
De-Lib Decompiler Technical Notes

This document contains notes for my use on the De-Lib, QLiberator decompiler. But it may be of
help for anyone trying to understand how the decompiler program works.

First a few notes on the internal make up of a compiled executable.

The compiled program can be split into four main parts.

The first is a header and the initialization of the compiled program, checking for the existence of the
runtime code in memory. Although the runtime code may also be built in here

The second part is the encoded version of the original SuperBASIC program.

The third part, (if present) is a list of the SuperBASIC line numbers, and offsets from the start of the
program, to the starts of the individual lines of BASIC in the encoded part.

The fourth part is the Name List, and Name Table area.
This part may also contain externally loaded commands and functions.

Note that unlike Turbo/SuperCharge, codes are byte sized, and not always on word boundaries.
So there are some CHR$(0) used as padding for things that have to be on word boundaries (floats,
strings, etc.). But beware, not all CHR$(0) are padding, some are part of the compiled code.

Martin Head 22/06/2025 V1.01

1

Procedures and Functions

While Procedures and Functions with the same names appear in all the decompilers. They may
differ in their coding to allow for differences in the decompilers.

PROCedure SaveMe
Saves a copy of the program

FuNction GetString$(ptr)
Returns a string of a standard QDOS string (word length then bytes of string) stored in memory at
ptr

FuNction GetInt(ptr)
Returns a signed integer stored in memory at ptr

FuNction GetWord(address)
Returns an unsigned integer stored in memory at address

FuNction FLT(string$)
Converts a 12 character (six byte) hex string into a floating point number

FuNction FLT$(n)
Convert a Floating point number into a 12 character (six byte) hex string
by PJW & Steven Pool V0.02 03/12/17

FuNction NameListLen(start)
Returns the number of the highest name/var list entries
Start is the address in memory of the keyword table

PROCedure EmptyPipe (channel)
Makes sure the pipe is empty. If it is not empty, it is reported to channel, the pipe is emptied
displaying the contents of the pipe.

FuNction GetTOS$
Remove and return the item at the rear end of the pipe.

PROCedure LoadFile (file$)
Load the file (file$) and set base addresses initialBase, base, and filelength.

PROCedure GetVersion
Get program version information and set marker variables.
Also sets the QlibVersion variable

PROCedure InitMain
Set up variables for decompiling.

PROCedure StatementSeperator
If not a new line output a colon (:) seperator

2

PROCedure CheckSELects (nl)
Checks for any outstanding SELect processing to deal with. If nl is 1, then we are at the start of a
new line

PROCedure CheckELSE (ptr)
Check to see if an ELSE is needed. ptr is the current program position.
Return either an empty string or "ELSE"

FuNction CheckENDIF
Check for pending END IF

PROCedure GetFileNames
Get the filenames required and set the global variables
Enter an empty string for the executable to reuse previous values

FuNction FindLineNo (offset)
Scan the line number list for the offset for the required line number

PROCedure DoProcFun
Create a DEFine Proc/Fun line prog points at the offset after a goto

FuNction GetNameVar$(ident)
Returns a name, or a variable. If actual variable name does not exist in namelist
then return in the form, varXXXX

FuNction LineEmpty(num)
Checks to see if the supplied line number is empty. Returns 1 if it is, or 0 if not or does not exist

FuNction GetFORvalue$
Read the next FOR value and return as a string

PROCedure Listnames
List all the names and variables in the currently loaded compiled program to a file
(De compiling of the program must have been started at least once)

PROCedure CheckExtensions
Chect to see if there are any embedded extensions. If so offer to extract them

PROCedure ListTable (ch,table)
List the Procedure and Function names in the table, to the channel ch

PROCedure ListLineNo
List all the line numbers (if they exist) in the currently loaded compiled program to a file

PROCedure CheckExternals
Check to see if there are any Procedures or Functions assigned as 'Externals', and list them in the
log file

3

FuNction GetKeywordType (nlAddress)
Return the command/function type from the systems name table. 1=Function, 2=Command,
 -1=problem.
Also handles any Qliberator SuperBASIC extensions that may not be loaded, like Q_ERR_ON

PROCedure CheckLineNumbers
Check the line number integrity of the just decompiled program, that has been saved to a file. And
reports the results to the log file

Global variables

filename$ Name of the executable file
filelength Length of executable file.
fileData The executables data space.
initalBase Loaded base address, may be different to ‘base’ if Qemulator header found.
base Start of the executable.
finish End of the executable.

progOffset Offset from start of executable to start of BASIC program area.
prog Running pointer for the BASIC program.
basicProgStart Start of BASIC program area.
varInitOffset Offset from start of executable to start of variable init area.
varInitStart Start of variable init area.
keywords Start of keyword table.
progEnd End of BASIC program area.
jobName$ Executables job name.

lineNoExist Flag for the existence of a line number table.
0=No line number table
1=Line number table exists

externalProcFunlist Greater than 0, if 'External' Procedures and Functions are included.

lineNumberList Address of the start of the line number table. If it exists.
lineNumberListEnd Address of the end of the line number list. If it exists.

keywordOffsetAddress that is a base for accessing Keywords. Not a pointer to the keyword
list itself.

lineCount Number of program lines decompiled.
lineNo Line number of line currently de compiling.
key Holds the current operation prefix code.

ch Channel to send decompiled output to.
logCh Channel to send Errors & log to.

parmCount Used in keyword entries for number of parameters on the stack
cmdType Used in keyword entries for type of call

1 = Procedure

4

procFun$ The name of the current Procedure or Function

pcount Number of items in the pipe.
InIF Number of levels of nested IF’s.

inFun Number of items of nested function calls

newLine 0 = Not at the start of a new line.
InSel Number of levels of nested SELect’s.
selString$ Current SELect selection string.
selFlag Set when doing a SELection selection string.
selTOFlag Flag that indicates that a 'TO' has just been done on a SELect ON
selTOstring$ Holds a SELect like '1 TO 10' as it is being built.

endWhenAdd Address of END WHEN when in a WHEN ERRor

ReadFlag Flag that is set during a READ into an array

forVar$ Control variable for a FOR (may not be used)
forFlag Flag that is set when a FOR selection is being set up. It disables any GO TO's

during the selection setting up.
forCount Stores the stack position during FOR selection.
forSelCount Number of items in a FOR selection.
forSelString$ Used to hold a FOR selection e.g. 1,3,5 TO 10

pauseLine Sets the number of lines to be decompiled, before pausing.

QlibVersion Version number e.g. QLib version 3.36, returns 336

localLineNo Line number of current LOCal line. Used for LOCal a,b,c lines.
dataLineNo Line number of current DATA line. Used for DATA 1,2,3 lines.

whenVarDef Flag that is set when doing a WHEN variable

5

Arrays

nameList(x,2) Array of offsets for keywords at end of code.
Second index - 0 - name table type $01 to $18

1 - 0 for 'varxxx' type variable
 >0 an offset into the namelist for a name
2 - 0 normal variable
 1 for a function
 2 for a command

selStack(10,2) Holds information on nested SELect’s
Second index - 0 Pointer to address of END SELect

1 Pointer to start of code block
2 Select variable

funLevel(x,1) Array holding information on namelist keyword functions, or Proc/Fun calls.
Second index - 0 FunFlag 0 for a command/procedure

1 for a function
1 FunParmCount

ifStack(x,1) Array holding information on nested IF..THEN's
Second index - 0 Destination address of ELSE or END IF

1 A flag for the ELSE status
 0 - Inhibit ELSE check on next GO TO ($CA) code
 1 - Destination address. May be ELSE of END IF

Identifying compiler versions
Finding the version of QLiberator used to create the compiled program can be a bit tricky.

Version 3.xx is the easiest one. The version number appears as a four byte ASCII string just before
the start of the compiled SuperBASIC program.

Versions 1.xx and 2.xx can be a problem. One method is to look for the version number of the
embedded runtimes (if installed) as ASCII text. Other than that there does not seem to be much
difference between the code in a compiled program without the runtimes.
However 40 bytes (decimal) before the start of the SuperBASIC program the following byte
sequences appear

V1.xx $DECCD2CB Budget version 1987
V2.xx $CCD3CCC8 1986

I don't know how accurate this is between different versions, or if it's some kind of serial number.

6

Layout of compiled object file

7

Header area

Initialization and
Runtime module(optional)

Compiled
SuperBASIC program

SuperBASIC Extensions
(optional)

Jump for Externals
(optional)

Line number list
(optional)

Externals
(optional)

Name list

Name/Variable table

Header area

At the start of the executable, just after the job name, there are some offsets into the different parts
of the file.

base, is the start of the executable code, and the pointers are offsets from the base address. Offset
shown are in decimal

base + 32 Long word pointer to start of encoded SuperBASIC program.
base + 36 Long word pointer to the start of the Name/Variable table.
base + 40 Long word pointer to the start of the list of Line numbers/Offsets.
base + 44 unidentified, Anything less than 4 will open the 3 standard windows

4 is to do with Overlays
Anything greater than 4 will cause the WINDS flag to be tested

base + 46 Long word pointer, relative to here, (not the base of the program)
to the SuperBASIC DATA start

base + 50 Word, Channel count.
base + 52 Word, Buffer size.
base + 54 Word, Heap chunk size.
base + 56 Long, Heap size.
base + 60 Word, Return stack size.
base + 62 Word, Name table entry of CMD$ variable. - $FFFF if none
base + 64 Long word pointer to the start of the Name list.
base + 68 Long word pointer to start of SuperBASIC installed extensions.
base + 72 Long, Data space size. Seems to be invalid in Qlib versions < 3.00
base + 76 Long, Stack size.
base + 80 Byte, Stats. - 0=off, 1=on
base + 81 Byte, AUTOF. - 0=off, 1=on
base + 82 Long word pointer to 'Externals' linked list.
base + 86 unidentified, Seen 2, and 4 here
base + 88 Byte/Word, WINDS - $FF00=off
base + 90 Long word pointer to Globals

Initialization and Runtime module

This holds the Qlib initialization code, and the runtime code (if included).

Compiled SuperBASIC program

This is the compiled version of the original SuperBASIC program.
In Qlib versions 3.00 and above, the Qliberator version number is stored just before the start of the
compiled SuperBASIC as a 4 byte string.

8

SuperBASIC Extensions (optional)

This holds any SuperBASIC extensions that were included in the original compile.
$00 long offset from base to next extension
$04 long address of any initialization routine
$08 long offset to init table used by BP.INIT

$0C bytes of BP.INIT code

$xx init table used by BP.INIT

Jump for Externals

See Externals list below

Line number list

This is a list of the SuperBASIC line numbers (word), and a long word offset from the base of the
job into the encoded SuperBASIC program.
The last entry starts with $FFFF, and it is a pointer to the end of the SuperBASIC program.
Beware, some line numbers have the most significant bit set. I have only noticed this in DATA
statements.

Name list

This is a list of SuperBASIC keywords used, and may also contain some of the original variable
names.
The format of the list is similar to the Name list in QDOS.

byte, length of name, followed by the characters of the name. e.g. $05 'PRINT'

Note that like in the QL the names may start on odd addresses.

9

Externals list

If there are any Procedures or Functions marked as 'externals' (REMark $$external). They will
appear here as a linked list.

The format of the linked list is different for Procedures and Functions, but follows a similar format.

Procedures
Long word pointer to next list item, or 0 if last in list

Standard? SuperBASIC proc/function definition
Word usually $0002 - number of procedures
Word offset to the NOP ($4E71) - 2
Bytes Name length (byte), then bytes of real Procedure name padded to a word

boundary
Word - end of procedures
Word $0000 - no functions
Word $0000 - end of functions

Word $4E71
Word $283C (move.l #....,d4)
Long word offset from the start of BASIC, to the start of the Procedure

Then a branch always to code like this-
movea.l #$FFFFFE7C,a0
jmp $0024D00A(PC,a0.l)

just before the name list

Functions
Long word pointer to next list item, or 0 if last in list

Standard? SuperBASIC proc/function definition
Word usually $0002 - no procedures
Word $0000 - end of procedures
Word $0000 - no functions
Word offset to the NOP ($4E71) - 2
Bytes Name length (byte), then bytes of real Procedure name padded to a word

boundary
Word $0000 - end of functions

Word $4E71
Word $283C (move.l #....,d4)
Long word offset from the start of BASIC, to the start of the Function

Then a branch always to code like this-
movea.l #$FFFFFE7C,a0
jmp $0024D00A(PC,a0.l)

just before the name list

10

Name/Variable table

This is a list of information on all the names and variables used in the program. The entries in the
list are either 1, or 3 bytes long. The 3 byte entries extra word contains an offset from the start of the
Name list, to the keyword, or variable name. The table follows the following format, ending in $FF.

$00 Undefined $10 [word] Name list undefined
$01 String variable $11 [word] Name list string variable
$02 Float variable $12 [word] Name list float variable
$03 Integer variable $13 [word] Name list integer variable
$04 String array $14 [word] Name list string array
$05 Float array $15 [word] Name list float array
$06 Integer array $16 [word] Name list integer array
$07 FOR control variable $17 [word] Name list FOR control variable

$18 [word] Name list keyword

Name/Variable references increase in steps of 8. So to find a variable entry in the table, Divide the
variable reference by 8, and this will be the entry number in the Name/Variable table.

Entries from $10 to $18 refer to names in the name list. The [word] is an offset from the start of the
name list.

11

Format of program storage in the compiled program

IF ..THEN

IF..THEN IF..THEN..ELSE

 If not If not
 true true

REPeat loops

On the REPeat line, the control variable is set to 0(zero), but does not seem to be referenced to
again in the loop.

The END REPeat is a GO TO back to just after the assignment of the control variable.

NEXT is as above, and EXIT is a GO TO to just past the END REPeat.

12

Code $CC Code $CC

Code $CA

True
statements

True
statements

False
statements

FOR .. END FOR

FOR z = x TO y
$9E [word] Control variable, Word is variable reference
$8A [word] Start, Word is integer? value
$8A [word] End, Word is integer? value
$8A [word] Step, Word is integer? value
$A4 [word] [long] [long] Word is variable reference,

first Long is a pointer to the start of the statements,
second Long is a pointer to just past the END FOR

END FOR
$A2 [word] [long] [long] Word is variable reference,

first Long is a pointer to the start of the statements,
second Long is a pointer to just past the END FOR

13

SELect

Somewhere between Qlib versions 3.22 and 3.36 the handling of SELect ON was changed.

Earlier SELect ON handling is as follows -

A simple SELect ON

SELect ON y
$CA [long] Jump to the first test. (skip over the next $CA)

ON y = 10
$CA [long] Jump to the END SELect
Do the y=10 test as y<>10
$CC [long] If the test is not true, jump to the start of Statements
$CA [long] Otherwise, jump over the statements to Next test, or END SELect
Statements
$CA [long] Jump to the END SELect
Next test

ON y = 84,116
$CA [long] Jump to the END SELect
Do the y=84 test as y<>84
$CC [long] If the test is not true, jump to the start of Statements
Do the y=116 test as y<>116
$CC [long] If the test is not true, jump to the start of Statements
$CA [long] Otherwise, jump over the statements to Next test, or END SELect
Statements
$CA [long] Jump to the END SELect
Next test

A SELect ON with a TO

SELect ON y
$CA [long] Jump to the first test. (skip over the next $CA)

ON y = 1 TO 10
Do a test that y >= 1
$CC [long] If not true jump to the GO TO ($CA)
Do a test that y > 10
$CC [long] If not true jump over the next GO TO ($CA)
$CA [long] Jump over the statements to the next test, or END SELect
Statements

14

Later SELect ON handling is as follows -

SELect is a bit of a problem area. A simple ON x=3 is OK. But a ON x=1 TO 5, is awkward, as the
1 TO 5 is converted into what looks like an IF..ELSE..THEN to the decompiler.

A simple SELect ON

SELect ON y
$CA [long] Jump to the first test. (skip over the next $CA)

ON y = 10
$CA [long] Jump to the END SELect
Do the y=10 test
$D0 [long] If the test is true, jump to the start of Statements
$CA [long] Otherwise, jump over the statements to Next test, or END SELect
Statements
$CA [long] Jump to the END SELect
Next test

ON y = 84,116
$CA [long] Jump to the END SELect
Do the y=84 test
$D0 [long] If the test is true, jump to the start of Statements
Do the y=116 test
$D0 [long] If the test is true, jump to the start of Statements
$CA [long] Otherwise, jump over the statements to Next test, or END SELect
Statements
$CA [long] Jump to the END SELect
Next test

A SELect ON with a TO

SELect ON y
$CA [long] Jump to the first test. (skip over the next $CA)

ON y = 1 TO 10
Do a test that y >= 1
$CC [long] If not true jump to the GO TO ($CA)
Do a test that y > 10
$CC [long] If not true jump over the next GO TO ($CA)
$CA [long] Jump over the statements to the next test, or END SELect
Statements

15

Procedure and Function definitions

$CA [long] A GO TO to just past the END DEFine
$76 [byte] [words] The byte is the number of parameters, and the Words are the

parameters

$60 RETurn a value on the stack (FuNctions)
$5E RETurn/END DEFine Procedure
$5C $02 END DEFine Function, I don't know what the $02 means

Local variables

$98 [word] Integer, Word is variable reference
$98 [word] Float, Word is variable reference
$9C [word] String, Word is variable reference

$72 [byte, word] Integer array, byte is number of index's, Word is variable reference
$70 [byte, word] Float array, byte is number of index's, Word is variable reference
$74 [byte, word] String array, byte is number of index's, Word is variable reference

DATA statements

A DATA line starts with a $CA code pointing to just past the end of the DATA statements

The DATA value is placed on the stack, followed by a data $C0 code. This is then repeated for
however many more DATA values there are.

Finally there is another $CA code pointing to either the next DATA line?, or pointing to the end of
the program. A 5C code.

16

