FLP

Floppy Disk Driver
For the Sinclair QL

QFLP Disk Upgrade for MicroPeripherals Disk Systems
Versions

The MicroPeripherals QL Disk Interface was supplied in at least two
different versions. The main versions were version 3 (usually identified
the startup banner as V3.3) and version 5 (identified as V5.3). QFLP EPROMs
are identified as V1.193 (for version 3) and V1.19 (for version 5).

Installation Instructions
Removing the MicroPeripherals EPROM

Note the position of the notch on the short edge of the chip. Prise
the chip gently out of its socket with a screwdriver or IC extraction tool,
if you have one, being careful to apply even pressure so as not to bend any
of the metal legs.

Inserting the QFLP EPROM

Ensure that the legs on the new EPROM are straight and are at right
angles to the chip. If the pins straddle the socket holes it may be
necessary to correct the position of the legs by pressing them against a
hard, flat surface. Hold the chip with the notch in the same position as
the Micro Peripherals one was, locate the EPROM over the socket and then
press it firmly into place.

To obtain maximum performance from your upgrade you may remove the
cover from the disk interface and put a shorting link between pins 33 and
34 on the floppy disk connector. Pins 33 and 34 are the furthest from the
arrow on the connector. If you ever wish to replace the MicroPeripherals
EPROM, this shorting link must be removed.

Underside view of MicroPeripherals Disk interface

(Standard pin numbering)
1 33
000000000000 000
000000000000000

v %

~ The READY line is on pin 34 and its earth return is on pin 33. For best
performance, these pins should be connected together.

WARNING

The information for an EXECutable file is stored in a non-standard
way by the MicroPeripherals interface. This means that any EXECutable
files should be transferred to Microdrives before the EPROM is changed.
They may then be copied back to disk after the QFLP ROM has been
installed. Note that the free sector counts will be incorrect for disks
recorded using the Microperipherals EPROM.

The Floppy Disk Driver

The QL computer is delivered with two "mass storage" devices: the
Microdrives. These devices have the same function as the floppy disks on
more expensive personal computers, being designed for the permanent
storage of programs and data. Other devices which behave in the same way
as Microdrives (such as floppy or hard disks) may be added to the QL
"transparently”. This means that QDOS will ensure that a program does
not need to "know" where its data is stored. A Microdrive looks, to a
program, exactly the same as a floppy disk. This "device independence" is
a built-in characteristic of the QDOS operating system.

The simplest way of using a floppy disk system on the QL is to copy
all programs and data to floppy disks, and either add the command
"FLP_USE MDV" to all BOOT files, or type this command at the start of a
session on the QL. The effect of this command is to make the floppy disks
pretend to be rather large and fast Microdrives.

For example, a modified BOOT file for executing the PSION program
Quill could look like:

90 FLP_USE mdv: REMark - emulate microdrives
100 CLOSE #1: CLOSE #2
110 EXEC_W mdvl_quill

On the other hand, it is just as easy to use the floppy disks without
changing the name. All the filing system commands described in the
"Microdrives" section of the QL Concept Reference Guide will work with
floppy disks, provided the filenames start with "FLP" instead of "MDV":

FORMAT flpl_test formaits a new gloppy disk Ln drive 7
DIR f£ipd adirectory LLsting of $loppry disr 7
SAVE flpl myprog Save the cuwrient SuperBASIC program

as "myprog” £n 4loppy disk 7
OPEN_NEW #3,flp2_data creates and opendsd a new $Lle ‘data”
An gloppy disk 2
COPY mdvi_x TO flpl_x copiles §Lle x from Microdreive 1 Lo
tloppy disk 1

Floppy Disk Compatibility

The QJUMP Floppy Disk driver not only provides all the built-in
Microdrive filing system operations, but includes the extended filing
system operations provided in the Sinclair QL Toolkit and QJUMP Super
Toolkit II for Microdrives. This allows all the SuperBASIC extensions
provided in the Toolkits (e.g. FOP_OVER, RENAME etc.) to be used with the
floppy disks

OPEN OVERWRITE Trap #2, D0=1, D3=3

This variant of the OPEN call opens a file for write/read
whether it exists or not. The file is truncated to zero
length before use.

RENAME Trap #3, D0=4A, Al points to new name

This call renames a file. The name should include the
drive name (e.g. FLP1_NEW_NAME).

TRUNCATE Trap #3, D0=4B
This call truncates a file to the current byte position.

In addition the FS.FLUSH call for a file, not only flushes all the file
buffers, but, unlike the Microdrive driver, updates the map and the
directory. This means that a new file can be created, and if it is flushed,
then in the event of the QL being turned off or reset before the file is
closed, then all of the file (up to the point where it was last flushed), is
readable. In effect a FLUSH call is just the same as a CLOSE call, except
that the file remains open and the file pointer remains unchanged.

Auto-boot

If there is a disk in drive 1 when the QL is turned on (this may be
risky with some makes of floppy disk drive, particularly those with
permanently loaded heads) or reset (this should be safe with all drives),
then the QL will boot from the disk in drive 1, otherwise the QL will boot
from Microdrive 1 as usual. There is no direct control over the Disk drive
motor, the motor is turned off by the hardware in the face after 10 disk
rotations. To stop the motor, insert a disk into drive 1.

When a "directory device", such as a floppy disk, is accessed for the
first time, QDOS will allocate a block of memory for the device. In the
case of a floppy disk, the Sinclair standard format requires a block of
memory about 1.6 kilobytes long. This is rather larger than the Microdrive
block which is only about 0.6 kilobytes long. The auto-boot procedure
used ensures that if there is no disk in drive 1 when the QL is reset, then
the 1.6 kilobyte block for disk drive 1 will not be allocated. Programs that
are too large to execute when floppy disks are being used, should still
execute from microdrives.

Microdrive Emulation

The standard drivers also includes the SuperBASIC procedure
FLP_USE to change the name of the floppy disk driver.

FLP_USE mdv o«FLP_USE 'mdv'

reset the name of the floppy disk driver to "mdv", so that all
subsequent open calls for Microdrives will use the floppy disks instead.

For Example
FLP_USE mdv

OPEN #3,mdvl_myfile

will actually open the file "myfile" on floppy disk 1, rather than
trying to open a file on Microdrive 1.

Any three letters may be used as a new device name, in particular the
driver can be reset by the command:

FLP_USE flp

Floppy Disk Options

There are three parameters of the floppy disk system which are
available as user options.

The security level is selectable to allow a user to choose
higher speed of access at the cost of reduced immunity to
erroneous disk swapping. There are three levels of security, the.
lowest level still being at least as secure as common disk based
operating systems (e.g. MSDOS and CPM).

A user may specify the time taken for the disk drive motor
to get the disk speed to within the specification. '

A user may specify the number of tracks to be formatted ona
disk.

The parameters are specified by three forms of the FLP_OPT command:

FLP_OPT security level
FLP_OPT security level, start up time (in 50ths of a second)
FLP_OPT security level, start up time, number of tracks

Security

The Microdrive filing system is unusual in that, although the data is .
stored in "sectors" in just the same way as on a floppy disk, each sector
holds information which identifies the cartridge. When a cartridge is
changed the filing system will recognise the change the next time any
access is made to Microdrive. Standard floppy disk formats do not allow
this type of security, so the format used for QL floppy disks includes
identifying information in Track 0 Sector 1 of the disk. Clearly if this
were checked every time any access were made to the disk, then the floppy
disk system would be very slow indeed. Security, in the context of this
user option, is the extent to which the floppy disk system may be abused
by changing disks, while they are in use, without destroying data stored on
the disks.

There are four operations which affect the security: the first is the
operation to check if the disk has been changed, the second is the
operation to flush the slave blocks, the third is the operation to update
the map and the fourth is the operation to update the directory.

In these definitions, the term "the drive has stopped" is usually
taken to mean that the motors have stopped and no drive select light is
visible.

Security Level 0

The disk is only checked when a file is opened and the drive has
stopped since the last time it was checked and there are no files already
open on the drive. The map is only updated after a file is closed (or
flushed) when half a second has elapsed without any other disk operation.

At this lowest level of security, confusion or loss of data can be
expected if a disk is changed while there are still files open or the motor
is running.

Security Level 1

The disk is checked when a file is opened, or data or the map is to be
written, and the drive has stopped since the last time it was checked. The
map is only updated after a file is closed (or flushed) when half a second
has elapsed since the previous disk operation.

At this level of security, disks should only be changed while the
motor is stopped (all select lights off). If a disk is changed while there
are files open, then read operations will be confused but any write
operations will be aborted. This should maintain the integrity of the data
on the disk.

Security Level 2

The disk is checked whenever a file is opened or whenever the map or
data is to be read from or written to the disk and the drive has stopped
since the last time the disk was checked.

The map and directory are updated and the buffers are flushed
immediately after a file is_closed, or after an FS.FLUSH call.

This is the default security level and data should be quite secure
unless a disk is changed while the motors are running.

Security System Errors

There are two error messages which may be written to the screen by
the floppy disk filing system. These are in the form of the disk name
followed by the message itself. The first message indicates that an
attempt to read or write a sector on the disk has failed:

disk name read/write failed

The second message indicates that a disk has been changed while it
is still in use:

disk name files still open

If the floppy disk system attempts to write to a disk which has been
changed, then you may get both messages indicating that the attempt to
write the data has been aborted, and that files were still open when the
disk was changed.

Start Up Time

The floppy disk system will always try to read data from a disk as
soon as it can. However, to preserve the data integrity of the disk, write
operations are held up until the disk has been "run up" for long enough for
the speed to be stable. As a default this is set to .6 second which is more
than enough for most modern drives. The start_up_time parameter is in 20
millisecond units, so the default value is 30. A value of 13 (260
milliseconds) is adequate for the most recent direct drive 3.5 inch drives,
while some older drives may require a value of about 60 (1.2 seconds).

Number Of Tracks

The QL format for disks allows the number of tracks on a disk to be
read from the disk itself. However, the number of tracks must be
determined when a disk is to be formatted. Normally the disk system will
do this itself by checking if there are at least 55 tracks on a disk. If
there are, then there are assumed to be 80 tracks, otherwise it is assumed
that there are 40 tracks. This internal check may be overwritten, allowing
37 track and 75 track drives to be formatted as well as saving possible
wear or damage to a 40 track drive when seeking track 55 (somewhere in the
middle of the jacket).

Direct Sector Read/Write

The software includes provision for reading sectors of a disk using
direct addressing. To do this a special file is opened on the disk. The
name is

FLPn_*Dsd where 6 L6 the sector Length 0=128 bytes
1=256 bytes
2=512 bytes
I=71024 bytes

and d <6 the density D=double (MFM]

When opening a disk for direct sector read/write from SuperBASIC,
the name should be enclosed in quotes (or apostrophes).

OPEN #3,'flpl_x*d2d’

When this file is open, no other file may be open on the drive. The
only I0 calls supported for this type of file are IO.FSTRG, I0.SSTRG,
I0.POSAB and IO.POSRE, to read or write complete sectors or to set the
position. The parameter (D1) to the POSRE call is ignored, but the current
position is returned. Reading or writing a sector does not change the file
position,

The position is a composite of the required sector, side and track:
sector number + side * 256 + track % 65536

To ensure compatibility with string IO the length specified in the
SSTRG and FSTRG calls may be one of three values:

sector length the complete sector is read or written

2 returns the sector length (I0.FSTRG)
ignored (I0.SSTRG)

2 + sector length returns the sector length followed by the
sector (I0.FSTRG)
skips the first two bytes, and writes the
rest to the sector (I0.SSTRG)

This variety enables sectors to be read and written in SuperBASIC
using the normal string IO in the Super Toolkit II, as well as by assembler
programs. For example, sector 1 of side 1 on track 2 may be read into the
string A$ using the following command:

GET #n\1+256+2*65536, a$§

When using the direct sector read/write calls for a 40 track disc in
an 80 track drive, the track number should be doubled. Seek errors will
not be detected. If a read/write error is returned from a direct sector
read/write call, then it will be safest to make another call to read from
track zero. Calls to read from or write to track zero will cause a
"restore"” rather than a seek, and will thus reset the drive to a known
state.

Disk Drive Specifications

It is a requirement that disk drives used with this version of the
disk driver should be set to have the motor on when provided with a "motor
on" signal and there is a disk in the drive. Drives which turn the motor off
when the drive is not selected will not give reliable service.

The disk driver will automatically adjust itself to use any mixture of
disk drives, 40 or 80 track, single or double sided. In addition it will
adjust itself to use slow step rate drives. Disks need not have been
formatted and written on the same specification drive as a drive being
used to read them.

Compatibility chart
Disk format —> 40T SS 40T DS 80TSS 80TDS

Drive
40T SS C ? X X
40T DS C C X X
80T SS R ? & ?
80T DS R R C c

C = compatible

R = compatible (read only)

X = incompatible

P

incompatible but may not be detected
correctly on some types of drive

The format procedure automatically checks the drive specification
and.will format the drive in an appropriate manner. Note that 40 track
drives which do not have an end stop, or which would suffer damage when
stepped beyond the 40th track (to track 55) should not be formatted
unless the number of tracks has been specified in an FLP_TRACK command.
It is possible to force the disk driver to format a disk as single sided ocn a
double sided drive by making the 11th character (it is invisible) of the
medium name an asterisk: e.g.

FORMAT 'FLP1_DISK NAME *'

QFLP Extensions to SuperBASIC

The extensions to SuperBASIC incorporated in the QFLP upgrade are
all concerned with the QL filing system. These extensions are not
available immediately after resetting the QL to avoid conflicts between
the names of these extensions and any you might use in your own programs.
They are invoked by the command:

FLP_EXT (no parameters)

This command may be included in a BOOT file or typed on the keyboard
at any time. If you have AH or JM ROMs in your QL, you will not be able to
use the extensions in the same boot file as the FLP_EXT command. In this
case LRUN a second boot file from the first.

EXTRAS
EXTRAS #channel

will list the extra procedures and functions linked in.

DATA_USE - Data File Default
Default directories may be set for use with many Toolkit commands.

DATA_USE directory name

If the directory_name supplied does not end with ’’, ’ ' will be
appended to directory name. The directory name can be more detailed than
just a device name. For example:

DATA_USE flpl_project5_library

WDIR

ferr=FOP_NEW (#3,fred)

WDIR will produce a directory listing of all filenames starting with
'flpl_project5_library’ and then FOP_NEW will open a new file called
'flpl_project5_library_fred’. The default set by this command is optional

and is only used if the name supplied to a Toolkit command is not a valid
file or device name. Thus:

ferr=FOP_NEW (#3,flp2_fred)
will open file 'flp2_fred’ (not flpl_project5_library_flp2_fred’!)

File Open Functions - FOPEN
FOP_IN FOP_NEW FOP_OVER FOP_DIR

This is a set of functions for opening files. These functions differ
from the OPEN procedures in ROM in two ways: firstly, if a file system error
occurs (e.g. 'not found’ or ’already exists’) these functions return the
error code and continue; secondly the functions use the DATA_USE
directory default

FOPEN (#3,name) open forreadfiuiite

FOP_IN (#3,name) open forread only

FOP_NEW (#3,name) open a new file

FOP_OVER (#3,name) open a new {§<L€e, or overwrite old gife
FOP_DIR (#3,name) open a directory

Directory entries may be read using GET to get information. Each
entry is 64 bytes long, the length of the file is at the start of the entry,
there is a standard string starting at the fourteenth byte of the entry
giving the filename and there is the update date as a long integer
starting at the fifty sixth byte.

Example of File Open

A file may be opened for read only with an optional extension using
the following code

ferr=FOP_IN (#3,name$&'_ASM') :REMark open _ASM
IF ferr=-7: ferr=FOP_IN (#3,name$) :REMark try no _ASM

File Enquiry - FLEN FTYP FDAT

There are three functions to extract information from the header of
a file. Note that in current versions of the Microdrive handler, the header
is only updated on an FS.HEADS call or on closing the file. The QJUMP
Floppy Disk Driver also updates the header on a call to flush the disk
buffers. This means that the file length read from the header will usually
be the file length as it was when the file was opened. If a file is being
extended, the file length can be found by using the FPOS function to find
the current file position. (If necessary the file pointer can be set to the
end of file by the command GET #n\999999.)

FLEN (#channel) retins the file Length
FTYP (#channel) retuwwns the 4ile Lype
FDAT (#channel) returnns the data space o EXEC 4i€es

BGET BPUT GET PUT FPOS - Direct IO

In QDOS, files appear as a continuous stream of bytes. On directory
devices (Microdrives, hard disks etc.) the file pointer can be set tc any
position in a file. This provides 'direct access’ to any data stored in the
file. Access implies both read access and, if the file is not open for read
only (OPEN_IN from SuperBASIC, IO.SHARE in QDOS), write access. Parts of
a file as small as a byte may be read from, or written to any position within
a file. QDOS does not impose any fixed record structures upon files:
applications may provide these if they wish.

Procedures are provided for accessing single bytes, integers,
floating point numbers and strings. There is also a function for finding
the current file position.

The general form of the direct I/O commands is:

command #channel, item, item
ox command #channel\pointer, item, item

It is usual (although not essential - the default is #1) to give a
channel number for the direct I/O commands. If the pointer is given, the
file position is set before processing the list of I/O items; if the pointer
is a floating point variable rather than an expression, then, when all
items have been read from or written to the file, the pointer is updated to
the current file position.

Byte 1/0

BGET #channel, list of items
BGET #channel\pointer, list of items
BPUT #channel, list of items
BPUT #channel\pointer, list of items

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more
bytes into the channel. For BGET, each item must be floating point or
integer variable; for each variable, a byte is fetched from the channel.
For BPUT, each item must evaluate to an integer between 0 and 255; for
each item a byte is sent to the output channel.

For example the statements

abcd=2.6
zz%=243
BPUT #3,abcd+1,'12',2z2z%

will put the byte values 4, 12 and 243 after the current file position.

Unformatted I/O

It is possible to put or get values in their internal form. The PRINT
INPUT commands of SuperBASIC handle formatted 10, whereas the direct
I/0 routines GET and PUT handle unformatted I/O. For example, if the value
1.5 is PRINTed the byte values 49 (’1%), 46 (*.’) and 53 (’5’) are sent to the
output channel. Internally, however, the number 1.5 is represented by 6
bytes (as are all other floating point numbers). These six bytes have the
value 08 01 60 00 00 00 (in hexadecimal). If the value is PUT, these 6 bytes
are sent to the output channel.

The internal form of an integer is 2 bytes (most significant byte
first). The internal form of a floating point number is a 2 byte exponent to
base 2 (offset by hex 81F), followed by a 4 byte mantissa, normalised so
that the most significant bits (bits 31 and 30) are different. The internal
form of a string is a 2 byte positive integer, holding the number of
characters in the string, followed by the characters.

GET #channel, list of items
GET #channel\pointer, list of items
PUT #channel, list of items
PUT #channel\pointer, list of items

GET gets data in internal format from the channel. PUT puts data in
internal format into the channel. For GET, each item must be a integer,
floating point, or string variable. Each item should match the type of the
next data item from the channel. For PUT, the type of data, put into the
channel, is the type of the item in the parameter list. The commands

fpoint=54
wally%=42: salary=78000: name$='Smith'
PUT #3\fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes
(integer 42), 6 bytes (floating point 78000), 2 bytes (integer 5) and the 5
characters 'Smith’. Fpoint will be set to 69 (54+2+6+2+5).

10

For variables or array elements the type is self evident, while for
expressions there are some tricks which can be used to force the type:

+0 will gorce gloating point type
g wLll force string Lype
| |0 will force Lnteger Lype

xyz$="ab258.z"

BPUT #3\37,%yz$(3 to 5)||0

will position the file opened on channel #3 to the 37th byte and then
will put the integer 258 on the file in the form of 2 bytes (value 1 and 2, i.e.
1%256+2).

Provided no attempt is made to set a file position, the direct I/O
routines can be used to send unformatted data to devices which are not
part of the file system. If, for example, a channel is opened to an Epson
compatible printer (channel #3) then the printer may put into condensed
underline mode by either

BPUT #3,15,27,45,1
or PRINT #3,CHR$(15);CHR$(27);'-"';CHRS$(1);

Which is easier?

File Position

There is one function to assist in direct access I/O: FPOS returns
the current file position for a channel. The syntax is:

FPOS (#channel)
For example:

PUT #4\102,valuel,value2
ptr = FPOS (#4)

will set 'ptr’ to 114 (=102+6+6).

The file pointer can be set by using any of GET, BGET, PUT or BPUT
with no items to be got or put. If an attempt is made to put the file
pointer beyond the end of file, the file pointer will be set to the end of
file and no error will be returned. Note that setting the file pointer does
not mean that the required part of the file is actually in a buffer, but
that the required part of the file is being fetched. In this way, it is
possible for an application to control pre-fetch of parts of a file where
the device driver is capable of pre-fetching.

VIEW - Examining a File

VIEW is procedure intended to allow a file to be examined in a window
on the QL display.

VIEW name view a $Lle: Lines are Truncated o
VIEW #channel, name L€ Ln the window and, when the
window £6 4ull, CTRL F5 L6 generated.

11

RENAME and TRUNCATE

The RENAME and TRUNCATE procedures operate on files on floppy
disks or on microdrives if the Sinclair QL Toolkit has been added. If
either of these procedures are used on a standard QL to operate on a
microdrive file, the result will be a ’bad parameter’.

RENAME old, new zename a §i€e, the DATA_USE defauli
direcitony L6 used for boith §Llenames.

TRUNCATE #channel Zrwncate the ¢ile open on ¥channel to
he curvent 4Lle position.

Wild Card Commands

There is a set of directory maintenance commands using a ’wild card’
definition of the file name (based on the DATA_USE default directory).

STAT name print medium name, number of $ree
Sectors, total number of sectors.

WDIR name List déirectory, generates CTRL F5 when
2he window L6 gull.

WSTAT name List §ile name, Lengith and Last update
date, generaites CTRL F5 when the
window L6 full.

WDEL name deflete 4iles [requedsts confiunationl

WDEL_F name delete §iles (forced)

Each of these commands (except WDEL_F) may be used with a channel
number to send the output to a particular window or file. When using WDEL,
each filename is written to the chosen channel, and the user is requested
to press one of the keys:

Y (ves) delete this file

N (no) do noit delete this 4ile
Q (quit) donotdelete this orany of the next files
A (all) delete this and all the next matching 4L{les

The name in these procedures may refer to more than one file. To do
this file names are divided into sections (flp2_fred_bin has three
sections) and a name may have missing sections (e.g. flp2_old__list has
one missing section). All those files whose names have sections matching
the sections in the given name are referenced by the commands. In the
following examples, flp2_is assumed to be the default data directory.

Wild name Typical matching files
fred , flp2_fred

flp2_freda_list
_fred flp2_fred

flp2_freda_list
flp2_old_£fred
flp2_old_freda_list

£flpl old _1list flpl_old_jo_list
flpl_old_freda_list

12

