Code keys for De-Lib V1.00 18/03/2025

Code Additional Description All Codes are in HEX

SRk g ke sk Operators SRk g ke sk

4A = Equal

4C <> Not equal

50 < Less than

4E > Greater than

54 <= Less than or equal
52 >= Greater than or equal
0A + Add

0C - Subtract

OE * Multiply

10 / Divide

42 & Join strings

3A && Bitwise AND

3C I Bitwise OR

3E AN Bitwise XOR

40 ~ Bitwise NOT

34 OR AsinIF (aORDb)
32 AND AsinIF (a AND b)
36 XOR

46 MOD

48 DIV Divide (integer)
38 NOT (float)

44 INSTR

30 A Raise to a power
56 == Almost equals

Fdkkk A ctual values ##%**

8A [2 bytes] An actual integer to put on stack

88 [6 bytes] An actual (6 byte) floating point to put on stack

92 [4 bytes] An actual (4 byte) floating point to put on the stack
8C [undefined] An actual string to put on stack

*¥k%% Normal variables *****
D2,80,D4 [2 bytes] Get a variable (I don't know what the difference is)
78 [3 bytes] Get a Name list entry with a separator.
1st bye is separator
2nd word is variable reference
7E [3 bytes] Get a string slice (from an array)
1st byte is the number of indexes

2nd word is variable reference

D6, D8, 84 [2 bytes] Assign a variable

S s sfe sk sk Arrays sk ok ok

6C [4 bytes] DIMention an integer array 1st byte is number of elements, 2nd word var ref
6A [3 bytes] DIMention a float array ~ 1st byte is number of elements, 2nd word var ref
6E [2 bytes] DIMention a string array 1st byte is number of elements, 2nd word var ref
86 [4 bytes] Get an array element (string)? slice?

1st byte is a separator to go afterwards e.g. for a comma - x(3),

2nd byte is the number of indexes
3rd word is the variable reference

7A [3 bytes] Get an array element
1st byte is the number of the indexes (on stack)
2nd word is the variable reference

7C [3 bytes] Assign an array element
1st byte is index number - number of index's is on the stack
2nd word is the variable reference

68 [3 bytes] Assign an array element e.g. x$(y,3) or x$(y, 1 TO 10)
1st byte is number of indexes - number of index's is on the stack
2nd word is the variable reference

*dxdk Stack manipulation *****

14

16

66

BC

[1 byte]

[1 byte]

Convert to a negative (float)

Duplicate the item that is on the top of the stack

Add a parameter separator to an item on the top of the stack
Like second byte of type word in QDOS

00=none 10=, 20=; 30=\ 40=! 50=TO 80=precede with #

Place a parameter separator on the stack. Codes as above

*¥x4% Keyword table commands *****

02

Precedes actual parameters of a command

*dk%kk Procedures and Functions *****

58

CE

96

76

9A
98
9C

72
70
74

S5E
5C
60

[4 bytes]

[2bytes]

[undefined]

[2 bytes]
[2 bytes]
[2 bytes]

[3 bytes]

[3 bytes]
[3 bytes]

[byte 02]

Precedes a namelist keyword function, or a Proc/Fun call
Call a Proc/Fun

Call a keyword table entry, procedure or function
Name list command, Word is name list reference (increments in 8's)

Define a Proc/Fun. 1st byte is number of parameters, Repeating
words are the variables

LOCal variable(integer)
LOCal variable (float)
LOCal variable (string)

LOCal integer array 1st byte is number of indexes
LOCal float array ~ 1st byte is number of indexes
LOCal string array ~ 1st byte is number of indexes

RETurn/END DEF
End Define Function - (Don't know what the 02 is for, also seen 0)
RETurn a value on the stack

sksksksksk FOR IOOPS sksksksksk
9E [2bytes] Get FOR control variable

A0 [6 bytes] Used in mixed selections
1st word is the variable reference
2nd long is a pointer to just past the END FOR

A4 [undefined] Start the FOR
1st word is the variable reference
2nd long is a pointer to the statements
There are then 0 to the number of (selections-1) long words that point at
the selection number+1

There is then either -

For a simple FOR x=1TO 10

There is a long word that points at just past the END FOR

For a mixed FOR x=1,3,5,7 TO 10

There is a long word with the value 4, pointing to the statements

A2 [undefined] END FOR
1st word is the variable reference
2nd long is a pointer to the statements
There are then 0 to the number of (selections-1) long words that point at
the selection number+1
There is then a long word with the value 4

ek sk e sk IF“THEN ke sk ok sk
CC [4 bytes] offset pointer to ELSE or END IF

In Qlib versions below 3.33? CC is also used in SELect ON

DO [4 bytes] pointer to ON..=..true long offset to true section

In Qlib versions below 3.33? SELect ON is handled differently
CC [4 bytes] pointer to ON..=..true long offset to true section

k%k% Various QDOS functions ***

04 INT()

12 ABS()

18 COS()
1A SIN()

1C TAN()
1E COT(
20 ASIN()
22 ACOS()
24 ATAN()
26 ACOT()
28 SQRT()
2A LN(

2C LOG10()
2F EXP()
AE CODE()
B2 CHR$()
AC LEN()
B6 RESPR()
B8 FILL$()
BO EOF for embedded DATA statements
62 ERNUM If 62 is followed by [8A] [2 bytes] [4A] then it's ERR_xx

64 ERLIN

*xd%k% Various QDOS commands *****

CA

C6

A6
C4

5A
BE

Co
A8
C2
94

C8
B4

AA

[4 bytes]

[4 bytes]

[3 bytes]

[4 bytes]

[4 bytes]

GO TO watch out for Def Proc/Fun & REPeat & IF/THEN/ELSE
long word is offset to destination
GO TO a line number of a variable on the stack

GO SUB long word is offset to destination
GO SUB to a line number of a variable on the stack

STOP
READ 1st byte is D6 = integer, D8 = float, 84 = string
80 = array, data is READ as a variable and placed on
the stack. To be followed by an array assignment
2nd word variable reference
DATA Get value off the stack

RESTORE Long word pointer to DATA line + 6
RESTORE to a line number of a variable on the stack

WHEN ERRor Long word is an offset to middle of END WHEN
which is a B4, CONTINUE

RETRY Expects a word on the stack as a line number

CONTINUE

[6 + (4 * number of options) + (6 * number of options)] ON..GOTO, ON..GOSUB

1st word is number of values
2nd long is pointer to next line
For the number of options there is a table of long words (options)
each is a pointer from the current position to another table of
GO TO/GO SUB's
Then for each option
word A6 for a GO SUB, or CA for a GO TO. Then for each option
a long offset
ON GO SUB ends in CA, long offset

