, not even the
general one.

It is possible to save the lists, re-configure SMSQ/E to use lists with a different size, and load the saved lists
after a reboot with the newly configured SMSQ/E. In that case:

* If the new list size is smaller than the saved size, only some files will be copied to the new lists.
THERE IS NO GUARANTEE THAT THESE will include the newest files opened.

« If the list size is larger than the saved size, all filenames will be copied.

In the latter case, and also when the sizes stay the same between saving and loading, the order of the
filenames will be preserved.

It is recommended to use the SYNC extension after loading the lists (see below).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 12

REMV
REMoVe a list for a job

Call parameters Return parameters
A1 Parameter list A1 Preserved
A2 Thing linkage block A2 Preserved

Error returns:
IJOB There is no list for this job

Any error from memory allocation

Parameter list (pointed to by A1)
JoblID Long Job ID should be -2 if a name is supplied

Name pointer Long name pointer pointer to job name if jobID = -2, else 0

This removes the list for the job passed as parameter.

For a jobID of -1 and -2, see “JoblDs and Name Pointer” section above.

SYNC

Tries to give current Job IDs to jobs in the list

Call parameters Return parameters
A2 Thing linkage block A2 Preserved

Error returns:

OK unless error in job information trap

As explained above, the Job IDs stored in the RECENT Thing may not correspond to the Job IDs of the jobs
currently executing, for example after loading the lists. The SYNC runs through the list of all iobs currently
executing in the system and, if a list exists for a job with that name, it sets the Job ID of that list to that name.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 13

23.3. SBasic keywords

The following keywords allow use of the thing from SBasic:

RCNT_INFO A function to get some information on a list.

RCNT_JOBS A function to get some info on the jobs the thing holds lists for.
RCNT_ADDF A keyword to add a file to the list. Should not be used.

RCNT_GFFA$ A function to get the first (=most recent) file name in the general list.
RCNT_GFFJ$ A function to get the first (=most recent) file name in the list for a certain job.
RCNT_GALL A function to get all flenames from the general list.

RCNT_GALJ A function to get all filenames from the list for a certain job.
RCNT_GARR A keyword to get all flenames from the general list into an array.
RCNT_GARJ A keyword to get all flenames from the list for a certain job into an array.
RCNT_SAVE A keyword to save the lists to a preconfigured file

RCNT_LOAD A keyword to load the lists from a preconfigured file

RCNT_REMV A keyword to remove a list from the thing.

RCNT_SYNC A keyword to synchronize job ids with those in the lists.

RCNT_HASHS$ A function to get a hash from a string.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 14

length = RCNT_INFO ([job_id,] str_nbr%,str_len%,max_nbr%)
Get information on a list of files
length = space needed for getting all strings, including length word
ob_id = optional id of job the info is about
EITHER as a long int where
0 means get the general list,
-1 means get the list for myself (= default if omitted)
OR as a string with the name of the job
str_len% = RETURN parameter, max length of string
str_nbr% = RETURN parameter, number of strings currently held

max_nbr% = RETURN parameter, max number of strings in lists

This gets some information about the lists of files maintained by the thing, either the general list (job_id) = 0
or the list for a certain job. The Job ID may be passed as a long word, or, preferably, as a string with the
entire name of the job.

On return the function returns the size for using the "RCNT_GALL" or "RCNT_GALJ" keywords. The size is
the size necessary to store all strings + a length word for each string + a possible byte necessary to even out
each individual string length.

The other three parameters are filled in on return of the function:

* The str_len% parameter contains the length of the longest filename currently being
stored by the Recent list for this job, on in the general list. This length may vary, though,
if a new file with a longer name is later opened. It will never exceed 41 characters,
though.

* The number of files in the list, returned in the str_nbr% parameter, may also vary, if a
new file is later opened.

* Finally, the max_nbr% is the maximum number of files a list may hold (as configured by
the user).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 15

result% = RCNT_JOBS (length,buffer)

Get a list of all jobs into a buffer:

length = length of buffer, in bytes
buffer = space for the list, preferrably a space allocated with ALCHP
result% = 0 or +ive: number of jobs in the list
else negative error code (e.g. "buffer full" if the buffer was too small)

-1 means get the list for myself (= default if omitted)

if there is an error, as much as possible is filled in the buffer

This gets a listing of all jobs for which the thing holds lists of files.

For each job, the listing in the buffer holds the Job ID in a long word followed by a standard string with the
job name (which my be 0 if the job has no name).

The list is terminated by a long word of -1. If the buffer is too small to hold all job names, the buffer will be
filled in as much as possible, and the error err.bufl will be returned.

There is no guarantee that any of the joblDs returned are still valid : if the job with that ID has been removed,
the jobID will no longer be valid.

The return in value holds the number of jobs in the buffer, unless it is a negative error code.

RCNT_ADDF [job_ID,] filename$

adds a file name to the list
filename is the name of the file to add

job_id is the optional jobID of the job supposed to have opened the file

(defaults to -1, i.e. myself)

This adds a file to the list.
USE OF THIS KEYWORD IS STRONGLY DISCOURAGED.

Normally, a program should not call this, the adding of file is handled by the system whenever a file is
opened.

The JobID MUST be passed as a long word.

file$ = RCNT_GFFAS$ ()

gets the first (=most recent) file name in the list.

If the list is empty, this will be a null length string.

Returns the name of the first (i.e. most recently opened) file from the general list. If the list is empty, this will
be a null length string.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 16

file$ = RCNT_GFFJ$ (job_ID)

gets the first (=most recent) file for the given job - if none found, this is an empty string.

job_id is optional, if not given, search for current job

Gets the name of the first (i.e. most recently opened) file for the job passed as parameter. If the parameter is
omitted, it will default to -1, i.e. the current job. If the list is empty, the result will be a null length string.

result% = RCNT_GALL (length,buffer)

Get ALL file names from the general list into a buffer.

length = length of buffer - this should be at least as much as that returned by the RCNT_INFO
keyword

buffer = space for list

result% = 0 if all went ok else negative error code:
err.bffl Buffer too small
err.ipar Wrong number of parameters
err.ijob Wrong job id

Any error from the thing use routine

If the error is err.bffl, as much as possible is filled in the buffer

This gets all filenames of the general list into a buffer. The filenames will be copied one after the other, the
name of the most recently opened file being the first one to be copied. If the filenames don't all fit, as many
as possible will be copied and the error "buffer full" is returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even
address. This might be used as follows:

str len%=0

str nbr%=0

str max%=0

blength=RCNT_INFO(,0,str nbr%,str len%,str max%): rem get info on size
buffer=ALCHP (blength) : rem get buffer

result%=RCNT_GALL (blength,buffer)

Perhaps a better way to get the filenames for the basic programmer is the RCNT_GARR function.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 17

result% = RCNT_GALJ ([jobID,] length, buffer)

Get ALL file names for a job into a buffer.

length = length of buffer - this should be at least as much as returned by the RCNT_INFO
keyword for this jobs

buffer = space for list
job_id = (optional) id of job:
EITHER as a long int where -1 means get the list for myself (=default)
OR as a string with the name of the job
result% = 0 if all went ok
else negative error code:
err.bffl buffer too small
err.ipar wrong number of parameters
err.ijob wrong Job ID

any error from the thing use routine

if the error is err.bffl, as much as possible is filled in the buffer

This gets all filenames of the list for a job into a buffer.

The filenames will be copied one after the other, the name of the most recently opened file being the first one
to be copied. If the filenames do not all fit, as many as possible will be copied and the error "buffer full" is
returned.

Filenames are typical SMSQ/E strings, with a length word in front and evened out to start at an even
address.

This might be used as follows:

str len%=0
str nbr%=0
str max%=0

blength=RCNT_INFO ("Prowess",str nbr%,str len%,str max%): rem get info on size
buffer=ALCHP (blength) : rem get buffer
result%=RCNT_GALL ("Prowess", blength,buffer) : rem data info buffer

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 18

RCNT_GARR array$
Get all filenames from the general list into an ARRay

array$=a 2 dimensional string array.

This is similar to the GALL call, in that all, or as many as possible, filenameswill be copied. Here however,
they will be copied into what must be a two-dimensional string array (i.e. DIM a$(xx,yy). If the filenames do
not all fit, as many as possible will be copied, and no error is returned.

An error bad parameter will however be returned if:
. The array isn't a two-dimensional string array
. The second dimension of the array is too small for the longest element in the list.

Note that filenames will not be longer than 41 characters, so a DIM a$(x,41) will guarantee that that error
won't happen.

The first array element to be filled in will be element 0.
This might be used as follows:

str len%=0

str nbr%=0

blength=RCNT_INFO (0,str nbr%,str len%,str max%) : rem get info on size
DIM files$ (str nbr%,str len%): rem or better dim files$ (str nbr%,41)
RCNT_GARR files$

RCNT_GARJ [jobID,] array$
Get all filenames for a job into an ARRay

job_id = (optional) id of job:
EITHER as a long int where -1 means get the list for myself (=default)
OR as a string with the name of the job

array$=a 2 dimensional string array.

This is similar to the GALJ call, in that all, or as many as possible, flenames will be copied. Here however,
they will be copied into what must be a two-dimensional string array (i.e. DIM a$(xx,yy). If the filenames don't
all fit, as many as possible will be copied, and no error is returned.
An error bad parameter will however be returned if :

* The array isn't a two-dimensional string array

» The second dimension of the array is too small for the longest element in the list.

Note that filenames will not be longer than 41 characters, so a DIM a$(x,41) will
guarantee that that error won't happen.

The first array element to be filled in will be element 0.

This might be used as follows:

str len%=0

str nbr%=0

blength=RCNT_INFO ("Prowess",str nbr%,str len%,str max%) : rem get info on size

DIM files$(str nbr%,str len%) : rem or better dim files$S(str nbr%,41)
RCNT GARJ "Prowess",files$

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 19

hash$=RCNT_HASHS$(string$)

Returns the hash from the string

string$ = a normal string to turn into a hash

This returns the hash, as used by the RECENT Thing for job names, from the string passed as parameter.
The hash algorithm used is a very simple one, the consideration was speed over anything else. So this hash
is certainly very easy to break and probably not very collision proof....

That said, running it over an entire gxl.win file with about 10.000 files did not give any collision for any of the
filenames.

RCNT_SAVE

SAVE lists to configured file : no parameters

This saves the lists for all jobs currently held in the thing, into the file configured by the user. The file is
overwritten. You can't specify another file.

The general list is NOT saved. The name of the SAVE file is NOT added to any list of files, not even the
general one, when SAVEing or LOADINng.

RCNT_LOAD

LOAD lists from configured file : no parameters 1

This loads the lists as saved by the RCNT_SAVE extension. All lists existing in the thing, except for the
general list, will be removed prior to loading. The file from which the lists are loaded is as configured by the
user, you can not specify another file.

Thus, if you LOAD the lists as the very first thing in your boot file, they will also fill up with the files opened up
during your normal boot.

If you LOAD the lists at the end of your boot file, they will replace all lists generated up to that time (except
for the general list).
When SAVEing or LOADing, the name of the SAVE file is NOT added to any list of files, not even the

general one.

It is possible to save the lists, re-configure SMSQ/E to use lists with a different size, and load the lists after a
reboot with the newly configured SMSQ/E. In that case:

» If the new list size is smaller than the saved size, only some files will be copied to the
new list. THERE IS NO GUARANTEE THAT THESE will include the newest files
opened.

» If the list size is larger than the saved size, all filenames will be copied.

In the latter case, and also when the sizes stay the same between saving and loading, the order of the
filenames will be preserved.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 20

RCNT_REMV [jobid]
REMoVe a list for a job

This removes the list for the job passed as parameter. If no such job exists, it returns an error.

RCNT_SYNC

Tries to give current Job IDs to jobs in heap

As explained above, the Job IDs stored in the RECENT Things may not correspond to the Job IDs of the
jobs currently executing, for example after loading the lists. The SYNC runs through the list of all iobs
currently executing in the system and if a list exists for a job with that name, it sets the Job ID of that list to
that name.

23.4. Configuration

Using the usual standard config program, you can configure:

* Whether SMSQ/E should use the RECENT Thing at all. If not, neither the thing nor the
SBasic extensions for it will be initialised/usable.

* The size of the lists (i.e. how many files they should contain):
The maximum allowed size is 255. The minimum allowed size is 1.
The longer the list, the higher the performance penalty (see below).

All lists have the same size. The default list size is 20.

* The name of the SAVE file if you want to be able to save/load the lists between
sessions.

23.5. Performance penalty

There is, of course, a performance penalty involved when opening files, since the RECENT Thing must be
used and the lists searched through, but the time necessary to check and add the file to the list is small.

As an indication, compiling all of SMSQ/E, under SMSQmulator, in a version of SMSQ/E 3.23 without the
RECENT Thing takes about 118 seconds. The same with the RECENT Thing takes about 125 seconds. This
is with a list size of 250 files.

Under QPC, these were 58 seconds without the RECENT Thing and 63 seconds with the Recent thing.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 23 - 21

24. Appendix A Compiling SMSQE with SMSQEMake

24.1. Compiling the source code

The SMSQ/E sources can be compiled either the "easy way" or the "hard way". The easy way is to use the
program called "extras_exe_SMSQEMake" which will be described here.

If you want to do this the "hard way" (why?), there is a document called "HowTo" in the subdirectory
"extras_help" in the SMSQ/E sources. Please note that this document is now outdated and will not be kept
up to date.

SMSQEMake is intended to make compiling and linking the sources for SMSQ/E easier. It is a replacement
for the "make_bas" and "flp_bas" files found in the smsq_ directory for each of the targets.

For this, you are presented with the names of the module (link) files. You then select the ones you want to
have recompiled. The very short version of using the program, if you are impatient and the sources are
contained in a gxl.win container, is:

* EXEC "dev8_extras_SMSQEMaket". Remember : the sources for SMSQ/E are supposed to lie on
device “dev8 ' and SMSQEMake expects them to be..

* Select the target(s) you want: at least the Generic + the machine for which you want to compile
SMSQ/E.

* You are presented with the names of the module (link) files. You then select the ones you want to
have (re-) compiled, or select “All” to compile all modules.

* Select "Make".

* Hit "OK" and wait until compilation is complete. A warning window pops up if there were errors
during compilation.

Please note that, if you want to use the "drive" item, this software needs the menu extensions. Normally
there should be no need to use this item, hence the menu extensions are not needed. There are also some
other requirements if you want to recompile the SMSQEMake program itself (see below).

SMSQEMake does presume that the sources are on one drive and in the usual directories. The drive MUST
be called "dev8 ": all of the sources presume that they are on a drive called dev8 . So you need the dev
device which is already contained in SMSQ/E. Apart from the menu extensions, all other necessary
extensions are already contained in the compiled version of the program. Moreover, if the complete gxl.win
container with the sources has been downloaded, all ancillary programs (assembiler, linker etc...) are also on
the “disk”.

So, unless you want to see what other programs are required, you could now just skip right to the next
section (see How to use.. below).

24.2. Requirements

The requirements for a successful compilation of SMSQ/E are that you will need a "dev" device, an
assembler, a linker, the "make" program, plus a concatenator. These are all supplied together with the
sources, the DEV device can be found in SMSQ/E itself.

24.21. The DEV device

The source files are set up in such a way that they expect to be found on a device called "DEV8_".

DEV is the usual SMSQ/E "dev" device which can refer to any actual physical device, you should use
DEV_USE 8, xxx to set this up. Thus, if the source files are or, say, win6, use:

DEV_USE 8, win6_

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 - 1

To allow easy recompilation on all sorts of systems, all references to include and other files must be made to
files located on device 'dev8 .

24.2.2. The assembler

You will also need an assembler to compile the individual source files into what are know as "_rel" files, i.e.
relocatable compiled files, which are later bound together by a linker. For the time being, the assembler must
be the QMAC Assembler. This is available in the dev8_extras_exe__ directory.

24.2.3. The linker, cctf and make programs and how to use them.

On the source device, in the "exe" subdirectory, you will find the Linker, cctf, cct and Make programs. It is
recommended, but not strictly necessary, to load the assembler, the linker and the make programs as
resident programs via hotkeys, such as:

ert hot res('z',<device> make)
ert hot remv('z")

ert hot res (
ert hot remv (
ert hot res (

',<device> linker)
")
',<device> QMAC)

You don't HAVE to do this, but the Make program always attempts to execute the Assembler and Linker from
an executable Thing rather than an executable file first. If you do not do that, you must make sure that these
programs can be found in the "PROG_USE" path. If they can not be found as executable things, nor in the
PROG_USE path, the make program will not be able to find them and will crash.

The cctf program should lie in the normal PROG_USE path.

Here is a short description of what each of these programs does, though it is not necessary to know this to
use SMSQEMake, which will drive the programs normally.

24.2.31. The Make Program

That program takes a simple linker command file (_link) and checks which files have to be re-assembled, it
then assembles them, and causes the linker to be executed.

The presumes that your computer keeps a correct time and date, since the files' timestamps are used by the
make program to check whether they need to be re-compiled or not.

The Make program also presumes that you have a program called QMAC to compile all files that need to be
compiled, a piece of software called Linker to link them and a program called cctf to concatenate libraries.

The Make program s a compiled S*Basic Program. The source of that can be found in the "exe" directory
under the "source" sub-directory which can modified to as required.

A special toolkit is required, called “OUTPTR_BIN” which can also be found under the "source" subdirectory.

24.2.3.2. The linker

The linker is responsible for linking the “_rel” files generated by the assembler. It will generally be called from
the Make Program and should be loaded as mentioned above.

24.2.3.3. CCTF

The purpose of the cctf program is to concatenate “_rel” files into libraries. It should simply be put into your
normal PROG_USE path. If you want to use it by hand, use it as follows:

EX <device> cctf,cct$,libs$

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 - 2

where cct$ is a file containing only the names of the rel files to be concatenated.

There is also a small cct program which you will need for the QXL. This can be found in the exe directory
and should be put into your Program path.

LRESPR a file called "dev8_extras_cline_bin” in job 0.

24.3. How to use SMSQEMake
24.31. Setting up the environment

To make things easier, you can use a small boot program called dev8_ extras_compile_boot. This will load
the linker, assembler and make programs as resident things (to make access faster) and LRESPR
“cline_bin” and will then execute the SMSQEMake program.

Line 100 of this boot program MUST be amended to point to the correct device for win2_

Otherwise, just exec the SMSQEmake program. It opens on its main screen. You can also pass the program
certain command line parameters.

24.3.2. Description of the program

24.3.21. The title bar

In the upper title bar, you can see the usual ESC, move, size, sleep items. You can also see the DEL, SaT
Dir, ?, OK, All and Make,items, which are explained below.

In the title bar there is also a drive item where you can chose the drive on which the link files can be found.
In this version of SMSQEMake, all link files must be on the same drive.

MOST IF NOT ALL SOURCE AND LINK FILES PRESUME THAT THE FILES TO BE ASSEMBLED RESIDE
ON DEVS_.

24.3.2.2. The targets row

Under the title bar, there is a row with many buttons. They select/deselect the "targets" for which you want to
(re)compile the sources. The names of the targets should be self-explanatory.

24.3.2.3. The link files window

Underneath this is the application subwindow with the names the "link" files where, generally, each link file
represents one module. As targets are de/selected, the relevant link files for this target are added to, or
deleted from, this window (not from the disk, of course).

24.3.2.4. The "All" item

The 'All' item de/selects all of the link files. Any of them can be de/selected individually, by clicking on them.

24.3.2.5. The "OK" item
When the "OK" item is hit/done, the program starts building the targets.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 - 3

24.3.2.6. The DEL item
If the DEL item is selected, then before building the targets is started, SMSQEMake will try to delete all

previously compiled files, i.e. all “_rel”, “_err”, “_ map_”, “ log” and “_lib” files (but not, of course, the source
files themselves!) and the compiled targets. This is done by "EXECing" the file called "dev8_ extras_

del_all_bas". Note that EXECing a basic file is a feature of SMSQ/E and may not work under different OSes

Please also note:

For this to work, you must LRESPR a file called "dev8_extras_cline_bin" into job 0. If you don't, the program
will not work. If you run the boot program in job 0, this is done automatically.

24.3.2.7. The "Make" item

There is also a "Make" item. If you select that before compilation starts, then if there was no error during
compilation of the source file(s) for a certain target, the resulting target file will actually be built. You can also
simply rebuild a target by selecting the target and deselecting all link files for it, if the MAKE button is
selected.

The targets made will be called as follows, <dev> being the device with the sources (I presume dev8_):

Generic: no target file per se.

Atari: <dev>smsq_atari_smsq.prg

(Super)GoldCard: <dev>smsq_gold_gold
<dev>smsq_gold_gold8

QPC: <dev>smsq_gpc_smsqge.bin

Qx0: <dev>smsq_qg40_rom

QXL: <dev>smsq_qgxl_smsqe.exe

SMSQmulator: <dev>smsq_java_java

Aurora: <dev>smsq_aurora_smsqe

ptr_gen/wman: <dev>ee_ ptr_gen
<dev>ee_wman_wman

Q68: <dev>smsqg_qg68_smsqg_4 win

Q-emulator: <dev>smsqg_gem_smsq_qgem

24.3.2.8. The “SaT” item

The item selects all targets. There is no corresponding unset, you must deselect the selected targets
individually.

24.3.3. Command line parameters

When executing SMSQEmake, you can pass it some command line switches. They are all two letters long
and are preceded by a hyphen. They are:

A - General:

Name Meaning

-qa Quit after program finishes

-q0 Quit if O errors

-as Autostart: start compiling as soon as program is launched
-mk "Make" item is selected

-de Delete all rel, lib, module and target files before compiling
-sa The “All” item is selected: select all modules

-fa Force assembly of all files

-ta Select all targets

B - Target selection
Then there are command line switches to select individual targets (but not modules):

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 - 4

Name Target
-tg Generic SMSQE - routines used by nearly all targets

-tc QPC

-tq Q40

-ti Atari

-to (Super) Gold card
-tu Aurora

-tx QXL

-t8 Q68

-tr PtrGen

-tm Q-emulator
-{j SMSQmulator

24.3.4. A proposed way of working

The program can be used as follows:

« LRESPR afile called "dev8_extras_cline_bin” in job 0 if you want to use the DEL item.

LOAD the dev8 extras_compile_boot Program. This sets up the dev8 device to point to win2_
Remember, if your device with the sources is NOT win2_ change it in line 100.

EX the SMSQEMake program.

Select your target(s).

Select the module (link) file(s) to be recompiled, possibly with the All item.

Set the "Make" item so that a final version will be built.

Start everything with "OK".

The program now treats every module that is selected. If the process for a module did not result in an error
(i.e. assembling and linking went OK), then the module is made available again.

24 .3.5. Error reports

Error report facilities in this program are, as yet, very rudimentary:

If the entire process went OK, the program has made all modules available again. If not, a small window
pops up telling you that there was an error (it doesn't tell you where the error was, though - just look which
module(s) remained selected, then look in the source code at the log file for each module).

Thus, at the end of a compile run, you can see whether all module files compiled OK or not - if they stay
selected, there was an error.

24.4. Recompiling or changing SMSQEMake
The source for SMSQEMake is in the extras_exe_source directory.

To compile it, you will need the dev8_extras_source_ SMSQEMake_bin file (containing the compilation
options), the “outptr_bin” file (in the dev8_extras_exe_source directory) and the QPTR extensions.

All of these files must be LRESPR'd before compilation.

24.5. Additional programs

New subdirectories have been created as compared to the original source code that came from Tony Tebby,
they are all located in one subdirectory called “extras”.

Directory Contents

extras Additional documents and programs, mostly those used by myself in an attempt to make
compilation easier. Any program put into that directory should have a corresponding help

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 -5

file in the help directory.
This has several new subdirectories itself:

Sub Directory Contents

_help Help files are there to explain how some programs work. Not how new SMSQ/E features
work.

_new Documentation on features that are new to THIS version of SMSQ/E. In the next version,
this documentation is moved to either the _doc or the _help subdirectories.

_exe Executable programs.

_doc Documentation on new features.

_html Programs generating some of the html files for the SMSQE website.

_source The source files for the assembler and some basic programs found in the dev8_extras_

and dev8_extras_exe subdirectories.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 24 - 6

25. Appendix B Official SMSQ/E style guide

The purpose of this document is to keep a single coding style within the whole project. SMSQ/E has evolved
over more than a decade with many people involved, therefore most but not all existing source files comply
with the style described in this guide. New source files however have to comply. If changes in existing files
are done that don't comply with the style described here it is your choice to either adapt to the style of the
given file or make your changes in the style described in this guide.

25.1. Generic requirements

25.1.1. Development system

The standard distribution is assembled using the QMAC, QLINK and QMAKE assembler tools. All
submissions must be compatible with these tools, the only exception being hardware dependant code which
may need other tools for certain purposes (e.g. 68020+ assembler commands).

25.1.2. Assembler

All parts not specific to a certain hardware must be written in plain 68000 language and must be compatible
with the QMAC assembler syntax.

25.1.3. Character set
The normal QDOS/SMSQ character set is to be used.

251.4. TAB stops

TAB limits need to be set to 8 characters. You are encouraged to configure your editor to compress multiple
spaces to TAB characters in order to keep files small.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 25 - 1

25.2. Assembler files

25.2.1. Generic file structure

A source file starts with one or more header lines followed by a changes list, the "section" command, xdefs,
xrefs, include files and finally the code itself.

Example:
; Routines to do something brilliant V1.02 (C) 2002 Fred Flintstone

; Barney Rumble
; Addition information about the file (optional)

; 2002-01-01 1.00 First release (FF)

; 2002-06-20 1.01 Added br evenbetter function (BR)

; 2002-12-31 1.02 Fixed serious buffer overflow in sub-function
section brilliant

xdef Dbr super
xdef br evenbetter

xref cv_ctype

include 'dev3 keys sms_io'
[Code]

end

The header line gives a short explanation of the purpose of the file, the current version number and the list of
names of people that hold the copyright (additional names are added in an extra line).

The changes list is something new and so far you won't encounter it in any original files of the distribution. As

the code is available to all developers, keeping a detailed track of the changes within a file becomes a must.
When working on a file, always increase the version number and write down your changes in the list!

The format of the list is

;YYYY-MM-DD Vv.vv Description of change (full or abbreviated name of author)

The date is in ISO8601 notation (big words for "year first, month next and day last).

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 25 - 2

25.2.2. Headers

A header within a source file always starts with the line

P

and ends with the line

All routines available to external files should have a function header.

Function headers contain a description of the function followed by a detailed in/out table as shown here:

;A

; XYZ driver - read function (one line description, optional)

; This function does nothing really, it is just an example for a function
; header (detailed discussion of function)

; do cr drive number / error status
; dl r byte read

; dz2 S

; a3 c P linkage block

; ab c

c

pointer to something

; status return standard

The register list is a sorted list of all registers affected (DO first, A6 last).

Following the register name is a standard field with several characters that define the function and behaviour
of the register:

do Xy z description

x:""or"c" = "call parameter"

y: " "or"r" = "return parameter"
Z: n ll, or llpll = llpreservedll’ n..n = llupdatedll or llsll = "Smashed"

So in the example header above DO is a call parameter with the drive number and also a return parameter
with the error status. D1 is a return parameter, too, whereas D2 is just smashed. A3 is a call parameter and
is preserved. A5 is a call parameter that gets updated within the call.

Registers not listed must be preserved if not stated otherwise.

After the register field the status of the flags after the call is documented.

This can be for example:

¢ ‘"status return standard"
« ‘"status return arbitrary"

25.2.3. Cases

Labels and the assembler mnemonics themselves are lower-case. Comments and headers are either lower
or mixed case.

25.2.4. Comments

Comments are started using the ";" operator and must be written in English.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 25- 3

25.2.5. Labels

Labels are lower case, words are separated using the "_" character. Normally a label has its own line.

The labels belonging to the body of a function usually start with a short hand for the function name, i.e.

com_check -> comc_loop
com_rxen -> crxe_iact

com_iserve -> comi_error

25.2.6. References to include and other files

All new references to include and other files must be made to files located on device 'dev8 '

Use dev_use 8,xxxy_ to set the dev device to whatever you want.

QDOS/SMS Reference Manual v. 4.9 31.03.2025 Section 25 - 4

	0. Why this book? (Original foreword by Jochen Merz)
	1. About this Guide
	2. Introduction to QDOS / SMS / SMSQ/E
	2.1. Memory Map
	2.1.1. Principles
	2.1.2. System Variables
	2.1.3. System Management Tables
	2.1.4. Common Heap Area
	2.1.5. Free Memory Area
	2.1.6. S*Basic area
	2.1.7. Transient Program Area
	2.1.8. Resident Procedure Area

	2.2. Calling QDOS/SMS Routines
	2.2.1. Traps
	2.2.2. Vectored Routines
	2.2.3. Atomic Actions

	2.3. Exception Processing
	2.4. Start-up

	3. Machine Code Programming
	3.1. Jobs
	3.1.1. Normal Jobs
	3.1.2. Special Programs
	3.1.3. Job Control Enhancements [SMSQ/E]

	3.2. S*Basic Procedures and Functions
	3.3. Tasks
	3.4. Operating System Extensions

	4. Memory Allocation
	4.1. Heap Mechanism

	5. Input/ Output on the QL
	5.1. Serial I/O
	5.2. File I/O
	5.3. Screen and Console I/O
	5.3.1. Display Modes
	5.3.2. Window Properties and Operations
	5.3.3. Screen Character Output Operations
	5.3.4. Graphics Operations
	5.3.5. Special Properties of Console Channels
	5.3.6. Special Keyboard Functions
	5.3.7. Extended Operations [SMSQ/E]
	5.3.8. Display [SMSQ/E]
	5.3.8.1. New CON driver vectors
	5.3.8.2. New (WMAN) colour format
	5.3.8.2.1. Stipple Format
	5.3.8.2.2. 3D Border Format

	5.3.8.3. System palette entries
	5.3.8.4. New Basic Keywords
	5.3.8.4.1. Colours
	5.3.8.4.2. Palette handling
	5.3.8.4.2.1. System palette keywords
	5.3.8.4.2.2. Job palette keywords

	5.3.8.5. New Move modes
	5.3.8.5.1. The move modes
	5.3.8.5.2. Configuring/setting the move mode
	5.3.8.5.3. Configuring/setting the degree of transparency

	5.3.8.6. Graphics with alpha blending
	5.3.8.6.1. Machine code interface
	5.3.8.6.2. S*Basic keywords

	6. QDOS Device Drivers
	6.1. Device Driver Memory Allocation
	6.2. Device Driver Initialisation
	6.3. Physical Layer
	6.3.1. External Interrupt Tasks
	6.3.2. Polling Interrupt Tasks
	6.3.3. Scheduler Loop Tasks

	6.4. The Access Layer
	6.4.1. The Channel Open Routine
	6.4.2. The Channel Close Routine
	6.4.3. Input/Output Routine

	7. Directory Device Drivers
	7.1. Initialisation of a Directory Driver
	7.2. Access Layer
	7.2.1. The Channel Open/File Delete Routine
	7.2.2. The Channel Close Routine
	7.2.3. The Input/ Output Routine

	7.3. Slaving
	7.4. The Format Routine

	8. Built-in Device Drivers
	8.1. QL Floppy Disc Format [EXT]
	8.2. Direct Sector Read/Write [EXT]
	8.3. Additional Standard Device Drivers [ST] [EXT] [SMSQ/E]

	9. Interfacing to S*Basic
	9.1. Memory Organisation within the S*Basic Area
	9.2. The Name Table
	9.3. Name List
	9.4. Variable Values Area
	9.5. Storage Formats
	9.5.1. Integer Storage
	9.5.2. Floating Point Storage
	9.5.3. String Storage
	9.5.4. Array Storage

	9.6. Code Restrictions
	9.7. Linking in New Procedures and Functions
	9.8. Parameter Passing
	9.9. Getting the Values of Actual Parameters
	9.10. The Arithmetic Stack Returned Values
	9.11. The Channel Table

	10. Hardware-related Programming
	10.1. Memory Map [QL]
	10.2. Display Control
	10.3. Display Control Register
	10.4. Keyboard and Sound Control
	10.5. Serial I/O
	10.6. Real-time Clock
	10.7. Network
	10.8. Microdrives
	10.9. User and Supervisor Mode [ST]
	10.10. The Interrupt System [ST]
	10.11. The MIDI Interrupt server [ST]
	10.12. Different Processors [ST][SMSQ/E]
	10.13. Different Machines [ST, SMSQ]
	10.14. The ATARI DMA [ST]

	11. Adding Peripheral Cards to the QL
	11.1. Expansion Connector
	11.2. CPU Interface
	11.3. Peripheral Card Addressing
	11.4. Add-on Card ROMs

	12. Non-English Systems
	12.1. Video
	12.2. Non-English-language Keyboards
	12.3. Character Set [not SMS2] [SMSQ]
	12.4. Special Alphabets

	13. System Traps
	13.1. Trap 1 Keys - numerical order with page reference

	14. I/O Management Traps
	14.1. Trap 2 Keys - numerical order with page reference

	15. I/O Access Traps
	15.1. Trap 3 Keys - numerical order with page reference

	16. Vectored Routines
	16.1. Vectored Routines - numerical order with page reference

	17. Things [EXT][SMSQ/E]
	17.1. Thing structures
	17.1.1. Thing linkage format
	17.1.2. Thing header format
	17.1.3. List of Things Header
	17.1.4. Executable Thing Header
	17.1.5. Extension Thing Header

	17.2. Different sorts of Thing
	17.3. Thing vectors
	17.4. Thing Entry Points
	17.4.1. TH_ENTRY
	17.4.2. TH_EXEC
	17.4.3. Example of entries to the Thing Vector system

	17.5. Extension Things
	17.5.1. Extension Thing Header
	17.5.2. Level 1 Extension Thing Parameter Definition
	17.5.3. Call Values and Keys
	17.5.4. Pointer Parameter Usage
	17.5.5. Optional Parameter
	17.5.6. Array Parameter
	17.5.7. Parameter Types
	17.5.8. Example Parameter Definitions
	17.5.9. Parameter List
	17.5.10. Defining Extension Things
	17.5.11. Accessing Extension Things
	17.5.12. When to Use Extension Things

	17.6. Thing-supplied code

	18. Keys
	18.1. Error keys
	18.2. System variables
	18.3. SuperBasic Variables
	18.4. SBasic Variables [SMSQ/E]
	18.5. Basic channel definitions and tokens
	18.5.1. Offsets on BASIC Channel Definitions
	18.5.2. BASIC Token Values

	18.6. Job Header and Save Area Definitions
	18.7. Slave Memory Block Table Definitions
	18.8. Channel Definitions
	18.9. File System Definition Blocks
	18.9.1. 18.Standard channel block for filing system
	18.9.2. The common part of a physical definition block
	18.9.3. Microdrive Physical Definition Block [QL]
	18.9.4. Other Filing System Physical Definition Block [SMSQ][EXT]

	18.10. Device Driver Linkage Block
	18.10.1. Screen Driver Data Block Definition
	18.10.2. Serial Channel Definition Block [QL]
	18.10.3. Network Channel Definition Block [QL]

	18.11. Queue Header Definitions
	18.12. Arithmetical Interpreter Operation Codes
	18.13. IPC Link Commands
	18.14. Hardware Keys
	18.15. Trap Keys
	18.15.1. Trap 1 Keys (System Traps)
	18.15.2. Trap 2 Keys (I/O Allocation Traps)
	18.15.3. Trap 3 Keys (I/O Traps)

	18.16. List of Vectored Routines
	18.17. Keys for Things
	18.18. Keys for HOTKEY Thing
	18.19. Keys for format of pointer device driver definition block
	18.20. Hard disk format: QLWA

	19. SMSQ/E
	19.1. Language handling in SMSQ
	19.1.1. Principles
	19.1.2. Classification of Language Dependent Modules
	19.1.2.1. Printer Translate Tables
	19.1.2.2. Keyboard Tables
	19.1.2.3. Message Tables
	Language Preference Tables

	19.1.3. Language Dependent Module Structure
	19.1.4. Language Specification
	19.1.5. Implementation
	19.1.6. System Variables
	19.1.7. Additional Trap #1 Calls

	19.2. Additional Trap #3 calls
	19.3. SMSQ Cache Handling
	19.3.1. Principles
	19.3.1.1. MC68020
	19.3.1.2. MC68030
	19.3.1.3. MC68040
	19.3.1.4. MC68060

	19.3.2. Cache Manipulations
	19.3.3. Encoding the Cache Operations
	19.3.4. Using The Cache Operations
	19.3.4.1. CINVB
	19.3.4.2. CINVD
	19.3.4.3. CINVI
	19.3.4.4. CDISB
	19.3.4.5. CDISI
	19.3.4.6. CENAB
	19.3.4.7. CENAI
	19.3.4.8. System Variables

	20. The HOTKEY System II [EXT]
	20.1.1. The HOTKEY Item
	20.1.2. Hotkey Vectors

	21. The Button Frame [EXT]
	22. The HOME Thing [EXT] [SMSQ/E]
	22.1. Purpose and facilities
	22.1.1. Home directory
	22.1.2. Home Filename
	22.1.3. Current Directory
	22.1.4. Default Directory for named jobs

	22.2. The HOME Thing under SMSQ/E and QDOS
	22.2.1. SMSQ/E
	22.2.1.1. The EX(ec) etc commands
	22.2.1.2. QPAC II and other file managers
	22.2.1.3. FileInfo
	22.2.1.4. Basic

	22.2.2. QDOS

	22.3. Using the HOME Thing
	22.3.1. From SBasic
	22.3.1.1. Get the home directory
	22.3.1.2. Get the home filename
	22.3.1.3. Get the current directory
	22.3.1.4. Default names
	22.3.1.5. Get the version of the HOME Thing

	22.3.2. From machine code

	22.4. Setting up a home directory
	22.4.1. From S*Basic
	22.4.2. From Machine Code

	23. The RECENT Thing [SMSQ/E]
	23.1. Concepts
	23.1.1. The lists
	23.1.2. Job IDs
	23.1.3. Buffers

	23.2. The Thing interface in Assembler
	23.2.1. JobIDs and Name Pointer
	23.2.2. The extensions

	23.3. SBasic keywords
	23.4. Configuration
	23.5. Performance penalty

	24. Appendix A Compiling SMSQE with SMSQEMake
	24.1. Compiling the source code
	24.2. Requirements
	24.2.1. The DEV device
	24.2.2. The assembler
	24.2.3. The linker, cctf and make programs and how to use them.
	24.2.3.1. The Make Program
	24.2.3.2. The linker
	24.2.3.3. CCTF

	24.3. How to use SMSQEMake
	24.3.1. Setting up the environment
	24.3.2. Description of the program
	24.3.2.1. The title bar
	24.3.2.2. The targets row
	24.3.2.3. The link files window
	24.3.2.4. The "All" item
	24.3.2.5. The "OK" item
	24.3.2.6. The DEL item
	24.3.2.7. The "Make" item
	24.3.2.8. The “SaT” item

	24.3.3. Command line parameters
	24.3.4. A proposed way of working
	24.3.5. Error reports

	24.4. Recompiling or changing SMSQEMake
	24.5. Additional programs

	25. Appendix B Official SMSQ/E style guide
	25.1. Generic requirements
	25.1.1. Development system
	25.1.2. Assembler
	25.1.3. Character set
	25.1.4. TAB stops

	25.2. Assembler files
	25.2.1. Generic file structure
	25.2.2. Headers
	25.2.3. Cases
	25.2.4. Comments
	25.2.5. Labels
	25.2.6. References to include and other files

