
De-Lib Decompiler

De-Lib is a decompiler for QLiberated programs.

De-Lib cannot just convert an executable file back into a ready to run SuperBASIC program. It may
require some manual intervention, and the resulting SuperBASIC program will need some tidying
up before it will load and run correctly.

This document is an introduction to the steps required to convert a QLiberated executable back into
a SuperBASIC program.

This version of the decompiler now also supports programs not only created with version 3.xx of
Qliberator, but also programs created with versions 1.xx and 2.xx.

Note that the version 2.xx support may be a bit sketchy, as I only have one small program compiled
with Qliberator V2.03 to work with.

De-Lib now scans the systems name table and list, to determine if keywords are command, or
functions. So it will make decompiling easier, If any SuperBASIC extensions that the compiled
program uses, are installed before starting the decompile.

Martin Head 18/03/2025 V1.00

1

Step 1 - Do the decompilation.

Load and RUN the program DeLib_bas.

You will be asked the name of the compiled object file to de compile. After entering the name, If the
file exists, it's file size and, if the file has an intact QDOS file header, it's Dataspace size.

Then answer yes, or no, if it is the correct file.

The compiled programs job name, and the version of QLiberator it was compiled on is displayed.

Information from the compiled program header area is also displayed, which may be required if you
want to recompile the program at some stage, using compiler directives like REMark $$stak=5500

2

Also if DE-Lib finds any embedded SuperBASIC extensions, it will give you the option of trying to
extract and save them from the compiled program.

DeLib will create two files, one will have a _BIN extension, and one with a _BIN_LOG extension.
The _BIN file should be suitable to be LRESPRed, and the _BIN_LOG file contains information
on the contained keywords, and an example of how the extension file may be used in a recompile.

Example _BIN_LOG file

9 Procedures
Q_PIPE, QJ, QR, QP, Q_CURSON, Q_CURSOFF, Q_ERR_ON, Q_ERR_OFF, Q_ERR_LIST,

2 Functions
Q_MYJOB, Q_ERR,

REMark $$asmb=dev3_adv2_BIN,0,12

You may need to LRESPR this file to add the keywords to the system, so DeLib can identify them
as commands, or functions.

Note In the above example, the extensions are standard Qliberator SuperBASIC extensions. You
don't need to LRESPR theses, as DeLib already knows about them.

In channel#0, you get the message

You only need to RUN the program once, after it stops, or if you should Break into the program,
use GO TO 1000 to restart without having to go back to the beginning.

Press any key to continue

3

The addresses, and offsets in memory, for some of the areas of the compiled program are displayed.

When asked for a filename, just press Enter to start a decompilation to the screen. It's advisable to
decompile to the screen first, just to find out if there are going to be any problems during
decompiling.

The name/variable table will be scanned to attempt to identify commands and functions by scanning
the systems name table. Depending on the length of the compiled program, and the speed of your
system, may take a few seconds to complete.

The decompile will then start.

At the end of a successful the decompile. Type GO TO 1000 to repeat the decompile, and repeat
entering a filename. Two files will be created, one with a _BAS extension, and one with a _LOG
extension.

After the BASIC file is saved, DeLib then does a check of the decompiled programs line numbers.
In case of any line numbers being duplicated, or miss-ordered. This is only likely to happen when
decompiling programs without line numbers saved.

4

Possible Problems

During the decompile you may see various messages and warnings on channel#0. Most of these
messages will appear in the _LOG file when you decompile to a file.

If DeLib encounters an instruction it does not understand. It will pause, and display the instruction
code it had the problem with a yellow background.

You may be able to skip over this error and carry on by pressing any key a few times. But you may
be stuck until whatever is confusing DeLib can be sorted out.

If you want to pause a decompile. There is a program line, just past line 1000 -

pauseLine=100000

This line allows you to pause the decompilation at a BASIC line number. And then continue one
step at a time, by pressing any key. Using a number of 100000 will disable the pause, as there
should not be any line numbers greater than 32767. If the compiled program has no Line number
table, then line numbers greater than 32767 may be generated.

The decompilation will begin and run up to the pauseLine variable, if set.

When the decompilation stops on a pauseLine (in this case line 350), You can carry on, one
instruction code at a time, by pressing any key. You may have to press the key several times before
you see any effect on the screen.

If you break into the program, or it stops on an error, The variable prog will be near the address in
the compiled program, where things went wrong, pcount will tell you how many items are left on
the programs ‘stack’, and PRINT getTOS$ will show the top item on the stack.

See the DeLib Technical Notes document for information on other variables and Procedures used in
the program.

5

There are a couple of Procedures that are not used by DeLib itself. But you may find useful when
hand decompiling, or just trying understand how the compiled program works.

Listnames
This Procedure will list all the names and variables in the currently loaded program to a file.
You must have decompiled the program, or started a decompile before using at as it requires certain
variables to have been set.

It produces a list to a file as shown below. The first column is the reference number you will see in
the compiled program, The second column is it's type, the third column is the name type. 0 for a
variable, 1 for a function, 2 for a command, and -1 for an unidentified keyword.
And finally the way the name will appear in the decompiled program.

0008 Keyword 2 PRINT
0010 Keyword 1 PI
0018 Keyword 1 DATE$
0020 String variable 0 var0020$
0028 Float variable 0 a
0030 Float variable 0 var0030
0038 Float variable 0 var0038
0040 Float variable 0 var0040
0048 Float variable 0 var0048
0050 Float variable 0 var0050
0058 String arry 0 b$
0060 String arry 0 c$
0068 String arry 0 var0068$
0070 Float variable 0 var0070
0078 Float variable 0 var0078
0080 Float variable 0 var0080
0088 Integer variable 0 var0088%
0090 Integer variable 0 var0090%

ListLineNo
This Procedure will list all the line numbers (if they exist) in the currently loaded program to a file.

It produces a list as shown below. The first and second columns are the SuperBASIC line numbers,
in decimal and hexadecimal. The third and fourth columns are the offset in decimal and
hexadecimal, from the very start of the compiled program to the correct point in the compiled
SuperBASIC program.

100 $0064 10878 $00002A7E
110 $006E 10878 $00002A7E
120 $0078 10878 $00002A7E
130 $0082 10878 $00002A7E
140 $008C 10878 $00002A7E
150 $0096 10878 $00002A7E
160 $00A0 10878 $00002A7E
170 $00AA 10878 $00002A7E
180 $00B4 10964 $00002AD4

6

Step 2 - Tidy the SuperBASIC program

The SuperBASIC program produced is unlikely to Load without errors, some tidying up may be
required. So load the produced BASIC program into a text editor. And look for some obvious
problems.

Trying to load the program into SBASIC of SMSQ/E will report lines with syntax errors to #0.
Which will highlight them better than just the 'MIStake' that QDOS supplies.

Here are some of the things to look out for.

Empty program lines
If the compiled program contained a line number list, you may find program lines which are empty.

These lines may be REMark's, or SELect ON's, END SELects, or END IF's. Just add a colon (:)
to these lines for now, so they will not disappear if you LOAD the program.

REPeat loops
QLiberator converts REPeat loops into GO TO’s.

Look out for GO TO’s which points back to a line right after a line containing a variable
assignment of 0. Where this variable does not seem to be used anywhere.

This GO TO is probably the END REPeat.

Within this loop, If you see a GO TO back to the line right after the line containing the variable
assignment, It is probably a NEXT loop. And a GO TO to just past the END REPeat, is probably a
EXIT loop.

Here's an example

3100 var0698 = 0
3110 event = MCALL (#ad6)
3120
3130 [SELect] ON event = -1 : MCLEAR #ad6 : CLOSE #6 : GO TO 3240
3140 [SELect] ON event = -2 : MCLEAR #ad6 : CLOSE #6 : procFun9240 : GO TO 3240
3150 [SELect] ON event = -3 : MCLEAR #ad6 : CLOSE #6 : procFun12750 : GO TO 3240
3160 [SELect] ON event = -4 : MCLEAR #ad6 : CLOSE #6 : procFun22310 : GO TO 3240
3170 [SELect] ON event = -5 : MCLEAR #ad6 : CLOSE #6 : procFun22650 : GO TO 3240
3180 [SELect] ON event = -6 : MCLEAR #ad6 : CLOSE #6 : procFun17110 : GO TO 3240
3190 [SELect] ON event = -7 : MCLEAR #ad6 : CLOSE #6 : procFun17970 : GO TO 3240
3200 [SELect] ON event = -8 : MCLEAR #ad6 : CLOSE #6 : procFun25570 : GO TO 3240
3210 [SELect] ON event = -9 : MCLEAR #ad6 : CLOSE #6 : procFun16000 : GO TO 3240 : END SELect :
3220
3230 GO TO 3110
3240 procFun4580

7

And with the REPeat loop sorted out

3100 REPeat var0698
3110 event = MCALL (#ad6)
3120
3130 [SELect] ON event = -1 : MCLEAR #ad6 : CLOSE #6 : EXIT var0698
3140 [SELect] ON event = -2 : MCLEAR #ad6 : CLOSE #6 : procFun9240 : EXIT var0698
3150 [SELect] ON event = -3 : MCLEAR #ad6 : CLOSE #6 : procFun12750 : EXIT var0698
3160 [SELect] ON event = -4 : MCLEAR #ad6 : CLOSE #6 : procFun22310 : EXIT var0698
3170 [SELect] ON event = -5 : MCLEAR #ad6 : CLOSE #6 : procFun22650 : EXIT var0698
3180 [SELect] ON event = -6 : MCLEAR #ad6 : CLOSE #6 : procFun17110 : EXIT var0698
3190 [SELect] ON event = -7 : MCLEAR #ad6 : CLOSE #6 : procFun17970 : EXIT var0698
3200 [SELect] ON event = -8 : MCLEAR #ad6 : CLOSE #6 : procFun25570 : EXIT var0698
3210 [SELect] ON event = -9 : MCLEAR #ad6 : CLOSE #6 : procFun16000 : EXIT var0698 : END SELect :
3220
3230 END REPeat var0698
3240 procFun4580

Next we will tidy up the SELect

SELect ON
QLiberator converts SELect’s into GO TO’s, and sometimes IT..THEN's internally. DeLib will try
to convert them back for you.

Tidying up the above example

3100 REPeat var0698
3110 event = MCALL (#ad6)
3120 SELect ON event
3130 ON event = -1 : MCLEAR #ad6 : CLOSE #6 : EXIT var0698
3140 ON event = -2 : MCLEAR #ad6 : CLOSE #6 : procFun9240 : EXIT var0698
3150 ON event = -3 : MCLEAR #ad6 : CLOSE #6 : procFun12750 : EXIT var0698
3160 ON event = -4 : MCLEAR #ad6 : CLOSE #6 : procFun22310 : EXIT var0698
3170 ON event = -5 : MCLEAR #ad6 : CLOSE #6 : procFun22650 : EXIT var0698
3180 ON event = -6 : MCLEAR #ad6 : CLOSE #6 : procFun17110 : EXIT var0698
3190 ON event = -7 : MCLEAR #ad6 : CLOSE #6 : procFun17970 : EXIT var0698
3200 ON event = -8 : MCLEAR #ad6 : CLOSE #6 : procFun25570 : EXIT var0698
3210 ON event = -9 : MCLEAR #ad6 : CLOSE #6 : procFun16000 : EXIT var0698
3220 END SELect
3230 END REPeat var0698
3240 procFun4580

Notice how the two empty lines 3120, and 3220 have now been used. Compiled programs with
saved line numbers makes things easier. If the compiled program did not have line numbers saved,
then you would have to add them where you think they are needed.

FOR..NEXT..END FOR statements
QLiberator uses the same code for a NEXT and a END FOR in FOR loops.

So if you see two END FOR's in the same loop. The first one is probably a NEXT.

8

IF..THEN..ELSE
SMSQ/E can be more fussy about IF..THEN's than QDOS. On LOADing the following into
SMSQ/E, you may get syntax errors like. At line 277:2 incomplete SELect clause

243 ON var8978 = 99 :
247 IF ((var8938 = 0) OR var88F8%) THEN procFun1953 : ELSE
249
275 ...
277 procFun1727 : END IF
279 procFun1259

Although SMSQ/E complains about a SELect clause, In this case it’s the IF..THEN..ELSE it’s
upset about.

If you change the code to something like this -

243 ON var8978 = 99 :
247 IF ((var8938 = 0) OR var88F8%) THEN
248 procFun1953
249 ELSE
250 ...
275 ...
277 procFun1727
278 END IF
279 procFun1259

SMSQ/E will then stop complaining about it.

Another common problem with IF..THEN is in REPeat loops, to exit the loop. DeLib can have
problems with an IF THEN..EXIT loop, As it looks exactly like a IF..THEN..ELSE

9940 var0880 = 0
9950 IF ((mark%(var0858) <> 129) OR (fil$(var0858,1) = ">")) THEN var0858 = (var0858 + 1) : GO TO
 9950 : END IF
9960 IF ((var0878 + fileng(var0858)) < (FREE_MEM - (1024 * 10))) THEN
9970 var0878 = (var0878 + fileng(var0858))
9980 var0868 = (var0868 + fileng(var0858))
9990 ELSE
10000 var0888 = (var0858 - 1) : GO TO 10050 : END IF
10010
10020 var0858 = (var0858 + 1)
10030 IF (var0868 = total) THEN var0888 = (var0858 - 1) : ELSE
10040 GO TO 9950 : END IF
10050 FOR var03A0 = var0860 TO var0888

In the above example, it looks like we have a REPeat loop starting at line 9940, and ending on line
10040. But the END REPeat is in the ELSE part of an IF..THEN

When tidied up it looks like this.

9

9940 REPeat var0880
9950 IF ((mark%(var0858) <> 129) OR (fil$(var0858,1) = ">")) THEN var0858 = (var0858 + 1) : NEXT

var0880 : END IF
9960 IF ((var0878 + fileng(var0858)) < (FREE_MEM - (1024 * 10))) THEN
9970 var0878 = (var0878 + fileng(var0858))
9980 var0868 = (var0868 + fileng(var0858))
9990 ELSE
10000 var0888 = (var0858 - 1) : EXIT var0880
10010 END IF
10020 var0858 = (var0858 + 1)
10030 IF (var0868 = total) THEN var0888 = (var0858 - 1) : EXIT var0880 : END IF
10040 END REPeat var0880
10050 FOR var03A0 = var0860 TO var0888 STEP 1

Notice how the ELSE in line 10030 has become an EXIT, and the END IF on the end of 10040 has
gone to line 10030.

What has happened is that DeLib saw a GO TO after the var0888 = (var0858 - 1). Which looks
exactly like an ELSE. DeLib tries to correctly identify any GO TO's at the end of the True block of
an IF..THEN, to see if it's actually an IF..THEN..ELSE. But REPeat loop EXIT's can confuse it.

DEFine FuNctions
There is no easy way to determine if a FuNction in a Qliberated program returns a number, or a
string. This is not a problem for SMSQ/E. But QDOS want's a '$' on the end of a string FuNction
name.
If you may want to use the decompiled program in QDOS. Then you should examine all the
DEFine FuNctions to see if they return a string. Then add a '$' to the definition, and all the calls.

DATA statements
You may find a GO TO right before DATA statements, that points to the next line. Essentially just
jumping over the DATA.

This is because the DATA is contained within the compiled program, and the compiled program
needs to jump over the data at run time. During the decompile, DeLib sees the jump, and thinks it's
a GO TO. You can just delete these GO TO's.

10

Hand decompiling
If you are having problems decompiling, or you think that something has gone wrong in the
decompile. Or maybe, your just interested in how it works. Then you want to decompile the
compiled program manually.

These are a few brief notes to help you get started decompiling by hand.

You don't need to understand machine code to decompile by hand. A QLiberated program is just a
sequence of instructions, optionally followed by some data. And making extensive use of a stack.

If you examine the DeLib Keys document, it will tell you what the instruction codes mean, and how
many additional bytes are required by each instruction.

You will need to disassemble the original compiled object code, You could probably use a HEX
dump instead. The DeLib Technical document gives information on the internal layout of compiled
programs.

To make a better understanding of how the compiled program works. It's worth writing short
BASIC test programs, and then compiling them. Then disassemble and study it.

Here are a few examples of compiled SuperBASIC program lines to get you started.

PAPER#4,0
02 We are about to do a command
 92 08034000 float 4 Put 4 on the stack
66 90 #.., Put a '#..,' around the item on the stack
00 92 00000000 float 0 Put 0 on the stack
66 00 no seperator No adjustment to stack
00 96 0018 paper Do PAPER, The 0018 is a reference to the

name list

PRINT#5,20*5
02
 92 08035000 float 5
66 90 #..,
00 92 08055000 float 20 Put 20 on the stack
00 92 08035000 float 5 Put 5 on the stack
0E multiply Multiply two numbers on the stack
66 00 no seperator
96 0008 print

x=RESPR(1234)
00 92 080B4D20 1234 Put 1234 on the stack
B6 respr() Do RESPR
 D8 0028 assign x Assign variable 0028 with value on stack

n(5,2)=100
00 92 08076400 100 Put 100 on the stack
00 92 08035000 5 Put 5 on the stack
00 92 08024000 2 Put 2 on the stack
7C 02 0040 assign array Assign the second index of array 0040

11

