De-Lib Decompiler Technical Notes

This document contains notes for my use on the De-Lib, QLiberator decompiler. But it may be of
help for anyone trying to understand how the decompiler program works.

First a few notes on the internal make up of a compiled executable.
The compiled program can be split into four main parts.

The first is a header and the initialization of the compiled program, checking for the existence of the
runtime code in memory. Although the runtime code may also be built in here

The second part is the encoded version of the original SuperBASIC program.

The third part, (if present) is a list of the SuperBASIC line numbers, and offsets from the start of the
program, to the starts of the individual lines of BASIC in the encoded part.

The fourth part is the Name List, and Name Table area.

This part may also contain externally loaded commands and functions.

Note that unlike Turbo/SuperCharge, codes are byte sized, and not always on word boundaries.
So there are some CHR$(0) used as padding for things that have to be on word boundaries (floats,
strings, etc.). But beware, not all CHR$(0) are padding, some are part of the compiled code.

Martin Head 18/03/2025 V1.00

Procedures and Functions

While Procedures and Functions with the same names appear in all the decompilers. They may
differ in their coding to allow for differences in the decompilers.

PROCedure SaveMe
Saves a copy of the program

FuNction GetString$(ptr)
Returns a string of a standard QDOS string (word length then bytes of string) stored in memory at

ptr

FuNction GetInt(ptr)
Returns a signed integer stored in memory at ptr

FuNction GetWord(address)
Returns an unsigned integer stored in memory at address

FuNction FLT(string$)
Converts a 12 character (six byte) hex string into a floating point number

FuNction FLT$(n)
Convert a Floating point number into a 12 character (six byte) hex string
by PJW & Steven Pool V0.02 03/12/17

FuNction NameListLen(start)
Returns the number of the highest name/var list entries
Start is the address in memory of the keyword table

PROCedure EmptyPipe (channel)
Makes sure the pipe is empty. If it is not empty, it is reported to channel, the pipe is emptied
displaying the contents of the pipe.

FuNction GetTOS$
Remove and return the item at the rear end of the pipe.

PROCedure LoadFile (file$)
Load the file (file$) and set base addresses initialBase, base, and filelength.

PROCedure GetVersion
Get program version information and set marker variables.
Also sets the QlibVersion variable

PROCedure InitMain
Set up variables for decompiling.

PROCedure StatementSeperator
If not a new line output a colon (:) seperator

PROCedure CheckSELects (nl)
Checks for any outstanding SELect processing to deal with. If nl is 1, then we are at the start of a
new line

PROCedure CheckELSE (ptr)
Check to see if an ELSE is needed. ptr is the current program position.
Return either an empty string or "ELSE"

FuNction CheckENDIF
Check for pending END IF

PROCedure GetFileNames
Get the filenames required and set the global variables
Enter an empty string for the executable to reuse previous values

FuNction FindLineNo (offset)
Scan the line number list for the offset for the required line number

PROCedure DoProcFun
Create a DEFine Proc/Fun line prog points at the offset after a goto

FuNction GetNameVar$(ident)
Returns a name, or a variable. If actual variable name does not exist in namelist
then return in the form, varXXXX

FuNction LineEmpty(num)
Checks to see if the supplied line number is empty. Returns 1 if it is, or 0 if not or does not exist

FuNction GetFORvalue$
Read the next FOR value and return as a string

PROCedure Listnames
List all the names and variables in the currently loaded compiled program to a file
(De compiling of the program must have been started at least once)

PROCedure CheckExtensions
Chect to see if there are any embedded extensions. If so offer to extract them

PROCedure ListTable (ch,table)
List the Procedure and Function names in the table, to the channel ch

PROCedure ListLineNo
List all the line numbers (if they exist) in the currently loaded compiled program to a file

PROCedure CheckExternals
Check to see if there are any Procedures or Functions assigned as 'Externals’, and list them in the
log file

FuNction GetKeywordType (nlAddress)
Return the command/function type from the systems name table. 1=Function, 2=Command,

-1=problem.

Also handles any Qliberator SuperBASIC extensions that may not be loaded, like Q_ERR_ON

PROCedure CheckLineNumbers
Check the line number integrity of the just decompiled program, that has been saved to a file. And
reports the results to the log file

Global variables

filename$ Name of the executable file

filelength Length of executable file.

fileData The executables data space.

initalBase Loaded base address, may be different to ‘base’ if Qemulator header found.
base Start of the executable.

finish End of the executable.

progOffset Offset from start of executable to start of BASIC program area.

prog Running pointer for the BASIC program.

basicProgStart Start of BASIC program area.

varlnitOffset Offset from start of executable to start of variable init area.
varlnitStart Start of variable init area.

keywords Start of keyword table.

progEnd End of BASIC program area.

jobName$ Executables job name.

lineNoExist Flag for the existence of a line number table.

0=No line number table
1=Line number table exists

externalProcFunlist Greater than 0, if 'External' Procedures and Functions are included.

lineNumberList Address of the start of the line number table. If it exists.
lineNumberListEnd Address of the end of the line number list. If it exists.

keywordOffsetAddress that is a base for accessing Keywords. Not a pointer to the keyword

list itself.
lineCount Number of program lines decompiled.
lineNo Line number of line currently de compiling.
key Holds the current operation prefix code.
ch Channel to send decompiled output to.
logCh Channel to send Errors & log to.
parmCount Used in keyword entries for number of parameters on the stack
cmdType Used in keyword entries for type of call

1 = Procedure

procFun$

pcount
InIF

inFun

newLine
InSel
selString$
selFlag
selTOFlag
selTOstring$

endWhenAdd
ReadFlag

forvar$
forFlag

forCount
forSelCount
forSelString$
pauseLine

QlibVersion

localLineNo
datalineNo

The name of the current Procedure or Function

Number of items in the pipe.
Number of levels of nested IF’s.

Number of items of nested function calls

0 = Not at the start of a new line.

Number of levels of nested SELect’s.

Current SELect selection string.

Set when doing a SELection selection string.

Flag that indicates that a "TO'" has just been done on a SELect ON
Holds a SELect like '1 TO 10' as it is being built.

Address of END WHEN when in a WHEN ERRor

Flag that is set during a READ into an array

Control variable for a FOR (may not be used)

Flag that is set when a FOR selection is being set up. It disables any GO TO's
during the selection setting up.

Stores the stack position during FOR selection.

Number of items in a FOR selection.

Used to hold a FOR selection e.g. 1,3,5 TO 10

Sets the number of lines to be decompiled, before pausing.

Version number e.g. QLib version 3.36, returns 336

Line number of current LOCal line. Used for LOCal a,b,c lines.
Line number of current DATA line. Used for DATA 1,2,3 lines.

Arrays

nameList(x,2) Array of offsets for keywords at end of code.
Second index - 0 - name table type $01 to $18
1 - 0 for 'varxxx' type variable
>0 an offset into the namelist for a name
2 - 0 normal variable
1 for a function
2 for a command

selStack(10,2) Holds information on nested SELect’s
Second index - 0 Pointer to address of END SELect
1 Pointer to start of code block
2 Select variable

funLevel(x,1) Array holding information on namelist keyword functions, or Proc/Fun calls.
Second index - 0 FunFlag 0 for a command/procedure
1 for a function
1 FunParmCount

ifStack(x,1) Array holding information on nested IF..THEN's
Second index - 0 Destination address of ELSE or END IF
1 A flag for the ELSE status
0 - Inhibit ELSE check on next GO TO ($CA) code
1 - Destination address. May be ELSE of END IF

Identifying compiler versions
Finding the version of QLiberator used to create the compiled program can be a bit tricky.

Version 3.xx is the easiest one. The version number appears as a four byte ASCII string just before
the start of the compiled SuperBASIC program.

Versions 1.xx and 2.xx can be a problem. One method is to look for the version number of the
embedded runtimes (if installed) as ASCII text. Other than that there does not seem to be much
difference between the code in a compiled program without the runtimes.

However 40 bytes (decimal) before the start of the SuperBASIC program the following byte
sequences appear

V1.xx $DECCD2CB Budget version 1987
V2.xx $CCD3CCC8 1986

I don't know how accurate this is between different versions, or if it's some kind of serial number.

Layout of compiled object file

Header area

Initialization and
Runtime module(optional)

Compiled
SuperBASIC program

SuperBASIC Extensions
(optional)

Jump for Externals
(optional)

Line number list
(optional)

Name list

Externals
(optional)

Name/Variable table

Header area

At the start of the executable, just after the job name, there are some offsets into the different parts
of the file.

base, is the start of the executable code, and the pointers are offsets from the base address. Offset
shown are in decimal

base + 32 Long word pointer to start of encoded SuperBASIC program.
base + 36 Long word pointer to the start of the Name/Variable table.

base + 40 Long word pointer to the start of the list of Line numbers/Offsets.
base + 44 unidentified, should be in range 2->4
base + 46 Long word pointer, relative to here, (not the base of the program)

to the SuperBASIC DATA start
base + 50 Word, Channel count.
base + 52 Word, Buffer size.
base + 54 Word, Heap chunk size.
base + 56 Long, Heap size.

base + 60 Word, Return stack size.

base + 62 Word, Name table entry of CMDS$ variable. - $FFFF if none

base + 64 Long word pointer to the start of the Name list.

base + 68 Long word pointer to start of SuperBASIC installed extensions.
base + 72 Long, Data space size. Seems to be invalid in Qlib versions < 3.00

base + 76 Long, Stack size.

base + 80 Byte, Stats.

base + 81 Byte, AUTOF. - 0=off, 1=on

base + 82 Long word pointer to 'Externals' linked list.
base + 86

base + 88 Byte/Word, WINDS - $FF00=off

Initialization and Runtime module

This holds the Qlib initialization code, and the runtime code (if included).

Compiled SuperBASIC program

This is the compiled version of the original SuperBASIC program.

In Qlib versions 3.00 and above, the Qliberator version number is stored just before the start of the
compiled SuperBASIC as a 4 byte string.

SuperBASIC Extensions (optional)

This holds any SuperBASIC extensions that were included in the original compile.

Jump for Externals

See Externals list below

Line number list

This is a list of the SuperBASIC line numbers (word), and a long word offset from base into the
encoded SuperBASIC program.

The last entry starts with $FFFF, and it is a pointer to the end of the SuperBASIC program.
Beware, some line numbers have the most significant bit set. I have only noticed this in DATA
statements.

Name list

This is a list of SuperBASIC keywords used, and may also contain some of the original variable
names.

The format of the list is similar to the Name list in QDOS.

byte, length of name, followed by the characters of the name. e.g. $05 'PRINT'

Note that like in the QL the names may start on odd addresses.

Externals list

If there are any Procedures or Functions marked as 'externals' (REMark $$external). They will
appear here as a linked list.

The format of the linked list is different for Procedures and Functions, but follows a similar format.

Procedures

Long word
Word
Word
Bytes

Long word
Word
Word
Word
Long word

Functions

Long word
Word
Word
Long word
Bytes

Word
Word
Word
Long word

pointer to next list item, or 0 if last in list

usually $0002

if not zero, then this is an offset to the NOP ($4E71) - 2

Name length (byte), then bytes of real Procedure name padded to a word
boundary

$4E71
$283C (move.l #....,d4)
offset from the start of BASIC, to the start of the Procedure

pointer to next list item, or 0 if last in list
usually $0002
0

Name length (byte), then bytes of real Procedure name padded to a word
boundary

$4E71
$283C (move.l #....,d4)
offset from the start of BASIC, to the start of the Function

10

Name/Variable table

This is a list of information on all the names and variables used in the program. The entries in the
list are either 1, or 3 bytes long. The 3 byte entries extra word contains an offset from the start of the
Name list, to the keyword, or variable name. The table follows the following format.

$01
$02
$03
$04
$05
$06
$07

String variable

Float variable
Integer variable
String array

Float array

Integer array

FOR control variable

$11
$12
$13
$14
$15
$16
$17
$18

[word]
[word]
[word]
[word]
[word]
[word]
[word]
[word]

Name list string variable

Name list float variable

Name list integer variable
Name list string array

Name list float array

Name list integer array

Name list FOR control variable
Name list keyword

Name/Variable references increase in steps of 8. So to find a variable entry in the table, Divide the
variable reference by 8, and this will be the entry number in the Name/Variable table.

Entries from $11 to $18 refer to names in the namelist. The [word] is an offset from the start of the
namelist.

11

Format of program storage in the compiled program

IF .. THEN
IF. THEN IF. THEN..ELSE
] Code $CC Code $CC
True True
If not statements If not statements
true true
— Code $CA
> False
statements
‘—
REPeat loops

On the REPeat line, the control variable is set to O(zero), but does not seem to be referenced to
again in the loop.

The END REPeat is a GO TO back to just after the assignment of the control variable.

NEXT is as above, and EXIT is a GO TO to just past the END REPeat.

FOR .. END FOR

FORz=xTOy

$9E [word]

$8A [word]

$8A [word]

$8A [word]

$A4 [word] [long] [long]

END FOR

$A2

[word] [long] [long]

Control variable, Word is variable reference

Start, Word is integer? value

End, Word is integer? value

Step, Word is integer? value

Word is variable reference,

first Long is a pointer to the start of the statements,
second Long is a pointer to just past the END FOR

Word is variable reference,
first Long is a pointer to the start of the statements,
second Long is a pointer to just past the END FOR

13

SELect

Somewhere between Qlib versions 3.22 and 3.36 the handling of SELect ON was changed.

Earlier SELect ON handling is as follows -

A simple SELect ON

SELect ONy
$CA [long]

ONy=10
$CA [long]

Do the y=10 test as y<>10

$CC [long]
$CA [long]
Statements
$CA [long]
Next test

ONy = 84,116
$CA [long]

Do the y=84 test as y<>84

$CC [long]

Do the y=116 test as y<>116

$CC [long]
$CA [long]
Statements
$CA [long]
Next test

A SELect ON with a TO

SELect ONy
$CA [long]

ONy=1TO 10
Do atest thaty >=1
$CC [long]

Do a test that y > 10
$CC [long]

$CA [long]
Statements

Jump to the first test. (skip over the next $CA)

Jump to the END SELect

If the test is not true, jump to the start of Statements
Otherwise, jump over the statements to Next test, or END SELect

Jump to the END SELect

Jump to the END SELect
If the test is not true, jump to the start of Statements

If the test is not true, jump to the start of Statements
Otherwise, jump over the statements to Next test, or END SELect

Jump to the END SELect

Jump to the first test. (skip over the next $CA)

If not true jump to the GO TO ($CA)

If not true jump over the next GO TO ($CA)
Jump over the statements to the next test, or END SELect

14

Later SELect ON handling is as follows -

SELect is a bit of a problem area. A simple ON x=3 is OK. But a ON x=1 TO 5, is awkward, as the
1 TO 5 is converted into what looks like an IF..ELSE..THEN to the decompiler.

A simple SELect ON

SELect ONy
$CA [long]

ONy=10

$CA [long]
Do the y=10 test
$D0 [long]
$CA [long]
Statements

$CA [long]
Next test

ONy = 84,116
$CA [long]

Do the y=84 test
$D0 [long]

Do the y=116 test
$D0 [long]
$CA [long]
Statements

$CA [long]
Next test

A SELect ON with a TO

SELect ONy
$CA [long]

ONy=1TO 10
Do atestthaty >=1
$CC [long]

Do a test that y > 10
$CC [long]

$CA [long]
Statements

Jump to the first test. (skip over the next $CA)

Jump to the END SELect

If the test is true, jump to the start of Statements
Otherwise, jump over the statements to Next test, or END SELect

Jump to the END SELect

Jump to the END SELect
If the test is true, jump to the start of Statements

If the test is true, jump to the start of Statements
Otherwise, jump over the statements to Next test, or END SELect

Jump to the END SELect

Jump to the first test. (skip over the next $CA)

If not true jump to the GO TO ($CA)

If not true jump over the next GO TO ($CA)
Jump over the statements to the next test, or END SELect

15

Procedure and Function definitions

$CA
$76

$60
$5E
$5C

[long]

[byte] [words]

$02

Local variables

$98 [word]

$98 [word]

$9C [word]

$72 [byte, word]
$70 [byte, word]
$74 [byte, word]
DATA statements

A GO TO to just past the END DEFine
The byte is the number of parameters, and the Words are the
parameters

RETurn a value on the stack (FulNctions)
RETurn/END DEFine Procedure
END DEFine Function, I don't know what the $02 means

Integer, Word is variable reference
Float, Word is variable reference
String, Word is variable reference

Integer array, byte is number of index's, Word is variable reference
Float array, byte is number of index's, Word is variable reference
String array, byte is number of index's, Word is variable reference

A DATA line starts with a $CA code pointing to just past the end of the DATA statements

The DATA value is placed on the stack, followed by a data $CO code. This is then repeated for
however many more DATA values there are.

Finally there is another $CA code pointing to either the next DATA line?, or pointing to the end of
the program.

16

