
SUPERCHARGE!

SUPERBASIC COMPILER

A
AMDIGITAL PRECISION
f]

1985

SUPERCHARGE

Program and documentation © 1985 Simon N. Goodwin

Published by:
Freddy Vachha BSc

Digital Precisi eon Ltd
Glossary Copyright Freddy Vachha 1985

SINCLAIR, Q.L. Super BASIC

Are Trademarks of Sinclair Research Ltd.

SUPERCHARGE

CONTENTS

Chapter

10

11

A Rapid Introduction

A Leisurely Introduction

Using SUPERCHARGE

Multitasking

Extensions to SuperBASIC

SUPERCHARGE and SuperBASIC Compatibility

What Compilers can and can’t do

Example Programs

End of File

Glossary

SUPERCHARGING Advanced Mathematical Functions

Index

SUPERCHARGE USER’S MANUAL

89

92

A RAPID INTRODUCTION CHAPTER 1

PLEASE READ THIS FIRST!

We understand that you've just bought a fascinating program

and you're eager to try it out. You probably don't want to

read 40,000 words of wisdom before you can use SUPERCHARGE.

If you read the short summary on this and the next three
pages you will be able to get stuck in almost straight
away, without false starts or an irritating delay. If you
get stuck, come back to the manual and read Chapters 2 and

3 for a more leisurely introduction. SUPERCHARGEis a
sophisticated and versatile product - you will find the
rest of this manual very useful when you want to squeeze
the best possible performance out of your QL.

(ALMOST) INSTANT MACHINE CODE

(1) Reset the QL with the SUPERCHARGEcartridge in
Microdrive L. The 'BOOT’ program loads the BASIC extensions
used by SUPERCHARGE. Leave the cartridge in the drive.

(2) LOAD a short BASIC program (a few hundred lines). The
demonstration program we supply is called MDV1_DEMO_BAS.

(3) RUN the SuperBASIC to satisfy yourself that it works
normally. Type CLEAR to release as much memory as possible.

(4) Start SUPERCHARGE with this command:

MERGE mdv1l_supercharge

(If you see an ‘out of memory’ error when this command
is entered, you should try a smaller program, or refer
to the detailed advice in Chapter 3).

SUPERCHARGEloads and displays a pattern composed of three
vertical lines and one horizontal. This pattern is used to
align 'LENSLOK' - the black plastic device with a trans-
parent lens at its centre, used to protect SUPERCHARGE.

Adjust the width of the pattern on the screen to match that
of the lens-holder. Press the left-arrow key to make the
outer lines move apart, and press the right-arrow key to
move them closer together. Take the plastic LENSLOK device
and hold it lengthways across the screen, without folding
it. It should be about 100mm long. Adjust the outer lines
so that they line up with the outer edges of the LENSLOK.
Tap the SPACE key when the lines are correctly positioned.

SUPERCHARGE USER'S MANUAL Page |

A RAPID INTRODUCTION CHAPTER |

A pattern of oblong blocks now appears on the screen. Fold
the lens holder into a 'U’ shape and press its legs firmly
against the display. The holder is marked with various

helpful pieces of information, such as 'TOP', 'LEFT’ and
and 'THIS SIDE OUT’ (i.e. towards the viewer).

Close one eye and align the centre line of the lens with
the vertical line in the middle of the screen. Look through
the transparent lens set within the holder. you should be
able to see the letters 'OK', as shown in the picture
below. Press the SPACE key when you can read the letters.

Another pattern of blocks then appears. When viewed through
the lens, this pattern corresponds to two randomly-chosen
characters. You have ten seconds in which to type the
characters. SUPERCHARGE starts when you have identified
both characters correctly. If you fail to type both
characters within ten seconds another pair will appear. You
are allowed three tries before it becomes necessary to
re-load the program.

(5) If all is weil SUPERCHARGE asks you for the name which
you want it to give to the compiled program. Try another
name if the compiler rejects your entry with an error

report. Remember to include the device name (e.g. MDV1).

(6) You are asked whether or not you want a listing of the
program as it is compiled. Type Y for Yes, or N_ for No.

’
(7) Say where you want to send the ‘report’ file produced
by the compiler. This report contains any error messages or
warnings which may be generated, plus the listing (if any).
If you press ENTER, the report is displayed on the screen.

SUPERCHARGE USER'S MANUAL Page 2

A RAPID INTRODUCTION CHAPTER 1

SUPERCHARGE then analyses your SuperBASIC program, checking
for errors and translating it into intermediate code. Large
coloured areas will appear on the screen as the compiler
works. This does not indicate a fault - it just shows that
SUPERCHARGEis making optimum use of the available memory.

After a short while the total number of errors is reported.
If there were any errors the compiler will stop. The error
messages are listed and explained in Chapter 3. If no
errors were found, the code-generator is automatically
loaded, to produce a task file with the name you supplied.

SUPERCHARGEclears the screen when it has finished.

RUNNING A COMPILED PROGRAM
When SUPERCHARGEhasfinished you are back where you were
before you loaded it, except that a compiled task has been
saved (if there were no errors). If you specified the name

FLP1_GAME, for example, you can run the task by typing:

EXEC_W FLP1_GAME

The compiled program will load and run, using copies of the
windows defined in SuperBASIC for channels 0 and 1.

You can run several programs at once if you use the EXEC
command rather than EXEC_W. When a task is loaded with EXEC
it runs independently of SuperBASIC - you can type other

commands (perhaps including further EXEC commands) while it
is executed.

ALLOCATING EXTRA MEMORY
When a compiled program is loaded, 2K of memory is normally
reserved for the ‘data’ it will generate. This space is
“used to hold variable values, return-points, and channel
details. If a compiled program stops with an ‘out of
memory’ report you will need to increase the amount of data
space allocated to the task. You can do this with a program
called DATASPACE. Load it with this command:

EXEC_W MDVI_DATASPACE_TASK

Enter the name of the task you want to modify. The program
size and data allocation will be shown. Type the new amount
of data space, in kilobytes. Press ENTER on its own to stop
the task, There are full instructions in Chapter 4.

SUPERCHARGE USER'S MANUAL Page 3

A RAPID INTRODUCTION CHAPTER 1

SUPERCHARGE vs SUPERBASIC
This list is a very concise summary of the differences
between interpreted and compiled SuperBASIC. You can find
more detailed information, and examples, in Chapter 6. The
main differences are that compiled programs are usually
much faster, and run as independent tasks.

SUPERCHARGEis closely compatible with SuperBASIC, but
there are some discrepancies, since compiled programs are
necessarily executed quite differently from normal BASIC.

(1) Editing and debugging commands such as LIST, MERGE and
CONTINUE are not supported by SUPERCHARGE,since there is
no ‘program text' once a program has been compiled.

(2) Floating-point values are computed and displayed to
nine decimal places of accuracy; integer (whole number)

arithmetic is performed extremely fast. SuperBASIC only
displays seven places and handles integers very slowly.

(3) DIM statements should be used to declare strings of
more than 256 characters. Array subscripts must be integers
up to 32767. Only strings and string arrays may besliced.

(4) SUPERCHARGEhas to analyse ALL of the program before it
can generate code, whereas the interpreter only analyses
lines as they are executed. Consequently the compiler is a
little more rigorous about the syntax of programs:

(4a) You may not use the same name for more than one
purpose in a compiled program (so arrays, procedures
and functions may not have the same names). Doilar and
per cent signs must be used to distinguish string and
integer names, and you may use names which differ only
in their last character, e.g. FRED% and FREDS.

(4b) Loops, tests and definitions in compiled programs
must have matching ENDs. Of course, you may omit these
when you use ‘short’ (single-line) loops and tests, and
loops may contain as many NEXTs and EXITs as you wish.

(5) Only functions return values. Globa! or less-local
variables must be used to pass values out of procedures.

(6) Line numbers and DATA values must be fixed. Calculated
values, such as GOTO A*20, are not allowed. Such code

should be replaced with ON..GOTO, SELECT or assignments.

SUPERCHARGE USER'S MANUAL Page 4

COMPILERS AND INTERPRETERS CHAPTER 2

A LEISURELY INTRODUCTION
This user's manual describes the SUPERCHARGE compiler - a
powerful software tool which 'translates' SuperBASIC
programs into machine-code. The manual has been printed on
single sheets of A4-sized paper and punched with holes, so
that you can keep it in the binder supplied with your QL.

SUPERCHARGEis aimed at programmers with some experience of
SuperBASIC, It gives them access to much of the speed and
flexibility of machine code, while still allowing them to
develop and test their programs in SuperBASIC. Compiled
programs may be saved and run without the compiler loaded,
You may even sell programs compiled by SUPERCHARGE, so long
as the publisher has a site licence and you do not copy any
part of the compiler or its manual.

WHATIS A COMPILER?

A compiler converts programs written in a language designed
for humans into machine language. SUPERCHARGEconverts
SuperBASIC into machine code. The machine code performs in
almost exactly the same way as the SuperBASIC - but it is
much faster. If you've had a QL for long you must have
noticed that all of the fastest, flashiest programs are
written in 'machine code’ rather than SuperBASIC.

The advantages of a compiler become clear once you
understand the difference between BASIC and machine code.
That difference stems from the way a home computer works.

At the heart of any micro is the processor. [n essence this
can only do three things - it can move small values in
memory, do simple arithmetic upon them, and select sub-
sequent instructions depending upon the resuits of the
arithmetic. The processor's saving grace is that it works
very fast - at a rate approaching a million steps a second.
The processor can't directly read files, make sounds or
print messages (plus hundreds of other things), but it can
perform those operations by combining the simple steps
which it CAN handle. For instance, sounds can be generated
by sending a message to the second processor, printing can
be done by moving patterns to the display memory and so on.

When you turn on your QL, the thousands of instructions in
the 48K ROM read commands from the key switches and perform
appropriate actions - step by tiny step. The ROMcontains a
machine code program called the SuperBASIC ‘interpreter’.

SUPERCHARGE USER'S MANUAL Page 5

COMPILERS AND INTERPRETERS CHAPTER 2

Just like a human translator, the interpreter converts
words in one language - SuperBASIC - into another language
- machine code. This is a two-step process. First the
instruction must be recognised, then it must be acted upon.

Interpreters are slow because they perform the first task
over and over again. The interpreter spends more time
trying to recognise SuperBASIC commands than it does
performing the corresponding action. Interpreters do not
‘learn by their mistakes', so the same delays crop up over

and over again.

We can get a feel for the way an interpreter works by
examinisqthe way SuperBASIC handles a small program.

10 FOR I=1 TO 1000
20 LET X=2+2
30 NEXT I

If you run the above program, the value of X will be worked
out as slowly the thousandth time as it was the first. Each
time, SuperBASIC looks through line 20 to make sure it

isn't anything nonsensical (like LET 7="SAM"). Then it
finds out where it keeps the value of 'X', and locates the
binary form of the number '2'. Computers use binary
arithmetic, unlike the 'decimai' which caught on among
humans a couple of millennia ago. Values have to be
converted before they can be accepted or displayed.

Next, SuperBASIC makes a note that it will need to do some
addition once it has two numbers to play with. It finds
another '2' and adds the two values using complicated
instructions which are designed to handle all cases; the
same code would perform 0.0007 + -99999. Finally it puts
the result away under the name X, and looks for the next
line.

The QL has used hundreds of simple operations, where four
(FETCH, FETCH, ADD and STORE) would have sufficed.

The SuperBASIC compiler looks at the listing of a program -
in the verbose form which humans and other QL owners can
understand - and converts it into simple steps in the order
favoured by the computer. The juggling about, testing and
searching are almost eliminated. You end up with a machine
code program which works just like SuperBASIC, but faster.

Overleaf you will find a list of the main advantages of
SUPERCHARGEover interpreted BASIC and compilers for other
languages. The points are discussed in detail later.

SUPERCHARGE USER'S MANUAL Page 6

COMPILERS AND INTERPRETERS CHAPTER 2

TEN REASONS TO BE CHEERFUL
(1) SUPERCHARGEDprograms run typically five to twenty
times faster than interpreted BASIC; small changes to a
program may give speed-up factors of one hundred times, or
even more. Furthermore the speed-up factor increases with
the size of the program to be compiled, as the interpreter

wastes more and more time searching for program lines.

A compiler obviously cannot speed up external devices (such
as disks or microdrives) but it can reduce the time needed
to process data so that devices are used more efficiently.

(2) Compiled BASIC programs may multi-task, whereas the
interpreter only allows one BASIC program to run at a time.

(3) Compiled BASIC programs maybe interactively tested ‘in
slow motion’ using the BASIC interpreter. Variables may be
printed and altered, and the program may be changed at a
moment's notice. This is not possible when testing programs
in other compiled languages such as C, Fortran or Pascal.

(4) Add-on commands and functions, such as those supplied
with disk systems or the Sinclair QL Toolkit, may be used
in compiled programs. You can use most ‘add-on’ commands in
compiled programs, so long as they were written using the
standard format for user-defined procedures and functions.

{5} Compiled BASIC programs offer fast floating-point
mathematics, displayed to nine decimal places of accuracy.

(6) The SuperBASIC compiler implements true integer (whole-
number) arithmetic. This is typically performed over thirty
times faster than under the interpreter.

{7) Compiled BASIC programs load much more quickly than
their interpreted counterparts, since they do not need to
be 'tokenised' as they are read.

(8) Compiled programs are protected against unauthorised
modification, as they cannot be LISTed.

(9) A number of bugs and restrictions imposed by the BASIC
interpreter are corrected or lifted by the compiler.

(10) SUPERCHARGEissues clear, plain-English reports,
showing the exact position of errors in programs which are
being compiled, rather than the vague messages issued by
the interpreter and some other compilers.

SUPERCHARGE USER'S MANUAL Page 7

USING SUPERCHARGE CHAPTER 3

THE COMPILATION PROCESS

SUPERCHARGE works in two steps, so as to leave the maximum
amount of memory free for your program. The steps are
linked automatically, so that one command can be used to

invoke both steps. Nevertheless it is important to realise
that a two-step approach is used.

In the first step, a program called the 'parser' converts
your BASIC program into an ‘intermediate code’ which is
stored in memory (if space permits) er on microdrive. The
parser also checks your program to make sure that it does
net contain errors, issuing appropriate reports if need be.

In the second step, the intermediate code is translated
into machine code for the 68008 microprocessor. This work
is done by the code-generator, which loads 'on top of’ the
parser. If all goes well, the code-generator produces a
task which can be loaded and run with the EXEC commands.

Getting underway
Before you can compile a SuperBASIC program you must load
it, in the usual way. Run the program if you wish to ensure
that it works properly. Start SUPERCHARGE with the command:

MERGE mdv 1supercharge

(In all of these examples we will assume that the
SUPERCHARGEcartridge is kept in microdrive 1).

This loads a file containing a sequence of commands which
cause your program to be compiled.

In the unlikely event that you see an ‘out of memory’ error

as soon as this command is entered, there is not enough
memory available for the parser and your BASIC. You will
have to reduce the size of your program or free more
memory. If this cannot be done, consider breaking your
program into two or more independent parts, and compiling
the parts separately. Some memory is used by add-ons such
as disk systems and utility software. You may be able to

free memory by using the QL without the add-ons.

You must have the SUPERCHARGEextensions (extensions code)
loaded when you use the compiler, or this message appears:

DEVICE_STATUSis not loaded.

SUPERCHARGE USER'S MANUAL Page 8

USING SUPERCHARGE CHAPTER 3

You can correct the error by loading the extensions, which
occupy only 64.0 bytes of memory. Type:

MERGE mdvl_extensions_bas

If all is well SUPERCHARGE loads and displays a pattern
composed of three vertical lines and one horizontal. This
pattern is used to align ‘LENSLOK' - the black

plastic device with a transparent lens at its centre,
supplied with every copy of SUPERCHARGE.

LENSLOKis used to ensure that your copy of SUPERCHARGEis

a legitimate one. It has the advantage over a cartridge or
‘dongle’ that it does not restrict the use of any of the
interfaces on your QL. Its advantage over ‘copy protection’
is that it does not restrict your ability to make back-up
copies of SUPERCHARGEfor your own use.

The files on the SUPERCHARGEcartridge or disk can be
copied in the usual way. You are strongly advised to make
copies at once, just in case you accidentally drill a hole
in the 'master' disk, tie a knot in the microdrive

cartridge, or do something similarly silly. Don’t say it
won't happen to you. It will.

Meanwhile, back at the keyboard, you should adjust the
width of the pattern on the screen to match that of the
lens. This step is necessary because SUPERCHARGEis
designed to work with any size of display (Sinclair pocket

animated postage stamps perhaps excepted). Press the LEFT
arrow key to make the outer lines move apart, and press the
RIGHT arrow key to move them closer together.

SUPERCHARGE USER'S MANUAL Page 9

USING SUPERCHARGE CHAPTER 3

Take the plastic LENSLOK device and press it lengthways
across the screen, without folding it. It should be about
100mm long (four inches, for the un-metricated). The
picture on the previous page shows the display and the way

that you should hold the lens-holder.

Use the left and right arrow keys (or a joystick or mouse
which uses the CTRL1 protocol) to adjust the outer lines so
that they line up with the outer edges of the lens holder.
The keys auto-repeat if you hold them down for more than a
fraction of a second. Press the SPACE key when the lines
are correctly positioned. SUPERCHARGE now knows the size of
your display.

A pattern of oblong blocks now appears on the screen. Fold
the lens holder into a 'U' shape as shown in the photograph
below, and press its feet firmly against the display. The
holder is marked with various useful pieces of information,
such as 'TOP', 'LEFT' and and 'THIS SIDE OUT' (i.e. towards

the viewer).

Close one eye, (or several eyes if you are an octopus) and
align the centre line of the lens with the vertical line in
the middie of the screen. When you lock through the
transparent lens in the middie of the holder you should be
able to see the letters 'OK', as shown in the picture on
the next page. [t may help if you adjust your viewpoint or
the position of the lens slightly. When you can read the
jetters press the SPACE key. After about ten seconds
SUPERCHARGEwill assume that you have positioned the lens
correctly, in any case.

SUPERCHARGE USER'S MANUAL Page 10

USING SUPERCHARGE CHAPTER 3

Another pattern of blocks then appears. When viewed through
the lens, this pattern corresponds to two randomly-chosen

characters. You have ten seconds in which to type both the
characters. At this point (assuming you are not an octopus)

you only have ane hand free for typing; the program is
arranged in such a way that you do not need to press SHIFT.

As soon as you have identified the characters correctly the
compiler will start. If you fail to identify the characters
and type them both within ten seconds, another pair will
appear. You are allowed three attempts before it becomes
necessary to re-load the program.

At first this procedure seems long-winded, but it soon
becomes second-nature, even if you are not an octopus. The
routine has been carefully set up so that you can ‘hurry it
along' by pressing SPACE. It only takes a few seconds to
‘unlock' SUPERCHARGE, once you have had a little practice.

The LENSLOK device is the 'key' to SUPERCHARGE, just as the
*‘master' cartridge is the 'key' to many QL programs which
are protected against copying. The lens should be kept in a
safe place. You should avoid dropping it down drains or
feeding it to dogs or small children. They might choke -
worse still, they might swallow it! .

LENSLOK may appear fragile, but it is certainly more robust
than a microdrive cartridge. The ‘living hinges’ at either
side of the lens can withstand being folded indefinitely
without breaking, although it is possible to destroy them
by cutting or deliberately tearing them.

SUPERCHARGE USER'S MANUAL Page IL

USING SUPERCHARGE CHAPTER 3

If you do manage to lose or break LENSLOK, you can obtain a
replacement from Digital Precision for a nominal fee. Send
either the broken bits or this page from your SUPERCHARGE
manual, together with £5, to Digital Precigien ae the andes

qiveaicn page 1OO. Proof of purchase MUST
be provided.

When you have ‘unlocked’ SUPERCHARGE the screen will be
cleared and a heading like this will appear:

Digital Precision SUPERCHARGE
V 1.0 (C) 1985 Simon N Goodwin

Name for compiled program ?

You should type the name which you want SUPERCHARGEto use
for the compiled program. When you press ENTER the compiler
checks that the name is sensible. It also checks that it
can use the name you specify, with ‘temp’ at the end - a
file with that name may be used as a temporary store for

intermediate code, if your program is too large for all the
intermediate code to fit into memory. If you typed the name
'FLPL_GAME', for example, SUPERCHARGE would use the file

‘FLP1_GAME_temp' for intermediate code.

If either file cannot be opened, this message is printed:

Output file FLPL.GAME cannot be opened.

wand you are asked to specify a different name.

If either file already exists you will be warned and asked
whether or not you wish to delete the file:

File FLP1_GAME_temp already exists.
Do you want to delete it <Y/N> ?

Type Y for Yes or N for No. If you type Y the existing file
is deleted to make room for the new one. If you type N you
are asked to specify an alternative name. WARNINGS: (1) If
you just press ENTER, Yes is assumed. (2) If the file is
‘in use’ by another task the DELETE fails (sensibly enough)
and SUPERCHARGEstops with an appropriate message.

Once you have specified an acceptable name for the Output
file you are asked whether or not you want a listing of the
program as it is compiled. A listing may be useful since it
shows the location of any errors in your program clearly:

Compilation listing <Y/N> ?

SUPERCHARGE USER'S MANUAL Page 12

USING SUPERCHARGE CHAPTER 3

Type Y if you want a listing and N if you do not. If you
just press ENTER, Y is assumed.

Finally, you are asked where you want to send the 'report'

produced by the compiler. This report contains any error
messages or warnings which may be generated, together with
the listing {if you asked for one) and the total number of
errors found by the parser:

Report File <ENTER - SCR> ?

Type the name of the device or file to which you want the
report sent. If you had a printer connected to serial port
1, and wanted a printed report, you might type ‘ser’. To
send the report to the microdrive file 'GAME_REP' you
should enter 'MDV1_GAME_REP'. If you just press ENTER the
report is sent to the QL's screen as the compilation
progresses. You can pause the display by holding down the

CTRL key and pressing F5. Any key will re-start the report.

SUPERCHARGEchecks that you have specified a sensible
destination for the report. The display devices (CON and
SCR) are not considered sensible, as SUPERCHARGEuses part
of the dispiay to store information while compilation takes
place. If the destination is not sensible this message
appears:

Report file FLP1GAME_REP cannot be opened.

You are asked to specify an alternative name.

If the file you specify already exists you are warned and
asked whether or not you wish to delete the file:

File FLP1.GAME_REPalready exists.
Do you want to delete it <Y/N> ?

Type Y for Yes or N for No. If you type Y the existing file
is deleted to make room for the new one. If you type N you
are asked to specify an alternative name. WARNING: as
before, if you just press ENTER, Yes is assumed.

The programmer’s analyst

The parser then analyses your SuperBASIC program,
translating it into intermediate code. Unless it is a long
program you will be able to watch the generation of
intermediate code - it is stored in screen memory if
possible, avoiding the need for siow microdrive access.

SUPERCHARGE USER'S MANUAL Page 13

USING SUPERCHARGE CHAPTER 3

Pass the parser
The parser scans your program from beginning to end twice.
Each scan is called a 'pass'. SUPERCHARGEdisplays the

number of each program line as it is analysed.

During the first pass through your program SUPERCHARGE
works out the way in which each identifier is used, and
extracts DATA statements so that they are not muddled up
amongst the other program lines. Errors are not detected by
the first pass.

During the second pass your program is analysed in detail.
if an error is found an appropriate message is produced,

together with an the line number in which the error was
encountered. Messages produced by SUPERCHARGEare prefixed
by four asterisks, to distinguish them from program text.

If you asked for a listing, error messages are inserted
just after the point at which each error is discovered. In
the case of some errors, such as ‘missing ENDs' or
‘ambiguous declarations', the true cause of the the error
may be at some point earlier in the program; the point at
which the error was found is still a useful indication of
the exact nature of the error. There is a full list of
error messages and warnings later in this chapter.

Unlike the SuperBASIC interpreter, SUPERCHARGE examines
every single statement in a program. Consequently it may
find errors which are not detected when the interpreter is
used.

The compiler skips over the remainder of that statement
after an error has been found - perhaps ignoring further
errors. Analysis continues from the start of the next
statement.

Once an error has been found the compiler stops producing
intermediate code. However, SUPERCHARGEcontinues to

analyse the program until it reaches the end, so that any
other errors can be detected.

At the end of the second pass SUPERCHARGEreports the total
number of errors that it found. If there were any errors
the compiler will stop, without trying to convert the
incorrect code into an executable task.

Correct the errors by editing your program in the normal
way, and re-start SUPERCHARGE from the start.

SUPERCHARGE USER'S MANUAL Page 14

USING SUPERCHARGE CHAPTER 3

Code generation

If no errors have occurred when the end of the second pass
is reached, the intermediate code must be a complete

description of the original SuperBASIC. The code-generator
is then loaded automatically. It reads the intermediate
code twice: once while selecting 'building-blocks' and once
while generating machine-code. The code generator creates
the executable task. As previously, the 'line number' being

analysed is shown as code is geferated. The screen clears
when the task is complete.

RUNNING A COMPILED PROGRAM

You can then RUN your original SuperBASIC in the usual way,
or run the compiled program with the EXEC command. If you
compiled your program into the file FLP1_GAME, this command
would run it:

EXEC_W FLP1GAME

The compiled program starts up with the same windows for
channels 0 and | as were defined in SuperBASIC.

Errors in the compiler

SUPERCHARGEhas been extensively and carefully tested
before release, but it is a very intricate program and it
is possible that obscure ‘bugs' remain. Possible problems
are discussed in this section of the manual.

The compiler may stop with an error message if your BASIC
program is too large for analysis, or some circumstance
(such as a power-supply fault) causes the compiler to fail.

SUPERCHARGEhas to allocate extra memory whenever it
‘recovers’ after finding an error in the program being
analysed. If a number of errors are found when you compile
a large program, SUPERCHARGE may run out of memory.

The easiest way to get around this is to fix the errors
which were found before the compiler ran out of space, and
then run SUPERCHARGEagain to find any remaining errors.
This will rarely be a problem as the space allocated within
the compiler is enough to accormedate quite large programs.

SUPERCHARGE USER'S MANUAL Page 15

USING SUPERCHARGE CHAPTER 3

Note for advanced users only:

If your QL has extra memory you may increase the

size of the data area assigned to the compiler,
so that it can cope with more errors or larger
programs. This can be done using the 'Dataspace’
utility, as explained in Chapter 4 under the heading
‘Tasks and Memory’.

The files which you will need to alter are named PARSER
and CODEGEN. These correspond to the two stages of
compilation. You should not alter the file CODEGEN
unless SUPERCHARGE reports 'OQut of Memory' errors
during code generation - i.e. after the entire program
has been listed in the report. You should only try to

change COPIES of the files. DO NOT ALTER THE ORIGINAL
FILES - you wil! need them if you make a mistake.

If you do increase the amount of space used by
SUPERCHARGEyou should bear in mind that the resultant
task will probably be too large to run on a standard
QL. You should not REDUCE the amount of space allocated
to the parser or the code-generator, under any circum-

stances. We have given you the freedom to re-configure
the compiler; this also means that you have the freedom
to make mistakes. Be careful.

If any error other than ‘out of memory’ occurs, you should
reset your computer and try again. If the fault persists,
examine the last line which had its number displayed before
the fault. Check that your program does not contravene any
of the restrictions explained in Chapter 6 or elsewhere in
this manual.

Remember that SUPERCHARGEis designed to compile programs
that have been tested using the SuperBASIC interpreter. If
your program won't work in 'normal’ SuperBASIC you should
not expect SUPERCHARGEto compile it.

The "MG" ROM

Some problems crop up when graphics commands are used in
SuperBASIC programs run on the relatively-rare "MG" version
of the QL. These problems stem from a mistake in that
version of the QL’s ROM, so they also affect programs
compiled with SUPERCHARGE. Tony Tebby's ‘patch’ to correct
these problems is effective for both compiled and
interpreted programs.

SUPERCHARGE USER'S MANUAL Page 16

USING SUPERCHARGE CHAPTER 3

To obtain a free copy of the "MG" ROM correction, write to:

QSOFT, Post Box 56, DK 4000, Roskilde, Denmark.

Enclose a cartridge or disk on which the program can be
recorded, and postage stamps to cover the cost of returning
the medium. If you are writing from outside Denmark you
should send an International Reply Coupon rather than

postage stamps.

IMPORTANT
The Last Resort

SUPERCHARGEhas been thoroughly tested by many full-time
programmers before its launch, It is possible that obscure
bugs remain, but it is much more likely that problems stem
from incorrect SuperBASIC coding or an incomplete under~
standing of the contents of this manual.

If the cause of your probiem is still unclear after you
have checked carefully through your code and this manual,
we will do our best to help you. Please send copies of your
program before and after compilation, return postage and
EXACT details of the fault, to the address on page loo.

We undertake to destroy any copies of your files which are
in our possession once we have resolved your problem. Your
cartridge will be returned, together with appropriate
advice, as soon as the mistake has been diagnosed.

This is not a program advisory service. We can only help
you with problems unique to SUPERCHARGE. Furthermore, we
cannot help unless you can explain the precise circum-
stances in which the fault occurs. In particular you should
specify the version of your QL and any hardware or software
add-ons in use when the error occurred.

We cannot support add-on procedures or functions that turn
out to be incompatible with SUPERCHARGE. We have ensured
the maximum degree of compatibility concommitant with
efficient program execution, but we obviously cannot
implement special code for every add-on command that has
been written or may be written in the future. If your
problem concerns add-on commands, other than the extensions
supplied with SUPERCHARGE, you should contact the supplier
of the commands for advice.

SUPERCHARGE USER'S MANUAL Page 17

USING SUPERCHARGE CHAPTER 3

SUMMARYOF REPORTS AND MESSAGES
Most of the messages produced by SUPERCHARGEareself-
explanatory, but we explain them here nonetheless. This
section of the manual lists all the reports which may be
generated by the compiler; where necessary it explains
their signiticance in more detail than is possible on a
single line of the report produced by the compiler.

Some of these messages are only ‘warnings'. They indicate
that SUPERCHARGE has detected a trivial error, such as a
missing END DEF or END FOR,and inserted appropriate code
to correct the mistake. SUPERCHARGEcan often correct minor
errors without the need for human intervention. You should
nonetheless check every line for which a ‘warning’ is
given, to ensure that you understand the mistake and the

corrective action which SUPERCHARGE has taken.

This is a complete and exhaustive list of compiler
messages; some of these are most unlikely to appear in
normal use, but we'd hate you to 'miss’ a feature!

AMBIGUOUS NAME USED

The line shown contains a name which is of indeterminate
type - perhaps it has been declared as an array and also as
a function, for example. This message may be generated more
than once - this repetition is deliberate, so that you can

easily find all the places where an ambiguous nameis used.

AMBIGUOUS DECLARATION OF NAME

An name declared on the line indicated has also been
declared as an incompatible array, procedure or function.
This declaration makes the type of the name unclear.

ARRAY NAME REQUIRED

The first parameter of DIM should be the name of an array
used in your program. This message may appear if there is
no corresponding DIM for the name specified, or two DIMs
with a different number of dimensions have been found for
that name. This rule is explained in more detail in Chapter
6, under the heading ‘Array and String handling’.

SUPERCHARGE USER'S MANUAL Page L$

USING SUPERCHARGE CHAPTER 3

ARRAY OPERATION NOT IMPLEMENTED

The compiler has detected an attempt to 'slice’ a numeric
array, or otherwise manipulate a number of array elements

within a single statement. Array slicing and manipulations
are only allowed to act upon the last dimension of strings.

ASSIGNMENT TO FUNCTION ATTEMPTED

A statement starting with a function-name has been found.
This indicates one of two logical errors. Either you have
tried to call a function without specifying a destination
for the value returned, or you have tried to store a value
in a variable with the same name as a function. ‘Bad name’
is the equivalent message produced by the interpreter.

CHANNEL SPECIFICATION NEEDED

You must specify a channel number as the first parameter of

this command.

COMMAND MEANINGLESS IF COMPILED

The command indicated is incompatible with the form of a
compiled program. When a compiled program is run the text
of the program lines is not present. Thus commands which
manipulate the listing are useless. Interactive debugging
commands are similarly meaningless in a compiled program.

COMPILATION ABORTED

The circumstances described in the previous error report
make it impossible for the compiler to continue scanning
the program. Any subsequent errors are not detected.

END OF STATEMENT EXPECTED

The compiler reached what it thought should be the end of a
statement, and then found extra characters there. This

message can appear If you try to pass the wrong number of
parameters to a procedure, or close more parentheses than

you've opened, in an expression.

SUPERCHARGE USER'S MANUAL Page 19

USING SUPERCHARGE CHAPTER 3

END IF EXPECTED

The compiler has found another kind of END when it expected
an END iF. This message can also crop up when more than one
ELSE statement is associated with a single IF structure.
You are allowed to nest IF statements as deeply as you
wish, so long as you comply with the simple rule explained
in Chapter 6.

END REPEAT EXPECTED

The nesting rules for a REPEAT loop have been broken, so
that SUPERCHARGE has found another kind of END when it was
expecting an END REPEAT. See Chapter 6 for more advice.

END SELECT EXPECTED

The nesting rules for a SELECT structure have been broken,

so that the compiler has found another kind of END when it

expected an END SELECT. The rules about nesting are
explained in Chapter 6.

ERROR DIAGNOSIS FAILED

An internal problem has occured, causing the compiler to
stop the compilation. Examine the listing at the point
where the message was generated, to see if the cause is
obvious. Otherwise there is a major fault in your computer
or your copy of the compiler. Reset the QL and try again,

in case the problem was caused by electrical interference.

EXPRESSION NOT ALLOWED IN DATA

Compiled data statements may not contain expressions. They
may contain strings (enclosed in single or double quotation
marks) and numeric constants, optionally preceded by an
unary operator: NOT, "+", "=" or bitwise negate (2 tildes).

EXPRESSION SYNTAX INCORRECT

This message indicates that the compiler did not end up
with a single value after evaluating an expression. Likely
causes are unmatched or ‘extra’ brackets, or illegal
characters in the expression.

SUPERCHARGE USER'S MANUAL Page 20

USING SUPERCHARGE CHAPTER 3

EXPRESSION TOO COMPLEX

This message is extremely unlikely to appear unless you use
a phenomenally complex expression - twenty brackets of the
same type, a very long sequence of unary operators, or a
lot of function-calls one within another. You are too
clever for your own good. The solution is to simplify the
expression or split it into several stages.

FAULTY LINE NUMBER

The line numbers specified in RESTORE, GO TO, GO SUB and
ON..GO statements must be fixed values - not the results of
a calculation.

FUNCTIONS MUST RETURN A VALUE

A RETURN statement has been encountered in a function
definition, without an associated value to be returned by
the function. If the value returned is immaterial in a
particular instance, use RETURN 0 to prevent this error.

INCORRECT NUMBER OF PARAMETERS

A call to a SuperBASIC or machine-code procedure has either
too few or too many parameters.

INCORRECT SUPERBASIC SYNTAX

A syntax error has been found. Normally these are detected
by the SuperBASIC editor, which marks such lines with the
keyword MISTAKE.

This message may also appear if the program being compiled
is corrupt, or you have used the interpreter while
SUPERCHARGEis running. The SuperBASIC data area should not
be modified while SUPERCHARGE runs, or the compiler may
‘lose its place' and issue this message. The problem cannot
occur if you invoke SUPERCHARGE with the MERGE command.

LOCALS MUST FOLLOW DEFINITIONS

Local variables must be declared at the very beginning of a
procedure or function - before other statements (apart from
comments). This is a rule imposed by SuperBASIC.

SUPERCHARGE USER'S MANUAL Page 21

USING SUPERCHARGE CHAPTER 3

LOOP DOES NOT EXIST HERE

An EXIT or NEXT statement has been found after the END of
the associated loop, or before the start of the loop.

MISSING ARRAY SUBSCRIPT

The program contains a reference to an array where the
required element has not been completely specified.

NAME NOT FOUND

An internal error has occured in the compiler. Check that
other jobs are not interfering with memory used by the

SuperBASIC interpreter. The SuperBASIC data area should not
be modified while SUPERCHARGE runs, or the compiler may
‘lose its place' and issue this message. The message may
also appear if the program being compiled is corrupt.

NON-EXISTENT LOOP OR SELECTION

A structure has more than one END; a duplicate END IF, END

FOR, END SELECT or END REPEAT has been found.

ONLY FUNCTIONS MAY RETURN VALUES

You should not use the RETURN command with a parameter
(e.g. RETURN var) inside a procedure definition. Procedures
are commands, unlike functions, and commands do not return

values.

PREVIOUS DEFINITION INCOMPLETE

The start of the definition of a procedure or function has

been found before the END DEFINE of the previous
definition, or an ‘extra’ END DEFINE has been found.

PROCEDURES DO NOT HAVE VALUES

A procedure name (which has no associated value) has been
encountered in an arithmetic expression. This generally
means the name has been mis-typed, or a procedure has been
accidentally defined instead of a function.

SUPERCHARGE USER'S MANUAL Page 22

USING SUPERCHARGE CHAPTER 3

STATEMENT IS NOT YET SUPPORTED

The statement is in the QL ROM but has not yet been
documented as a formal part of SuperBASIC. This message may
appear if INPUT or EOF are used in an invalid context.

TOO MANY STRUCTURES

SUPERCHARGE has not got enough space to keep details of ail
the line-references, declarations and nested control
constructs in your program. The simplest corrective action
possible is to reduce the size of the program. This error
is not likely to crop up on a 128K QL. The procedure to
expand the area used to store this information is explained
earlier in this chapter.

UNEXPECTED SYMBOL IN SUPERBASIC

The SuperBASIC program in memory has become corrupt, or
there is a fault in your QL or in your copy of the
compiler.

This message may also appear if you have used the
interpreter while SUPERCHARGEis running. The SuperBASIC
data area should not be modified while SUPERCHARGE runs, or
the compiler may ‘lose its place’. This never happens if
you invoke SUPERCHARGE with the standard MERGE command,

VARIABLE ASSIGNMENT EXPECTED

A reference to a variable was found at the start of
statement, yet it was not followed by an equals sign. This
suggests that you may have confused a procedure name with a
variable name.
WARNING MESSAGES

The next & messages are not error reports and do not
prevent the generation of an executable task. The messages
indicate that a possible error has been diagnosed at the
Position shown. SUPERCHARGEis an ‘intelligent’ compiler
capable of taking appropriate action to allow the
compilation to continue; you should check the program to
make sure that you understand what SUPERCHARGE has done and
why it has done it.

WARNING: DIM STRINGNAME$(256) ASSUMED
WARNING: LOCAL STRINGNAME$(256) ASSUMED

The string variable or local string variable shown is not dimensioned
in your program - a default maximum length of 256 characters is assumed.
If you need more than this, or to save memory, position an explicit DIM

where it will, at run-time, be encountered before the current location.

SUPERCHARGE USER'S MANUAL Page 23

USING SUPERCHARGE CHAPTER 3

WARNING: END DEFINE sub ASSUMED

SUPERCHARGEhas encountered a DEFINE statement while it was
still reading the definition of another procedure or
function. The name of the definition being read appears in
the message ('sub' in the above example). This warning
means that an END DEFINEis missing or in the wrong place.

You may ‘nest' procedure and function-calls as much as you
wish when a program runs, but it is not correct to nest

definitions. Definitions should appear one after another,
but not within one another. As Jan Jones, the designer of
SuperBASIC, points out, "there are absolutely no advantages
in nesting procedure definitions".

You may have missed out the END DEFINE because your routine
always ends with a RETURN. SUPERCHARGEinserts an END
DEFINE before the next definition - this action corrects
the error, so long as there was not meant to be any code

between the two definitions. If you try to nest one
definition within another SUPERCHARGEissues an error
message when the end of the ‘outer' definition is found.
The warning message shows where the END DEFINE should have
appeared, so it is easy to correct the error.

WARNING: END FOR var ASSUMED

SUPERCHARGEhas encountered the END of a structure
enclosing 2 FOR loop without finding the END FOR for that
loop. In the above example, ‘var’ corresponds to the name
of the variable controlling the loop.

In a correct SuperBASIC program every FOR loop should end
with an END FOR, just as every IF ends with an END IF and

every SELECT with an END SELECT. Short forms have an
implied END at the end of the line concerned. 'Traditional’
BASIC, however, requires that a FOR loop is terminated by a
NEXT statement, rather than an END FOR. The END FORis
often missed out by lazy programmers and those accustomed
to different implementations of BASIC. One of the clever
but dangerous features of SuperBASIC is the way that you
can get away with NEXT instead of END FOR... in most cases!

SUPERCHARGEinserts END FOR statements in a sensible,
documented place if they are missing. This warning does not
indicate an incompatibility between SUPERCHARGEand
interpreted SuperBASIC; it does indicate a potential source
of error in the original SuperBASIC, and the exact way in
which SUPERCHARGEwill cope with the error should it occur.

SUPERCHARGE USER'S MANUAL Page 24

USING SUPERCHARGE CHAPTER 3

WARNING: PARAMETERS ARE NOT RETURNED

This indicates that a parameter has appeared in a context
where SuperBASIC and SUPERCHARGE might pass it in different
ways. SUPERCHARGEalways passes parameters in a fixed way -
from the caller to the called code - whereas changes to
parameter values within interpreted procedures and
functions can lead to changes outside the subroutine,
depending upon the exact syntax of the calling statement.
If this message appears you should check that your program
does not expect the value of the parameter indicated in the
report to change as a result of the procedure or function
call.

The code used to check for this case is rather simple and
works on a 'better safe than sorry’ basis, so the warning
can also crop up when a parameter expression starts with a
function-call or a reference to an array element. This
doesn’t disturb the compilation, since this message is only
a warning. You can make things clear to SUPERCHARGE, and to
the interpreter, by enclosing each parameter in brackets;
thus SETPOS X,Y would become SETPOS (X),(Y).

WARNING: VARIABLE NAME ASSUMED

SUPERCHARGEcannot teil whether the name indicated in the
report is that of a variable or a file or device. It has
assumed that the name is that of a floating-point variable.

The format of floating-point variable names and file names
is identical in SuperBASIC, unless the name is put in

inverted commas. If this message appears next to a file
name you should put the name in inverted commas to avoid
ambiguity.

This message only applies to ‘add-on’ commands which are

not standard to the QL. SUPERCHARGEis clever enough to
recognise al! the standard commands that expect names
(rather than floating-point values) as specific parameters,
so you use these commands without being warned:

COPY_N flpl_dump TO ser
SEXEC hdkl_temp,X,Y,Z%

In the second example SUPERCHARGEtreats the file name as a
string (rather than as a variable) - yet the other three
parameters are treated, correctly, as numeric variables.

SUPERCHARGE USER'S MANUAL Page 25

USING SUPERCHARGE CHAPTER 3

RUN-TIME ERRORS
Errors which occur while a compiled program is running are
reported using the standard QDOS messages. These are
documented in the ’Concepts' section of the QL User Guide.

All errors cause the task to stop; any channels it is using
are closed and the memory in which the task was running is
released for use by other programs.

It is net possible for the user to 'trap' all errors which
May occur within a compiled program, but most errors can be
detected or avoided by appropriate programming. The
trapping of commonerrors is discussed in Chapter 5, which

introduces a new SuperBASIC function for this purpose.

The SUPERCHARGEerror message will give you an indication
of the line which was being processed when the error
occured. For example, you might see:

*#*** Supercharged BASIC halted after line 200 Overflow

If the message suggests that the program stopped at line
'O' this shows that it stopped while it was setting itself
up - before any program lines were executed. This usually
means that memory is short - either the QL does not have
enough space to run the task, or the task's data area is

too small. The procedure to change the amount of data space
used by a compiled task is discussed in the next chapter.

Under rare circumstances the line number shown may not be
the exact location of the error; this is because SUPER-
CHARGE sometimes merges or interleaves lines in order to
obtain extra efficiency, In any case the error will be very
close {in terms of program flow) to the line shown,

The final part of the report is a standard QDOS error
message. In general this corresponds exactly to the message
which SuperBASIC would give in similar circumstances.

‘Channel not open' will appear if you try to use a channel
number greater than 15 (see Chapter 6). 'Bad parameter’ has
its usual meaning - SUPERCHARGEperforms simpie parameter
checking when a program is compiled, but some mistakes can

only be detected when the program is executed.

The 'Overflow' message is generated if values go beyond the
accepted range. This is especially relevant to string and
integer handling - you will find more details in Chapter 6.

SUPERCHARGE USER'S MANUAL Page 26

USING SUPERCHARGE CHAPTER 3

Invalid colours, array subscripts and so forth provoke the
usual ‘Out of range’ message. Remember that all strings
must be DIMensioned after a compiled CLEAR.

Unlike some other compilers, SUPERCHARGE always checks

parameter values and array subscripts as programs run, so
that obscure circumstances do not produce mystifying
effects. The compiler's checking mechanism is much more
efficient than that of the SuperBASIC interpreter.

You should still test your programs thoroughly with the
SuperBASIC interpreter before you compile them, since the
interpreter is specifically designed to make interactive
testing and debugging easy. Of course, this means that
interpreted programs run slowly, but this is rarely a snag
when you are testing new code.

You may use most SuperBASIC ‘extensions’ in compiled
programs (see Chapter 5} but these must be loaded when you
run the program as well as when you compile it. If any such
procedures or functions are absent when a task is started
SUPERCHARGEprints a message for each one, of the form:

DEVICE_STATUSis not loaded.
LIST_TASKS is not loaded.
SET_PRIORITY is not loaded.

The compiled program will not run until you load the
procedures or functions concerned.

If you receive a 'Bad parameter’ error as soon as a
compiled program is loaded, it is likely that the file has
somehow become corrupt. You can create a good copy by
re-compiling your original SuperBASIC program.

SUPERCHARGEreports and messages are generally printed to
window 0, the command window; this will be at the bottom of
the screen unless you have re-positioned it. However,

messages are re-routed to window | (the default window for
PRINT and graphics commands) if window 0 is ‘in use'. This
is most commonly the case when the system is displaying a
cursor in window 0 and waiting for you to type a command.

Sometimes messages are split between the two windows - this
is irritating but inevitable, on a multi-tasking system.

If you start a compiled program with the EXEC_W command,
reports and messages appear in window 0. This is because
EXEC_W does not allow you to type further commands until
the task has finished. If you find the messages annoying
you can conceal them by setting INK and PAPER to the same
colour in the appropriate windows.

SUPERCHARGE USER'S MANUAL Page 27

* The SUPERCHARGE cartridge contains a file called
UPDATES_DOC. If you look at this file using QUILL,

you will find listed all amendments to the user
Manual

MULTITASKING CHAPTER 4

SPACE, TIME AND MULTI-TASKING
A 'task' is any program loaded with the EXEC or EXEC_W
commands. Such programs differ from SuperBASIC or machine-
code loaded with the LBYTES command, in that more than one
task may run at a time. This concurrent execution is called

'multi-tasking'.

All programs compiled by SUPERCHARGEare capable of
multi-tasking - in other words, you can run lots of
compiled programs ‘at once'. Tasks run in rotation, with
each one receiving a small ‘slice’ of the available
processing time before another gets a turn; the effect is
just as if the tasks were executed concurrently.

The main limitations on multitasking are those of the QL
hardware, in particular the available memory.

Every compiled program requires at least 4 kilobytes of
memory. This space contains about 2K of code used to set up
the task, plus routines to handle and report errors. A
further 2K of space for data (channel tables and system
variables, etc) is always allocated. Later in this chapter
we explain how you can alter the size of this ‘data space’.

The total size of a compiled program can be anything from
4K upwards. In general, compiled code is more concise than
the original BASIC program. The exact ratio of sizes will
vary from one program to the next.

DEVICE-SHARING

When you run several programs concurrently, the QL has to
share out other hardware facilities, called 'devices', as
well as memory. Some devices, such as the display, can be

used by several tasks at once. Others, such as the
keyboard, may only be used by one task at a time.

Compiled programs may test any device before they try to
use it. This means that they can detect the case when a
device or file is already ‘in use' and take alternative

action, rather than just stop with an error message. A new
SuperBASIC function called CHECKSTATUSis used to obtain
this information, The function is documented in Chapter 5,
under the heading ‘Trapping Errors’.

SUPERCHARGE USER'S MANUAL Page 28

MULTITASKING CHAPTER 4

SERIAL DEVICES. It would obviously cause problems if
several programs tried to use a printer interface at the
same time - you might end up with a printout containing a
mixture of several reports. The QL gives the error message
‘in use’ if a task tries to use a serial device (such as
the network or serial port) which is already busy.

FILE HANDLING. Several tasks can share a single disk or
microdrive - the QL makes sure that the data for each task
is kept separate. Only one task at a time may WRITE data to
a specific file. The QL reports ‘in use' if a task tries to
write to a file which is already being written by another
task,

DISPLAY HANDLING. More than one task may write to the
display at any time, but in this case it is up to the
programmer to make sure that collisions do not occur, by
positioning 'windows' appropriately.

THE KEYBOARD. Only one task may read characters from
the keyboard at a time - otherwise commands might be
‘shared out’ between tasks, making the system unusable. The
task which is currently receiving key-presses signals this

fact with a flashing cursor in one of its windows. Any
characters you type appear in that window. If other tasks
are also waiting for input from the keyboard, they signal
this by displaying a cursor that DOES NOTflash.

You may switch from one window to. another with a single key
press. When you make the switch the cursor you had been
using will stop flashing and one of the others will start.
Whatever you type appears in the new window. You can switch
between several windows: each cursor is enabied in turn.

When the QL is first turned on it treats the key-press
‘Control C’ as the signal to swap from one window to
another. Type Control C by holding down the CTRL key while
pressing and releasing the letter 'C' key. This has no
effect unless there is more than one cursor on the screen.

You can change the character code used to switch between
windows by POKEing a new code into address 163986. Type:

POKE_W 163986,9

to make the TABULATE key switch between windows, since 9 is
the character code of TABULATE. You should not do this, for

obvious reasons, if you are using software which already
assigns some purpose to that key. A full list of character-
codes appears in the Concepts section of the QL User Guide.

SUPERCHARGE USER'S MANUAL Page 29

MULTITASKING CHAPTER 4

TASKS AND MEMORY
When a program is loaded into the QL’s memory with the EXEC
or EXEC_W commands, space is reserved for the 'data’ which
the task will generate as well as for the program code.

SUPERCHARGEuses this 'data space’ to store information
generated as the program runs - variable (and array)
values, temporary results, subroutine linkages and so on.
When the data space becomes full, compiled programs stop

with the report ‘out of memory’.

A fairly small amount of data space is allocated by the
compiler when a task is created (so that tasks do not
gobbie up large tracts of memory unnecessarily), but it is
easy to change the amount of data space which will be
allocated to a specific task.

The program called DATASPACE, supplied as part of your
compiler package, allows you to set the amount of data
space associated with any task file. DATASPACEitself is a
task, so you load it using the EXEC command:

EXEC MDV1_DATASPACE_TASK

Once the program has loaded, a window appears near the top
of the screen, The prompt 'Task file name?’ indicates that
the program is waiting for you to specify the file which is
to be modified.

Type Control C, or whatever key-press you have assigned to
switch between windows, until the cursor in the new window
begins to flash. Type the device and file name of the task
which you wish to modify. If you are not sure of the name
you can switch back to the command cursor and use the DIR
command to find it out.

AT ANY TIME you can stop the DATASPACEprogram by typing a
biank line (ENTER on its own). You are returned immediately
to the command line. Type Control C (or equivalent) to turn
the command cursor back on.

When you have entered a name, DATASPACEtries to find a
task file with that name. At this point any of the normal
QL error messages might appear, if the name was incorrect.
Alternatively, if the file exists but is not a valid QL

task, this message appears:

That is not a task file.

SUPERCHARGE USER'S MANUAL Page 30

MULTI-TASKING CHAPTER 4

If any error occurs you are returned to the 'Task file
name?' prompt so that you can try again. Press ENTER on its
own to stop the program, as explained earlier.

Assuming that you typed a valid file name, and all went
well, the computer prints out the size of that program: the
number of bytes of code and the number of bytes of data

space presently assigned.

3836 code bytes, 2048 data bytes.
New data size (in Kilobytes) ?

The QL asksyou to specify the new data size, in units of
1024 bytes (one kilobyte), Press ENTER on its own to stop
the program at this point. Otherwise, type an appropriate
figure. You may type a 'K' at the end of the figure if you

wish - it is assumed in any case. Any fractional part is
ignored.

If the characters which you type do not make up a valid
number you are returned to the 'Task file name ?' prompt.
You can take advantage of this and examine the sizes of
several programs, without changing them, by typing
gibberish (such as a question mark) when you are asked to
specify the new data size for a file.

A standard, 128K QL has only about 85K free for all tasks.
ft is not safe to use absolutely all the memory, since this
leaves no room for file-buffers.

If you make the data size of a task so large that the code
and data cannot fit into memory, an ‘out of memory’ error

will occur when you EXEC the task. You can use DATASPACE to
reduce the data space requirement if need be.

DATASPACE does not allow you to specify less than 2K of
data space for any task. Compiled programs require this
minimum amount of space in which to set up essential
tables. If you type a value less than 2K you are asked to
try again, specifying a larger value:

Too small; the minimum is 2 Kilobytes.
Please try again:

You can set or examine any number of tasks once DATASPACE
is loaded. After each change you are returned to the 'Task
file name ?' prompt. Press ENTER on its own when you have
finished.

SUPERCHARGE USER'S MANUAL Page 31

EXTENSIONS TO SUPERBASIC CHAPTER 5

EVEN MORE SUPERBASIC
Five add-on commands are provided within the SUPERCHARGE
package. These give you control over tasks, and allow you
to ‘trap’ errors which would otherwise cause a program to
stop. The extra commands may, of course, be used either in
BASIC or in compiled programs.

The new commands can be loaded by typing the following

instruction whenever you have the compiler cartridge in
microdrive 1:

MERGE mdvl_extensions_bas

This command causes the extensions to be installed into
reserved memory from the file EXTENSIONS_CODE, and linked
into the SuperBASIC system. You can then use the commands
as if they were a normal part of the SuperBASIC language.
They will remain available until you reset or turn off the

computer. They use only 512 bytes of memory.

As with all other add-on procedures or functions, you

should install the commands before you load any program
which uses them. This rule applies whether the program
using the commands is compiled or ordinary boring BASIC.

Three new commands are provided to give control over tasks.
The commands work with any program that is loaded using the
EXEC instruction - be it written in compiled BASIC, machine
code (e.g. DATASPACE_TASK) or any other language that
produces programs that are loaded with EXEC. The other
commands, used to find the amount of free memory and to
trap errors, are discussed later.

FINDING OUT WHICH TASKS ARE RUNNING

The LIST_TASKS command, as you might expect, produces a
list of all the tasks currently running on the QL. The list
consists of four columns, separated by commas:

Name, Number, Tag, Priority.

You can direct the list of tasks to any QL device by
following the command with a channel number, just as with
PRINT or DIR. The hash character is optional. Thus, to send
the list to the command window (channel 0), you type:

LIST_TASKS #0

SUPERCHARGE USER'S MANUAL Page 32

EXTENSIONS TO SUPERBASIC CHAPTER 5

If you type LIST TASKS before any tasks have been
explicitly loaded, you obtain this response:

BASIC, 0, 0, 32.

That line indicates that the only task running is the QL's

BASIC language, which interprets SuperBASIC programs and
allows you to type commands. If there were more tasks
running there would be a line for each one. Tasks are
listed in the order in which they were loaded.

The first piece of information is the name of the task -
BASIC, in this case. Compiled BASIC tasks have the name
‘Supercharge’. Other tasks have the name assigned by their
programmer, or 'No name' if the programmer ticked the ‘no
publicity' box and left the code nameless.

After the name come two numbers which identify the task to
the QL system. These are called the 'task number’ and the
‘task tag’, or, together, the ‘task identifier'. These
numbers are needed when you use other task-control
commands. It is unfortunate that two numbers are used,
rather than one, but - like lots of other unfortunate

things - this feature is ‘designed into’ the QL's operating
system. The SuperBASIC interpreter is always task 0, 0.

The last number is the 'priority' of the task. When there
is only one task running this figure is not important;
otherwise, it determines the proportion of time which the
QL spends executing a given task.

Priority numbers range from 0 to 127. If a task has a
priority of 0 it never gets any time at all, rather like
bug-fixes at Sinclair Research. If a task has any other
Priority, the proportion of the processing time it receives
will depend upon the priority of other tasks.

Later in this section we explain how the priority of any
task can be changed - but first we should explain exactly
what we meanby 'priority'.

Priority treatment

{f three tasks were running, all with a priority of 32 (the
standard value given by the EXEC command), they would all
receive roughly the same amount of attention and run at
roughly the same speed. If the priority of one of the tasks
was reduced to |, that task would receive much less proc-
essing time than the others, and appear to run more slowly.
In fact, it would be chosen for execution less frequently.

SUPERCHARGE USER'S MANUAL Page 33

EXTENSIONS TO SUPERBASIC CHAPTER 5

EXEC gives tasks an ‘intermediate’ priority of 32 by

default, since this makes it easy to make tasks faster or
slower than the norm. It is a good idea to avoid using high
priorities except in rare circumstances, since it can be
irritating ta have to ‘turn down‘ a number of tasks just to
make one relatively faster.

The exact ratio of execution times depends upon what each
task is doing. In general, high priority tasks receive the
largest proportion of processing time, but this is not
always the case. If two tasks are both waiting for
information (from the keyboard or serial port, perhaps),
the QL does not waste time on them - whatever their
priority - until they have some data to process; in this
case, a third task with a priority of 1 might receive most
of the time, simply because it might be the only task which
was immediately ready to run.

The QL does not 'forget' about tasks unless they have a
priority of zero. Even if a task has a priority of 1 it is
executed occasionally - but it may not run for long each
time it is awakened, and such awakenings may be infrequent.

Sometimes you can see this process at work. It is common to
set the priority of ‘clock’ or 'calendar' tasks, which
display the current date, to a low value, so that they only
use a small proportion of the QL's time. If you have such a
Program you may notice that it shows the exact time,
accurate to the second, when the computer is idle, but

while you type in commands, or list programs, the display
may only be updated every few seconds.

The 'priority' of QL tasks is much like the 'priorities'
which you might attach to tasks at home. Fixing the hole in
the roof might be a high priority, hoovering the carpet a
lower priority and experimenting with your QL the lowest
priority of all, only to be done when other tasks are not
pressing. In our case, we only attend to the roof when it
looks as if the rain is going to get inside the machine!

CHANGING THE PRIORITY OF TASKS
You can change the priority of any task that is loaded. The
command to do this is (wait for it!) SET_PRIORITY.

The QE needs two things in order to change the priority of
a task - the task identifier (the number and the tag) and
the new priority. Priority values may range from 0 to 127,
as explained earlier in this section.

SUPERCHARGE USER'S MANUAL Page 34

EXTENSIONS TO SUPERBASIC CHAPTER 5

Use the LIST_TASKS command to find the names of tasks and
the corresponding ‘task identifier’ numbers. You must use
identifier numbers to specify a task, rather than names,

since it is quite possible to run several tasks which have
the same name.

The format of the SET_PRIORITY command is shown below:

SET_PRIORITY 0, 0, 16

This command sets the priority of task number 0,0 (built-in
BASIC) to 16 - half the value set when you turn your
computer on, Such a command might be used to give more time
to other tasks once they had been loaded by BASIC, You are
not allowed to set the priority of task 0,0 to zero, since
that would make the entry of further commands impossible!
If you try to do so you receive the 'Bad parameter’ report.
If the task you specify does not exist, the error report is

‘Invalid job’ - 'job' is just another term for ‘task’.

STOPPING TASKS
You can remove a task from memory with the REMOVE_TASK
command. You must identify the task with the two numbers
from the list, as with SET_PRIORITY:

REMOVE_TASK 1,1

If, the task identifier you specify does not correspond to a
job which is currently loaded, ‘Invalid Job‘ is reported.
‘Job' means the same thing as ‘task’. 'Not complete’ is
reported if you try to remove task 0,0. This is not allowed
as it would make it impossible to enter further commands.

When a task is removed, all the channels it was using are

immediately closed, devices are made free for the use of
other tasks, and the memory in which the task was running
is released. This happens automatically when STOP or NEW is
encountered in a compiled program.

MEMORY

The function FREE_MEMORY returns the amount of space
available to SuperBASIC, or the amount of unused space
within a task's data area, depending upon whether it is
called from SuperBASIC or Supercharged BASIC. For example:

PRINT FREEMEMORY

SUPERCHARGE USER'S MANUAL Page 35

EXTENSIONS TO SUPERBASIC CHAPTER 5

TRAPPING ERRORS
A number of un-documented commands which deal with error
trapping are built-in to later QL systems. SUPERCHARGE does
not recognise these, for three reasons:

(1) They have not been formally specified or documented, so
their operation may well change from one version of the
QL to the next. SUPERCHARGED programsare designed to
run on all versions of the QL.

(2) There are several serious bugs in the new commands
(at least in the "JS" and "MG" ROM implementations,
which were the only versions of the commands which had
escaped from Sinclair when SUPERCHARGE was written).

(3) The first versions of the QL which featured the error
trapping commands did not become available until nine
months after work on SUPERCHARGEbegan, and the launch
of the compiler would have had to be delayed to allow
the new commands to be accommodated in any form, since
they have not been implemented as ‘proper' SuperBASIC
extensions (add-on procedures or functions).

In view of these problems we have not implemented ‘trap!
commands based around the WHEN keyword.

However, we have provided a new function, DEVICE_STATUS,
which lets you check for possible errors in the most common
problem-area - when you need to open a channel to a new
device, perhaps using a name supplied by the user. It is
difficult to get around the need for such a facility when
writing serious programs in SuperBASIC - indeed, we wrote
DEVICE_STATUS when it became obvious that we would need it
in order to write SUPERCHARGE properly!

DEVICE_STATUS is a function which expects a single, string
parameter, The string should be the name of a QL device,
followed by parameters (if any) or a file name.

The function analyses the string to find out whether or not
it starts with the name of a device on the current QL. Any
parameters of the name (for example ‘con_448X180A32X16' or
‘serlEHC') are then checked.

Finally the function attempts to open a channel to
communicate with the device specified. If successful, the
channel is closed and any file which has been generated 'en
route’ is deleted.

SUPERCHARGE USER'S MANUAL Page 36

EXTENSIONS TO SUPERBASIC CHAPTER 5

DEVICE_STATUS returns a number which indicates the degree
of success it had in performing the above operations. The
numbers are tabulated below.

The function automatically adapts to different hardware, so
you can use it on a basic QL system, secure in the know-

ledge that it will also work with floppy disks, modems,
‘parallel’ printers and so on. For example, the following
command indicates that the file 'SUPERCHARGE_SPEC' exists
on floppy disk number 1:

PRINT DEVICE_STATUS("fipl_supercharge_spec")
<8

VALUE RETURNED MEANING

0 or more

-3 or -6

7

-8

9

-12

The device exists, and is

not busy; a file with the
name specified (if any)
does not yet exist. The
name or other parameters
(if any) are valid.

The device name and parameters
are valid, but the QL has
insufficient free space to
open a new channel to the
device.

There’ is no device with the
specified name on this QL.

A file with the name specified

exists on the device specified.

EITHER the device specified
exists, but it is already in
use and no other task may use

it until the present one has
finished; OR the file specified
is in the process of being
written,

The device name is valid, but
the file mame or parameters
are not.

Table of values returned by the DEVICE STATUS function.

SUPERCHARGE USER'S MANUAL Page 37

EXTENSIONS TO SUPERBASIC CHAPTER 5

Input validation — a useful ‘trick’
If you normally use WHEN ERROR to trap errors which crop up
when users type text instead of numbers, consider this
simple ‘trick'. Read input into a string variable, rather
than directly into a numeric variable. Then, if A$ is the
string which you wish to evaluate, the command:

Xs"0" & AS

will set X to the value of AS, or zero if AS is not a
number. In either case there will be no error.

COPYING EXTENSION COMMANDS
In view of the fact that DEVICE_STATUSis such a useful
command, and in the interests of encouraging compatibility
among QL BASIC programs, the command and its code may be
copied and used in any of your own programs, including
published work. This offer applies whether or not your
Programs are compiled, and means that you may copy these
two files for others, without restriction:

extensions_code & extensions_bas

These files also contain code for the commands LIST_TASKS,
REMOVE_TASK, SET_PRIORITY and FREE_MEMORY. Similarly, you
may use those in your own programs without restriction. You
are NOT allowed to SELL the above files except as a comp-
onent of your own programs. Of course, you may distribute/sell
your own compiled programs - so long as they do not compete
with SUPERCHARGEitself - subject only to acquisition
of a Site Licence.

You may NOT copy the compiler or other parts of the
SUPERCHARGEpackage for others; nor may you copy the
documentation of the commands, or any other part of this
manual, which is protected by International Copyright law.

We have spent over a year developing SUPERCHARGE, and
further development work and maintenance is still going on.
This work is only viable if those who use SUPERCHARGE pay
for their copies. Action under civil or criminal law may be
taken against those who ignore this notice.

If you are offered an ‘unofficial’ or ‘pirate’ copy of
SUPERCHARGE,please note that Digital Precision will pay a
reward for information leading to the successful prosecut-
ion of those who copy SUPERCHARGE without authorisation.

SUPERCHARGE USER'S MANUAL Page 38

EXTENSIONS TO SUPERBASIC CHAPTER 5

COMPILING ‘NEW’ PROCEDURES AND FUNCTIONS
SuperBASIC is designed to be an extensible language -
procedures and functions can be added easily to the
language, using a standard format. Most of these add-on
procedures and functions may be used in compiled programs.
We cannot say with certainty that ALL such commands will
work, since we cannot allow for every remote possibility.

When the compiler detects the use of a non-standard routine
it finds the parameter values in the usual way, ‘pretends’
that the interpreter is running, and then calls the code of
the routine to do the work. Before execution starts the
compiled program checks that all of the commands it needs
are loaded; if this is not the case an error message is

produced:

<name>? IS NOT LOADED.

for each missing command. You must load the commands into
SuperBASIC before the compiled program will run.

SUPERCHARGEcannot check the 'types' of parameters when a
program is compiled, since it does not know what is valid.
All it can do is extract the specified values from the
compiled task’s variable area, and hope for the best. If

you type REMOVE_TASK "FRED" instead of REMOVE_TASK 1,2
you only discover the error when you come to run the
compiled code, since SUPERCHARGE doesn’t know that the

command should have two integer parameters.

There again, if you'd typed REMOVE_TROUSERS "fred" the
compiler would spot the mistake at once, since REMOVE
TROUSERS is not a valid SuperBASIC command (on our systems,
at any rate!)

There is ome point which may not be obvious. File or device
names which are used as parameters of ‘add on’ commands
MUST be typed in inverted commas. Otherwise SUPERCHARGE
cannot tell whether you are refering to a floating-point
variable or a file. The format of a variable name and a
file name is identical, so you have to make the distinction
by using inverted commas. For example:

EX flpl_fred

would have to be changed to read:

EX "flpl_fred'

SUPERCHARGE USER'S MANUAL Page 39

EXTENSIONS TO SUPERBASIC CHAPTER 5

To help you detect this problem, SUPERCHARGEissues a
‘warning! message whenever it encounters a name that could
be taken as a device nameor a variable.

SUPERCHARGE does not insist that add-on code is loaded into
any particular area of the QL's memory; as a compiled
program begins to execute it searches out appropriate
routines by name.

This can cause problems if you have two different commands
with the same name, and compile while one is in memory and

execute the program with the other loaded.

In such a case SUPERCHARGE passes parameters intended for
the first routine to the second, probably causing a ‘bad
parameter' error. The effect is just as if you had loaded
the wrong definition in normal SuperBASIC: you get the
wrong result, or - more likely - the program stops with an

error message.

If a name has been loaded more than once, the FIRST version

loaded is used by SUPERCHARGE.The interpreter uses the
same rule in versions "AH" and "JM" of the QL, but later
versions ("JS", "MG" and thereafter) use the most recent
version.

As ever, SuperBASIC is a moving target and SUPERCHARGE
can't be exactly compatible with both versions. So long as
you resist the temptation to load more than one copy of a

given command, all will be well.

The degree with which the compiled program can ‘pretend’
that it is the interpreter is obviously limited - if the
imitation was perfect the compiler would have to work
almost exactly like the interpreter, in which case there
would not be much point in bothering to compile programs!

SUMMARY

Procedures or functions that modify their parameter values,
process arrays (other than single strings), manipulate the
stored program text, or rely on other interpreter data
structures (such as the name table and namelist) will not
work when compiled. The majority of add-on commands do not
do this, and consequently work perfectly.

SUPERCHARGEis fully compatible with the SUPER SPRITE
GENERATOR and other Digital Precision extensions to
SuperBASIC.

SUPERCHARGE USER'S MANUAL Page 40

EXTENSIONS TO SUPERBASIC CHAPTER 5

BASIC EMULATION — SOME TECHNICAL DETAILS
The format of add-on procedures and functions is discussed
in detail in a number of books on the QL and its operating
system. We do not propose to duplicate that information in

this manual, but here are a few technical comments may be
useful to those who seek to write new procedures and
functions, or to check that existing ones are compatible

with SUPERCHARGE.,In general, procedures and functions
which do not rely on the presence of SuperBASIC interpreter
data-structures will work perfectly.

Parameters

SUPERCHARGE emulates the SuperBASIC mechanism for
parameter-passing. In particular, it sets up a table of
parameter descriptions between (A3) and (A5), like the Name
Table entries used by the interpreter. Only parameter-

types, addresses and separators appear in the table - other
variables, procedures and so forth are NOT represented.

Values passed back to the program via parameters will be
lost, but functions work as normal. The result of a

function should be stacked on completion, with its type
indicated by the value in D4 on completion. The compiled
code automatically coerces this value to a type
corresponding to the name of the function - string if the
name ends with a ‘S' sign, integer if it ends with '%', and
floating-point otherwise.

The Maths stack

The Maths stack, addressed by (A6,A1.L), is maintained in a
form identical to that used by the interpreter. Integer,
Float and String values are represented in the usual way.

Resident procedures and functions are not guaranteed to
find more than 100 bytes free on the Maths stack. The
BV.CHRIX routine cannot be relied upon to expand the Maths
stack, as tasks have to run within fixed (rather than
dynamic) bounds. If the Maths stack overflows SUPERCHARGE
can usually diagnose the problem when it recovers control.
If your procedure or function requires a lot of Maths stack
space, you should avert errors by checking the free space
before the procedure or function is called. The FREELMEMORY
function returns the amount of space available below the
Maths stack if it is called from within a compiled program.

SUPERCHARGE USER'S MANUAL Page 41

EXTENSIONS TO SUPERBASIC CHAPTER 5

Some ‘free’ space is taken up by the parameter-passing
mechanism. You should allow {0 bytes for each integer
parameter, 14 bytes for each floating-point value, and
(length+11) bytes for each string parameter.

A better way of checking the amount of free space is to
examine the values of the system variables BV.BFBAS and

BV.TKBAS, within your code. These delimit the SuperBASIC
area called ‘buffer’. When a compiled program is running
these Aé-relative pointers indicate the bottom and the top
of the area into which the stack can expand, respectively.

Of course, this trick only works when code is cailed by the

compiler; you can check whether or not this is the case by
examining the value of the system variable BV.TGBAS -
$54(A6) - this will always be negative when code is called
from within a compiled program, whereas it will always be

positive when the SuperBASIC interpreter is in control. The
function FREE.MEMORY uses this fact to determine whether it
should return the size of the task stack or that of the
QDOS 'free' area.

Routines should not use more than 128 bytes on the User

(A7) stack. This should not be a restriction, since the
same requirement is imposed by the interpreter.

System variables

A set of pseudo-system-variables is provided for the use of
procedures and functions; these are addressed by A6, as
usual. Some of these system variables are ‘dummies’ - only
those needed to support standard ROM routines are given
meaningful values.

You can make use of the values of BV.RIP and BV.YVBAS,
although you should not try to store values in the VV area.
BYV.TGBAS contains a 'dummy’ value, so that inadvertent
calls to BV.CHRIX do not try to ’expand' the task, with
potentially disastrous consequences. As explained above,
the ‘free space’ area is delimited by the values of
BV.BFBAS and BV.TGBAS. BY-BRK is set before each call.

A table similar to the SuperBASIC channel table (but
limited to sixteen standard 40-byte entries) is maintained
within compiled tasks. The pseudo-system-variable BV.CHBAS
points to the base of this table. The byte at offset 17
within each channel entry is reserved by SUPERCHARGE- it

is used to handle the '!' separator.

SUPERCHARGE USER'S MANUAL Page 42

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

SUPERCHARGE AND SUPERBASIC COMPATIBILITY
Insofar as is possible, the SuperBASIC compiler is exactly
compatible with the interpreter - programs written to run
under the interpreter perform in just the same way when
compiled. However, there are a few differences, explained
in this section, In each case the reasons for the
difference are given, along with suggested actions to be
taken if the difference affects your program.

The headings under which the differences are discussed are
listed below. Detailed explanations follow the list.

(a) SuperBASIC Identifiers.

{b) Arithmetic range and accuracy.

(c) Array and String handling.

({d) Nesting of structures.

(e) Computed line references.

(f) Program editing.

(g) Calculations in DATA,

{h) Channel numbers.

(i) Parameter locality.

(a) SuperBASIC Identifiers

Identifiers are defined in the 'Concepts’ section of the
Sinclair QL User Guide. In brief, they are sequences of up
to 255 characters, used to identify variables, procedures,

functions and program structures. They are often referred
to in QL documentation as 'names'.

In interpreted SuperBASIC, you may use the same identifer
for different purposes at various points in your program.
For instance, you could use the identifier VECTOR to
describe a one-dimensional array in one part of a program,
and a three-dimensional array elsewhere. This is bad
practice, since it might cause confusion and errors, but it
is allowed by the interpreter, which always uses the 'most
recent’ declared meaning of the identifier. The flow of the
program determines what the most recent declaration was.

SUPERCHARGE USER'S MANUAL Page 43

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

If a program is to be compiled each identifier must have a
single, distinct meaning throughout the listing, so that
the compiler can generate reliable code to process it. If
an identifier is used for a simple (un-subscripted)
variable at one point, it may not be used for an array
elsewhere in the program. Functions and procedures must
also have ‘unique’ names.

The last character of a name is treated as significant when
the compiler checks the uniqueness of names. Thus:

VECTOR VECTOR% VECTORS

are all unique names, and may be used for different,
distinct purposes in a compiled program.

Variable values may have three types in SuperBASIC:
Integer, Floating-point or String. The compiler deduces the
type of a name from its last character. Thus VECTOR may
only be used to refer to float (decimal) values, VECTOR% to
integer values (whole numbers between -32768 and 32767) and
VECTORS to string values (sequences of characters).

This rule differs in one smali respect from interpreted
SuperBASIC, where the type of a parameter passed to a

procedure or function is determined by the type of the
corresponding value. In compiled programs, the type of each
parameter must be known at the time of compilation -
otherwise code to manipulate the parameter cannot be
generated. Thus, in a compiled program, the last character
of a parameter name dictates its type, just as is the case
for other variables.

There are three distinct uses for an identifier:

{i) Simple variables: integer, string or float values.
These names may be used to store values or to identify

FOR and REPEAT loops. Only simple variable names may be
used in the first line of a SELECT statement. These
rules correspond to those in SuperBASIC, with the added

feature that integer and string identifiers may be the
subject of compiled FOR, REPEAT and SELECT statements.

Gi) Array variables: the names used for arrays,
declared in DIM or LOCAL statements. An array identifier
may be deciared more than once in a program, but the
number of dimensions (not necessarily their sizes) must
be the same in each declaration.

SUPERCHARGE USER'S MANUAL Page 44

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

(iii) Definition names: the names used for procedures
and functions. Every procedure or function must have
an unique name.

If an identifier is used for any one of these three
purposes it may not be used for either of the others. In
such a case the identifier would be rejected by the
compiler as ‘ambiguous’. All references to an ‘ambiguous’
name are clearly marked. The only solution - if you must
compile the program - is to go through the code, assigning
new names, until the ambiguity is removed.

The SuperBASIC interpreter makes very few checks for the
ambiguous use of identifiers. There are some cases in which
the interpreter allows ambiguous names to be used in a
program, but in general they cause ambiguous results or
program failure.

(b} Arithmetic range and accuracy

The SuperBASIC compiler supports the same range of
arithmetic values as the interpreter. However the displayed
accuracy for floating-point values is greater - nine
decimal digits are generally displayed, rather than the
seven or eight shown by the interpreter. The internal
format is sufficient to allow numbers to be accurately
stored to nine digits of precision, so long as a simple
rule is followed.

WORK IN WHOLE UNITS when exact precision is needed. In UK
business programs this means working in pence. Similarly,
in other countries with decimalised currency, work in cents
or their equivalent. If your country has only one unit of

currency you should obviously only use that unit, and not
fractions thereof. The increased precision available
through the use of SUPERCHARGE will be especially useful to
those working in Yen, Pesetas, Lire or similar currency
where one unit represents a very smail amount of wealth.

SuperBASIC (whether interpreted or compiled) stores numbers
in binary form, which means that fractions are stored as
reciprocals of powers of two. The value 3/4 is stored,
accurately, as 0.11 in binary - 1/2 plus 1/4 - but many
other fractions, such as a tenth or a hundredth, cannot be
expressed exactly as a binary fraction, however many digits
are used. So long as you work in whole units this is not a
problem, since only fractions - up to le9 - are inexact.

SUPERCHARGE USER'S MANUAL Page 45

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

To make the writing of business programs easy we have
listed two routines which allow numbers to be read and
printed in decimal form without loss of accuracy.

The routines are as relevant to interpreted programming as

they are to compiled code. In both cases errors may occur
if monetary quantities are entered as decimal values. You
can confirm this by typing a simple calculation - say:

PRINT 25.42 - 25.43

at the QL keyboard. The result printed is not exactly 0.01.
This is not a bug, but a natural consequence of the use of
binary arithmetic - similar results occur on all computers

that use fast binary arithmetic, including the IBM PC. By
way of contrast, try:

PRINT 2542 - 2543

So long as you work in whole units, using up to nine
digits, you will get exact results, although the SuperBASIC
interpreter only displays a maximum of seven digits.

PRINT_MONEY and INPUT_MONEY get around the problems of
decimal input and output by the use of strings to store
decimal values.

PRINT_MONEY expects two parameters. It prints the second
value to the channel specified by the first value, without
advancing to the next line. In order to give neat results,
a minimum of four characters is always printed, so that,

for example, the value '0' would be printed '0.00'.

DEFine PROCedure PRINT_MONEY(channel,amount)
LOCal money$
money$=amount
IF amount<100 THEN moneyS="0" & money$
IF amount<l10 THEN money$="0" & money$
PRINT ¥#channel;money$(1_ TO LEN(money$)-2);
PRINT #channel;".";moneyS(LEN(money$)-1 TO);

END DEFine PRINT.MONEY

INPUT_MONEY, listed overleaf, will accurately read monetary
amounts from a specified channel. The code is rather long
when compared with a simple INPUT, but it does incorporate
extensive error checking. A normal INPUT would cause the
program to stop if incorrect characters were entered (but
see the 'Input Validation’ trick introduced in Chapter 5).

SUPERCHARGE USER'S MANUAL Page 46

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

INPUTsMONEY assumes the existence of a procedure COMPLAIN
which is called if an error is detected. The function
checks for five possible errors, rejecting very brief
entries, those which contain non-numeric characters, more
than one decimal point, more than two digits after the

point or more than seven before the point. The result is
returned in pence.

OEFine FuNction INPUT_MONEY(channel)
LOCal pence, pounds, digit, sign, pointpos, money$

INPUT #channel;money$
IF LEN(money$)=0 THEN COMPLAIN "Entry too brief."
IF money$(1)="-" THEN

sign=-1
IF LEN(money$)=1 THEN COMPLAIN "Entry too brief."
money$=moneyS(2 TO)

ELSE
sign=i

END IF
FOR digit=1 TO LEN(money$)

IF NOT (moneyS(digit) INSTR ".0123456789") THEN
COMPLAIN "Invalid character in entry.”

END IF
END FOR digit
pointpos="." INSTR money$
IF pointpos=0 OR pointpos=LEN(money$) THEN

pounds=money$
pence=0

ELSE

IF "." INSTR moneyS(pointpos+! TO) THEN
COMPLAIN "More than one point."

END IF
pounds=money$(1 TO pointpos)
pence=moneyS(pointpos+! TO)
IF pence>99 THEN
COMPLAIN "Invalid number after point."

END IF
END IF
IF pounds>9999999 THEN COMPLAIN "Number too large."
RETurn (pounds*100+pence)*sign

END DEFine INPUT_MONEY

The accuracy of arithmetic in a compiled program is never
jess than in its interpreted counterpart. Paradoxically,
compiled output may sometimes look less accurate, since
answers are displayed more precisely - this means that very
small errors caused by the conversion to binary can be

seen, where previously they were obscured by rounding.

SUPERCHARGE USER'S MANUAL Page 47

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

When the interpreter performs arithmetic, it converts all
values into floating-point (decimal) form as they are
encountered. This means that extreme values (from |0E-615
to 10E+615} can be processed, but it imposes a considerable
processing overhead. The internal routine used to compute
the total of 2 and 2 must also be able to add 1234.5 and
-6.7859, or any other values.

Integer variables are allowed by the interpreter, but it
does not process their values any more quickly since they
are converted into floating-point form. Integers use less
memory (two bytes rather than six) as they can only record
whole numbers between -32768 and 32767.

SUPERCHARGEis capable of performing true, fast integer
arithmetic. This means, for instance, that the result X%*Y%
can be computed with a single processor instruction, rather

than the scores of instructions needed for a floating-point
multiplication. The same is true for other operations such
as comparison, addition, subtraction and division.

Integer arithmetic is inherently faster and more concise
than floating-point arithmetic. It is important to use
integer arithmetic as often as possible, especially in
loops and when computing array subscripts, in order to

obtain the maximum possible increase in program performance
when compiling.

However, the restricted range of integer arithmetic can
cause problems of incompatibility between compiled and
interpreted programs - especially in the obscure one-in-a-
million circumstances which compiler-writers dread!

Consider this example:

10 PRINT A%+1

The compiler recognises that A% is an integer variable, and
'L' is an integer value. It consequently generates a
single, fast instruction to add the two integers. But if
the value of A% happens to be 32767 (the maximum integer)
the addition fails, since it produces a result which is
outside the permissible range of integers.

When this statement is executed by the interpreter both A%
and 'l' are converted into floating-point values as soon as
they are encountered. A floating-point addition is used,
giving the correct result of 32768.

SUPERCHARGE USER'S MANUAL Page 48

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

Of course, this is an unlikely example. If the line were:

10 B¥%=A%+1

both the interpreter and the compiler would report an error
if the statement was started with A% holding the value
32767 - the interpreter would recognise that the result
32768 could not be stored in an integer variable.

However, more intricate traps can crop up. Consider this

integer calculation:

10 B%=A%*3/2

In this case the compiler may detect an error when
executing the statement. If A% has a value greater than
(32767/3) the temporary result of the multiplication would
exceed the range of valid integers. In this case, the
ordering of the expression is important. The line:

10 B%=A%/2*3

would work correctly for values of A% up to (32767/3*2) -
at which point the result would be too great to fit in BX,

SUPERCHARGE does not enforce this ordering when it
evaluates expressions, since the order of execution has an
effect on the accuracy of the result in such instances. The
division is performed using integer arithmetic - discarding
the remainder - so that the value of B% calculated by the
compiler is always a multiple of 3. In contrast, when the
interpreter is used, the remainder after division is taken

into account, giving a more accurate result.

Although there are somepitfalls associated with the use of
integer variable arithmetic, they crop up rarely in
practice and can be easily corrected by the use of float-
ing-point variables in specific instances. An integer value
can be forcibly converted to floating-point, in interpreted
or compiled programs, by raising it to the power of 1.

(c} Array and String handling

With typical vagueness the QL User Guide specifies that
‘under certain circumstances’ a name may be used to
reference more than one element of an array. These
circumstances are a little more restricted under the
compiler than they are under the interpreter.

SUPERCHARGE USER'S MANUAL Page 49

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

Supercharge only supports array 'slicing' - the specific-
ation of more than one element of an array with a single
reference ~ for the last dimension of strings. SUPERCHARGE
only allows arrays to be passed as parameters in the case
of one-dimensional character arrays (strings). The maximum
length of such strings 1s the length of the parameter text.
The default ‘end' slice is taken to be the latest LEN of a |
string, unless this is 0, when the physical length is used. The slicing of
implicit strings (eg; *FREDDY"(2 TO 4)j) is not supported,
When a SuperBASIC program is interpreted, undimensioned
strings are allowed to have any length up to 32766
characters. As characters are added to the string, memory
is allocated and de-allocated as required. This causes
‘storage fragmentation’ - used and unused memory become
muddled together - which is why interpreted BASIC programs
that use arrays tend to ‘grow’ in size as they run.

Compiled programs must occupy a static amount of memory if
they are to be executed as multi-tasking jobs, so they
cannot use memory in the same way. In order to keep things
tidy, all undimensioned strings in a compiled program are
assigned a fixed maximum length of 256 characters. The
effect is just as if a DIM $(256) statement appeared at the
start of the program for every otherwise-undimensioned
string.

If you find the limit of 256 characters restrictive, you
can over-ride it by adding an explicit DIM statement to the
compiled program. Thus, if you need to be able to store up
to 4,000 characters in the string PARAS, use the command:

DIM PARAS(4000)

at the start of your program. This command does not disturb
the interpreter, so you can test your program as normal.

It is important not to assign more space than you need in
this way, since each DIM increases the size of the compiled
task in memory; if you use a lot of very large strings you
could make it impossible for the task to run at all. The
compiler can cope with strings of up to 32,764 characters.

NOTE 1: The CLEAR command makesall arrays undefined; this
includes strings, so you must re-define ALL strings with
explicit DIM statements if you wish to use them after a
compiled CLEAR command.

NOTE 2: Under some circumstances the interpreter will
return the length of a string when asked for its zeroth
element! SUPERCHARGE doesn't do this.

SUPERCHARGE USER'S MANUAL Page 50

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

The total number of elements in an array must not exceed
65,535. The limit allows the compiler to access array
elements much more quickly than would be the case if larger

arrays were allowed. This ‘restriction’ will only affect
those with expanded QLs and very large storage needs, as it

limits the size of a floating-point array to a mere 393K!

The total number of elements of each dimension of an array

{one more than the number given in the DIM statement, since
subscripts start at 0) must not be greater than 32,767, The
last value in the DIM for a string array is treated as a
maximum length rather than a dimension, so there may be
32,767 strings in a compiled array (not just 32,767
characters). A single compiled string element may hold up

to 32,764 characters.

(d) Nesting of structures

Procedure and Function definitions must not be 'nested' in
compiled programs. In other words, the end of one defin-
ition must preceed the start of the next.

This rule helps to simplify the compiler, without imposing
any restrictions on the power of compiled programs, The
interpreter simply ignores the nesting of definitions, and
determines the ‘scope’ of variables at run-time.

Control structures - FOR, IF, REPEAT and SELECT statement

groups - must be ‘properly nested’. In other words, the end
of a structure must not appear within another structure
unless that first structure also began within the second.

Two examples should make this clear:

10 REMark Legal nesting
20 FOR I=1 TO 10
30 REPeat X
40 END REPeat X
50 END FOR I

10 REMark [egal nesting
20 FOR {=1 TO 16
30 REPeat X
40 END FOR I
50 END REPeat X

The indentation in the second example emphasises the error.

SUPERCHARGE LSER'S MANUAL Page 51

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

It might be possible to make the second listing run under
the interpreter, if GO TO statements were scattered around
so that the loops didn't cross one another at run-time.

Even if the GO TOs were present, the second example would
not be allowed by SUPERCHARGE. The compiler cannot follow
GO TOs and other transters of control, working out the flow
of control. It would have to ‘execute’ every line with all

possible values for such a check to be exhaustive. This
would make SUPERCHARGE complex and extremely slow, if not
completely unworkable; consequently program lines are only
considered in the order in which they occur.

It follows (by implication) that each structure must have a
single END. You may have as many EXITs, NEXTs and RETURNs
from a control structure as you wish.

You don't need to specify the ENDs of 'single-line
structures’ ~ the ‘short forms' specified in the QL User
Guide. Some errors in the interpreter make the inter-
pretation of these short-forms unreliable. In particular,

the interpreter treats GO SUB calis as structure term-
inators. The bugs are not present in compiled programs.

(e) Computedline references

The SuperBASIC interpreter allows a calculation to appear
anywhere a line number is expected. It matches a line

reference to the first program line with a number equal to,
or greater than, that specified.

In compiled programs, you are only allowed to specify a
constant number where a line reference is required;
furthermore, it must be the exact number of a program line.

This rule affects the GO TO, GO SUB and RESTORE statements.
It allows the compiled program to be shorter and faster

(since a table of line addresses is not needed at run-time)
at a small cost in flexibility. If you really need to

compute a line reference, you should use ON..GO TO or
ON..GO SUB rather than calculate a line number.
Alternatively you might use the SELECT construct, which is
a more general and secure way of coding a choice between
several alternatives.

In a compiled program, SELECT or IF must be used in place
of a computed RESTORE, since SuperBASIC has no ON..RESTORE
statement.

SUPERCHARGE USER'S MANUAL Page 52

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

(f} Program editing

The SuperBASIC program editor is built-in to the
interpreter. This is sensible when programs are being
interpreted and tested but pointless once they are compiled
as there is no ‘program text’ for the editor to manipulate.

The commands AUTO, DLINE, EDIT, LIST, LOAD, MERGE, MRUN,
RENUM and SAVE are not supported by the compiler since it
leaves no program text for them to operate upon.

The commands CONTINUE and RETRY are not supported since
they are designed for use while interactively debugging a
program. This is not possible from within a compiled
program!

(g) Calculations in DATA

Sinclair SuperBASIC is unusual among BASIC implementations
in that it allows calculations to be specified in DATA
statements.

SUPERCHARGEdoes not allow expressions in DATA statements,
since their processing would complicate the generation and
execution of compiled code. Only string and numeric
constants are allowed, although an exception is made for
the four unary operators: +, -, NOT and bitwise negation,
which may be applied to numeric constants. Explicit
assignments must be used to obtain the effect of
calculations in DATA.

The bugs in the interpreter’s handling of READ, DATA and
RESTORE statements do not crop up in compiled programs.

(h) Channel numbers

The QL User Guide does not state a maximum value for the
channel numbers used in statements such as OPEN and CLOSE.
In fact, when the SuperBASIC interpreter is used, the
maximum channel number depends upon the amount of free
memory. Compiled programs must run within a limited area of
memory, so SUPERCHARGEonly allocates space for 16
channels, numbered from 0 to 15. This should be ample for
almost all purposes - remember that channel numbers may be
re-used once previously associated files have been closed.

SUPERCHARGE USER'S MANUAL Page 53

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

(i) Parameter locality

When SUPERCHARGEis used, parameters (variables declared in

DEF statements) are local to the definition in which they
appear. Changes in their values do not affect external
variables. In other words, changes to a parameter never
affect the variable from which the parameter was derived.

SUPERCHARGEalways passes parameters by value, whereas the
interpreter uses ‘call-by-value' or ‘call-by-reference’,
depending upon the format of the calling statement. This is
mentioned in the QL User Guide, 'Concepts’ section:

‘Functions and Procedures’. The original QL documentation
was very vague about parameter correspondence, so that
SUPERCHARGE was written without making use of variables
passed by 'reference'. When we found the flaw we looked at
the code needed to fix it, and discovered some snags.

At present SUPERCHARGEinvokes procedures by evaluating the
parameters (if any) and jumping to the start of the
procedure, which contains code to set up corresponding
local variables. This is the mechanism used in most
compiling languages, which require that the form of
parameter correspondence is defined in the heading of the
procedure. But in SuperBASIC the format of the calling
statement determines how parameters correspond; a parameter
might be passed by reference once, then by value, in two
calls to the same procedure. If SUPERCHARGEallowed
reference parameters, the 'set up' routine would have to be
part of every call, rather than part of the procedure. This
could make the compiled program much longer.

We reluctantly decided that the cost, in terms of delayed
launch and reduced performance, would be greater than the
compatibility to be gained by supporting reference
parameters in SUPERCHARGE.

If you find that a program which you wish to compile passes
values back from procedures or functions via the parameter
list, you should use a ‘global’ variable - one which exists
outside the routine which is being called ~ to pass and
store the value, rather than a parameter. This is inelegant
and may require that you add a few lines to your program,

but it will ensure that it works efficiently and compatibly
whether it is interpreted or compiled.

A similar mechanism is used to pass values to machine code
procedures or functions, so they may not return values via
their parameters either. Very few routines try to do this.

SUPERCHARGE USER'S MANUAL Page 54

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

‘BUGS’ FIXED BY THE COMPILER

Although SuperBASIC is, in general, a sophisticated and
flexible programming language, there are a number of faults
in the interpreter built in to the QL ROM. We have taken
the liberty of correcting many of these faults through

SUPERCHARGE,although the corrections make the compiler
slightly less compatible with the interpreter than would
otherwise be the case! This list summarises the more
important faults which are corrected by SUPERCHARGE.

(1) Interpreted BASIC can crash if more than nine
parameters or local variables are used in a single
procedure or function. SUPERCHARGEcan cope with any number
of parameters or local variables without problems.

(2) Mathematical results are only displayed to a maximum
of seven decimal places by the interpreter, even though it
works internally to a greater precision. The compiler
displays nine decimal places (enough to show quantities of
up to 9,999,999.99 pounds, rather than 99,999.99). The
discussion of floating-point maths earlier in this chapter
indicates the steps you should take to avoid rounding
errors, which affect SUPERCHARGE and SuperBASIC equally.

(3) SuperBASIC stops with a ‘buffer full' error if more
than 128 characters are read in response to INPUT, on QL
versions AH and JM. The compiler allows up to 32767
characters to be read, although this does depend upon the
amount of free memory available.

{4) The interpreter does not allow multi-tasking of BASIC
programs. Many compiled programs may run at one time, so
long as there is enough room for them all in memory.

(5) The interpreter cannot handle SELECT statements for
integer or string variable values. Integer and strin
SELECT works perfectly when compiled with SUPERCHARGE.

(6) Variables passed as procedure parameters may not be
used in SELECT statements (unless they were the last
parameter), when a program is run on a version JS QL. The
compiler does not impose this restriction.

SUPERCHARGE USER'S MANUAL Page 55

SUPERBASIC: INTERPRETED AND COMPILED CHAPTER 6

(7) The BASIC function RESPR, used to reserve memory,
does not work under the interpreter if a multi-tasking job
is running. The compiler always allows RESPR, since it

allocates memory from within the task's environment rather
than the resident procedure area, which cannot expand while
the ‘adjacent' transient program area is in use.

NOTE: add-on commands should be loaded from BASIC, not from
within compiled programs. This ensures that they are
correctly linked into the interpreter, rather than into the
compiled program (which won't know what to do with them).

(8) The interpreter does not process single-line (short
form) FOR loops properly if they contain the GO SUB command
- the GO SUB stops the loop. This bug is fixed when the
compiler is used.

(9) The CALL statement, used to invoke machine-code
routines, crashes the interpreter if it is used in programs
Jonger than 32K bytes, on QL versions up to JM. The
compiler handles CALL correctly on any version of the QL.

{10} Integer FOR loops (e.g. FOR [%=1 TO 2) are not
allowed by the interpreter. SUPERCHARGEcan generate code
for integer FOR loops; unfortunately current versions of

the SuperBASIC editor do not allow such lines to be
entered, so this correction will not have any practical
effect until the editor and interpreter are both changed to
correct the bug. In the meantime REPEAT loops, with
explicit counting, should be used when fast integer loops
are needed. This is discussed in Chapter 7, 'Getting the
most from SUPERCHARGE’.

(tl) The value of the identifying variable of a FOR or
REPEAT statement is set to zero by the interpreter when the

statement is encountered. For example, the commands:

LET T=3
FOR T=T TO 6:PRINT T

print values from 0 to 6, rather than from 3 to 6. This bug
is fixed in SUPERCHARGE,although it should be noted that
it is poor programming style to use one variable for two
logically-distinct purposes. In the example, T is used
first as a limit, then as an iteration count.

SUPERCHARGE USER'S MANUAL Page 56

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

WHAT COMPILERS CAN AND CAN'T DO

SUPERCHARGEincreases the speed of most BASIC programs by a
large factor, simply by rationalising the steps needed to
produce a given effect. In general a speed-up factor of
between 5 and 20 times can be expected on short programs.
Long programs are often accelerated much more, since
(contrary to advertising claims) the SuperBASIC interpreter
does get steadily slower as program sizes increase, while
the speed of compiled programs is constant (and faster).

In this chapter we explain what the compiler can and cannot
do, We quantify the speed advantage SUPERCHARGEgives to
some 'standard' BASIC programs, and look at simple ways in

which programs can be made even faster.

Supercharging your hardware

SUPERCHARGEis just a program {albeit a very sophisticated
program), so it cannot change the speed of the QL hardware.
Ig the time taken to execute your programs is dominated by
data transfer delay (on the microdrives, display, or
RS-232, for example) it is unlikely that compilation will
make a large difference. After all, SUPERCHARGE would not
be very useful if it attempted to ‘speed up’ RS-232
transfer rates to 96,000 baud, or spin the microdrive tapes
at a rate of 10 metres per second - the hardware just
couldn't cope!

SUPERCHARGEcan give dramatic speed improvements on
programs that copy data, especially on semi-random devices
such as disks and microdrives, since it reduces the delay
between reading and writing so that data can be packed more
densely. The only way to discover whether or not your
program fails into this category is to compile it.

Even if SUPERCHARGE does not dramatically improve the speed
of your program it may increase its utility. It might be

argued that speed is almost irrelevant, since compiled
programs may multi-task - so you can get on with something
else while your compiled code runs 'in the background’.

Compiled programs generally load more quickly than their
interpreted counterparts; the difference in speed may
amount to a minute or more for long programs. Compiled code
is more ‘secure’ in that it cannot easily be listed or

modified {except by those with the original BASIC). The
precision of numeric results is also increased.

SLUPERCHARGE USER'S MANUAL Page 57

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

TRICKS, TYPES AND IN-LINE CODE

In most cases we are not solely concerned by the speed at

which a program runs. Unless you are Sebastian Coe it
usually doesn't matter whether a process takes half a
second or a hundredth. But the time may come when you need
to increase the speed of a program by a factor greater than
that offered automatically by SUPERCHARGE.

In this section we explain how you can obtain speed-
increases of up to 100 times by making small changes to
your BASIC program. If you are writing a new program it may
be useful to bear these guidelines in mind as you work.

Loops, arrays and function-calls
A few lines often consume the majority of the execution
time of an entire program. A useful rule of thumb is the
idea that ten per cent of a substantial program is executed
for ninety per cent of the time (and vice versa). It
follows that well-chosen, localised changes to a program
can have a dramatic effect on its overall! run-time.

In general there is little point in trying to accelerate
sections of a program which wait for input or do not form
part of a loop. 'Nested loops' are most important - these
are loops within loops. You need only optimise the
innermost loop to obtain most of the possible speed-up,
since that code is executed most often. It is especially

important to reduce the code at the heart of a loop to the
minimum. Often some steps are performed in loops when they
might just as well appear outside. Let's take an example:

FOR [=0 TO PI STEP PI/180
A(J)=A(J)+SIN()*COS(THE TA)
END FOR I

This loop is performed much more quickly if the COS
calculation is moved outside the loop. At present the value
of COS(THETA) is worked out 180 times more than is really
necessary, and the array A() is indexed needlessly. This
code runs more than twice as fast:

TEMP=COS(THETA)
TOTAL-=A(J)
FOR [=0 TO PI STEP PI/180
TOTAL=TOTAL+SIN()*TEMP
END FOR I
AQ)=TOTAL

SUPERCHARGE USER'S MANUAL Page 58

GETTING THE MOST FROM SLPERCHARGE CHAPTER 7

Note that there's no point replacing PI/180 with a constant
or variable, since the Start, End and Step values used in a

FOR loop are only worked out once, when the FOR is found.

SUPERCHARGEcannot do much to accelerate the rate at which
complex mathematical functions are evaluated, since most of
the interpreter's time is spent working out the result -
the formuia is so complex that this delay swamps the delay
while the interpreter decides the action to be performed.

In this case SUPERCHARGE, and all other QL compilers, is

limited by the 68008 microprocessor, The algorithms used
are efficient. The only way to speed evaluation would be to
reduce the precision required or to fit special-purpose
hardware, such as the 68881 arithmetic co-processor. The
Intel 8087, available as an option for the IBM PC and other

machines, is not a great deal faster than the QL at

floating-point maths.

You can obtain useful results by compiling your own low-
precision mathematical functions (by summing suitable
series) with SUPERCHARGE. This is because the fundamental
floating-point operations of multiplication, division and
so on are performed quite fast, especially when the
overhead imposed by interpreted execution is not present.

This is mot the place to explain the way in which
mathematical functions can be approximated using simple
steps; some readers might be relieved to hear that! Masochists &
mathematicians are advised to read Chapter 11
Aiternatively, you might be able to replace calts to

resident functions with variable or array-references. This
technique is useful if you use the same values of a func-
tion again and again. SUPERCHARGEis much faster than the
interpreter at accessing arrays of any number of dimen-
sions, and in any case complex functions (LN, SIN, SQRT
etc) take much longer to evaluate than array subscripts.

It can also be useful to reduce the number of calls to
machine-code functions in compiled programs. In order to
preserve exact compatibility with the interpreter, and keep
the size of compiled programs within bounds, many of these
are executed using calls to QL ROMroutines. This process
by-passes the QL's slow expression-evaluation and
interpretation, but the code used is inevitably more
‘general’ than it need be in some circumstances.

This is only really worth considering if that part of your
program needs to run at top speed. The principle is most
relevant where string-handling is concerned, as we discuss
in the next section.

SUPERCHARGE USER'S MANUAL 7 Page 59

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Fast string handling

SUPERCHARGE and the SuperBASIC interpreter differ in the
schemes that they use to represent strings. The compiler
stores strings in two parts - a fixed-length part, contain-
ing the string address and the length, and a variable-
length part containing the text. The interpreter stores the
length and the text together, in a separate area. This
makes access to strings other than the 'most recent’
difficult, and massively reduces the speed of string
concatenation (&) - putting it simply, the length
information ‘gets in the way' of the interpreter.

The upshot of this is that SUPERCHARGEis extremely fast at
slicing and appending strings, but the advantage is reduced
if lots of comparisons and function-calls are mixed in - in
such cases the compiler has to re-organise its store to
suit the BASIC interpreter. This is done quickly and
efficiently, but it still imposes an ‘overhead’ which
should be avoided by programmers seeking maximum speed.
Comparisons are slowed by the complex rule used to sequence
strings, which takes special account of embedded numbers.

integer arithmetic

When the interpreter processes numbers it goes about it in
a rather long-winded way. The variables and constants
normally used in SuperBASIC are 'floating-point' - in other
words, they can represent a vast range of values, to an
accuracy of 31 bits (about one part in two billion). The
68008 processor has simple, fast instructions to add and
subtract values, and even to perform multiplication and
division, but these instructions can only cope with a much
smaller range of values.

Normal SuperBASIC adds 2 and 2 in a number of stages. It
works with the magnitude (or exponent) and digits (or
mantissa) separately. It fetches both pairs of values,
checks that they are both of about the same magnitude, and
adjusts them if need be. It adds the digits, makes another
adjustment if the magnitude has changed in the process, and
stores the result, in two lumps. The process for muitipli-
cation and division is even more complicated, and in any

case it is much slower than those one-step instructions.

You can take advantage of the QL's fast instructions by
specifying that some variables in your program are
‘integers’. The word means ‘whole numbers’.

SUPERCHARGE USER'S MANUAL Page 60

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

In SuperBASIC integers are confined to the range -32,768 to
+32,767. Integer variables are denoted by a per cent sign

at the end, just as string variables are denoted by a
dollar sign. Any fractional part assigned to an integer
variable is ignored. Thus INTVAR%=10/3 leaves INTVAR% with
the value 3 (not 3.33333333).

For many ‘counting’ applications, such as keeping football

statistics, writing games, searching arrays and so forth,
the limited range and accuracy of integers is not a problem
- and the greater speed of integer arithmetic is very

alluring. Most ‘machine code’ games would proceed at a
snail's pace if the programmer was not able to take
advantage of integer arithmetic.

The snag is that Sinclair's SuperBASIC interpreter contains
very little support for the processing of integers. It can
fetch them from integer variables and store them in integer
variables, but that's about it. If you put the line:

SUM%=COUNT%+1

into an interpreted BASIC program, it takes LONGER to be
executed than the line:

SUM=COUNT+1

This is because the interpreter only knows one way of
adding. It can add a floating-point value to another,
giving a floating-point result, but it doesn't know how to
add an integer to an integer.

When the first example is executed, the interpreter starts
by fetching the value of COUNT% and the value |. It can
only add floating-point numbers, so it laboriously converts
the value of COUNT% before it performs the multi-step
addition. The value 1 has been stored in floating-point
form all along, even though it is a valid integer value.
Finally, once the floating-point result is known, the
interpreter turns it into an integer (equally laboriously)
so that it fits into the integer variable SUM%.

This is obviously a silly way of doing things, although it
is sadly common in micros - the Commodore 64, amongst other
machines, does just the same thing. The upshot is that
integer arithmetic is no faster than floating-point - in
fact it may even be slower, due to all the conversion that

has to take place. The ‘advantage’ is that two bytes are
used to store the values, rather than six - this is only
significant if you use large arrays.

SUPERCHARGE USER'S MANUAL Page 61

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

SUPERCHARGE comes to the rescue at this point, because it
allows proper, fast integer arithmetic. A large chunk of
the compiler is concerned with keeping track of the types
of values, so that integer arithmetic is used wherever
possible. The compiler is limited by the need to remain
compatible with the interpreter, and to process mixed
floating-point and integer expressions, but it can still
process integers five to ten times faster than the
{carefully optimised) floating-point routines.

When you program in SuperBASIC you probably ignore the
availability of integer variables at present. If you adjust
your programs so that integers are used whenever possible
you will find a substantial speed improvement - long BASIC
programs which use integer variables may run a hundred
times faster when compiled.

For best results you should use integer variables whenever
the limitations of range and accuracy are not important. Be
sure to use integer variables when accessing arrays or
slicing strings. This does not restrict you, as subscripts
must be whole numbers, and SUPERCHARGE imposes an upper

subscript limit of 32767, for precisely this reason.

You can often get good results by changing the type of just
a few variables, remembering the rule that a few lines are
usually responsible for most of the execution time of a

program. Experimentation and close examination of the
Program is your best guide here, although it can be useful
to break into an interpreted program whenever a pause
occurs, noting the appropriate line-numbers.

There is a problem with fast integer loops, since Sinclair
do not allow an integer FOR statement on current QLs. If
you try to type in a line like:

FOR LOOP%=1 TO 10: PRINT LOOP%: NEXT LOOP%

your computer may reject it as a ‘bad line’. If your QL
allows this command, you're in luck, and the rest of this

page will not concern you. Otherwise, you will not be able
to write integer FOR loops, since the compiler can only
process lines which are correctly loaded into the QL. The
solution is to use an REPEAT IF loop instead - this is
rather slower, but still about three times faster than
using a floating-point loop - even more so if you intend to
use LOOP% as an array subscript.

LOOP%=1:REPEAT LI:PRINT LOOP%:LOOP%=LOOP%+I:
IF LOOP%>10 THEN EXIT LI:END REPEAT L1

SUPERCHARGE USER'S MANUAL Page 62

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

In-line code and threaded code

68008 machine code is, by nature, extremely verbose - it
takes four bytes of code, for instance, to compare a

register value with a character! There is an inevitable
trade-off between concise and fast code, as the SuperBASIC
interpreter demonstrates - if the authors had more space in
which to write it they could doubtless have made it faster
{although more time would doubtless not have gone amiss!)
The more concise your code, the more general each routine
must be and - in large programs - the slower it runs.

This trade-off is no less true of compiled code than it is
of the laboriously hand-crafted variety. SUPERCHARGE
recognises this, so it gives you the option of ‘manual’
control over the 'style’ of the code it generates.

Tf you ignore the contro! the compiler uses its own
‘autopilot', so this is an option you can safely leave
alone if you wish. If you're really keen you can improve
the performance of compiled programs this way, but the
results are only marginal and you should expect an increase

in the size of the compiled task as a result.

The 'style' control is intended for fine-tuning - its
effects are not great and can often be achieved more
economically by re-coding the BASIC carefully or by

applying the other advice in this chapter. But, when you
need to squeeze that last ounce of performance out of
SUPERCHARGE, ‘in-line code' may do the trick.

Most of the time the compiler produces a compact, fast code
called ‘threaded code' - this is a code which contains a
mixture of data and routine addresses, rather than data and
machine-code routines. The code is executed by jumping to
each address in turn. In in-line code, by contrast, all the
routines are written out in full and executed in a
continuous stream.

SUPERCHARGEuses an extremely fast linkage for threaded
cade, and the complexity of the routines is carefully
judged so that the ‘overhead’ of jumping from one to the
next is extremely small.

The advantage of threaded code is that it is very concise -
even if a given operation has to be performed several
times, it only need appear in the file once. BASIC programs
contain many repeated operations, so threaded code can give

a dramatic reduction in task size.

SUPERCHARGE USER'S MANUAL Page 63

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Indeed, the original SuperBASIC version of SUPERCHARGE
would only just fit into a standard 128K computer, while

the compiled version leaves space for a substantial BASIC
program as well.

The second part of the compiler (the code-generator)
assembles 68008 machine code for each operation as required
by the first part (the parser). It only adds a routine if
it is definitely needed, so short programs can be compiled
into quite small tasks - as the hacks put it, there is no
‘library overhead’. A few routines to set up the task,

handle errors, open windows and so forth appear in all
SUPERCHARGEDprograms.

You can force the code-generator to use in-line, rather
than threaded code, by putting a special REMARK statement

around the lines you want generated as in-line code. Put:

REMARK +

before the lines you want extra-fast, and:

REMARK -

after them. The REMARK does not have to be at the start of
the line, but it obviously must be the last statement

(since nothing after a REM is executed). It is a good idea
to put these on lines of their own, however, since this
makes them easy to find later. [t doesn't matter whether

you enter a space between REMARK and the '+' or '-' sign.

Tasks which use in-line code are larger and marginally
faster than their threaded counterparts. The option is only
really useful on already fast integer code - it has next to
no effect on complex graphical or mathematical programs
since the time spent between one such threaded operation
and another is relatively tiny {a fraction of one per
cent).

If you try to compile the whole of a large program into
in-line code you may find that the resuitant task is too
large for the compiler to process. SUPERCHARGE imposes a
64K limit on the code of compiled programs, although the
amount of space used for data is limited only by the

available memory. In threaded code this represents an
enormous program - perhaps 5,000 lines of SuperBASIC - but
in-line code is generated at a prodigious rate and may well
exceed the limit after only a few hundred lines. This
confirms that the 'style' control is a fine-tuner rather
than a a brute toal to boost compiler performance.

SUPERCHARGE USER'S MANUAL Page 64

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Memory games

A better weapon for those determined to squeeze the
ultimate performance out of their QL is an expansion memory
board. The processor inside the QL is slowed by the fact

that it shares memory with the video display electronics -
if the video chip is busy, the processor has to wait.

External memory can safely ignore the video chip, so that
the processor can access it more readily. Programs run
measurably faster in external memory. The QL always puts
tasks and BASIC into add-on memory unless that is full.

In practice SuperBASIC is not slowed much by the internal
memory, since all of the interpreter code is in ROM, which
can be accessed fast. Compiled programs are slowed a little
more, but they may reap extra benefit in relative terms,
since the interpreter tends to use slow memory for string
handling, even on expanded systems. The exact effect
depends upon the memory board used, although all the ones
we have tested work faster than the built-in memory.

Some comments on style

The SuperBASIC interpreter has an excellent range of
‘structured’ control constructs, but it executes these
rather slowly, In particular, loops, procedure and function
calls have an elaborate set-up sequence and use line-
numbers as reference points rather than machine addresses,
so they become steadily slower as programs get longer. A
‘long’ reference can be {00 times slower than one over a
few lines, in a large SuperBASIC program.

This property of the interpreter means that routines at the
start of a program are found more quickly than routines
later on - it also means that long programs run
disproportionately slowiy. SUPERCHARGEgenerates very fast
code for loops and jumps - the compiler may accelerate

EXIT, NEXT, REPEAT and GO TO by a factor of over 1,000!

Consequently, some of the tricks needed to obtain fast
execution in interpreted programs are irrelevant to the
compiler. You should not be afraid to make extensive use of
structured loops, procedure and function calls in your
programs since they are compiled into fast code. There is

no advantage to be gained by using archaic statements such
as GO TOs and GO SUBs in preference to structured commands.

SUPERCHARGE USER'S MANUAL Page 65

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

BENCHMARK TIMINGS
The table shows the results obtained when standard
‘benchmark’ test programs were run on the QL, with and
without SUPERCHARGE. The programs are listed on the next
page.

The leftmost column contains the timings obtained when
Personal Computer World magazine tested the QL SuperBASIC
interpreter. The other columns contain the timings for
SUPERCHARGE,using floating-point and integer arithmetic.
In each case the ‘speed-up’ ratio is shown. All timings are
in seconds.

BENCHMARK $/BASIC S/CHARGE RATIC ~ S/CHARGE RATIO
TEST NO. TIMING -FLOATING-POINT- - =

1 2.1 0.25 8.4x 0.065 32x
2 6.4 0.29 22.0x 0.125 51x
3 10.7 1.24 8.6x Q.320 33x
4 10.3 0.94 11.0 0.290 36x
5 13.2 1,04 12.7x 0.340 39x
6 26.1 2.56 10.2x 0.665 39x
7 61.8 4.13 15.0x 1.060 58x
8 25.8 8.64 3.0x N/A

(1) The SuperBASIC timings appeared in the June 1984 issue
of Personal Computer World, and are reproduced with

permission. They also appeared in 'QL USER - The Complete
Dossier’ in July 1984 There is some variation in speed
between individual QLs and different versions of the

hardware - these are discussed in the July and August 1985
issues of QUANTA, the Independent QL User Group newsletter.

(2) Timings were averaged over 10-50 runs of the standard
programs, running as independent QL tasks. The tests were
conducted with version AH, JS and MG ROMS- nosignificant
speed difference was found. The build-number of the testing
computer was D06, with a Simplex Data expansion RAM card
fitted. Other hardware configurations may give slightly
different results.

(3) There is no integer timing for Benchmark 8. This
benchmark tests intrinsic mathematical functions (raising
to a power, sines and logarithms) which do not have integer
equivalents,

SUPERCHARGE USER'S MANUAL Page 66

100
200
300
400
500
600

100
200
300
400
500
600
700

100
200
300
400
500
600
700
800

100
200
300
400
500
600
700
800

100
200
300
400
500
510
600
700
800
900

GETTING THE MOST FROM SUPERCHARGE

BENCHMARK PROGRAM LISTINGS:

REMARK Benchmark 1
PRINT "S”
FOR K=1 TO 1000

NEXT K
PRINT "E"

STOP

REMARK Benchmark 2
PRINT "S$"
K=0
K=K+1
IF K<1000 THEN GO TO 400

PRINT "E"
STOP

REMARK Benchmark 3
PRINT "Ss"
K=0

+1
A=K/K*K-K+K
IF K<1000 THEN GO TO 400
PRINT "E*
STOP

REMARK Benchmark 4
PRINT "S"
K=0
K=K+1
A=K/2*3-44+5
IF K<1000 THEN GO TO 400
PRINT "E"

STOP

REMARK Benchmark 5
PRINT "Ss"
K=0
K=K+1

A=K/2*3-4+5
GO SUB 900
IF K<1000 THEN GO TO 400
PRINT "E"
STOP

RETURN

SUPERCHARGE USER'S MANUAL

100
200
300
400
500
510
520
540
600
700
800
900

100
200
300
350
400
500
510
520
530
540
600
700
800
900

100
200
300
400
500
600
700
800
900

CHAPTER 7

REMARK Benchmark 6

PRINT "S"

K=0
+1

ASK/2*3-4+5
GO SUB 900
FOR L=1 TO 5

END FOR L
IF K<1000 THEN GO TO 400
PRINT "E"
STOP
RETURN

REMARK Benchmark 7
PRINT "S"
K=0
DIM M(5)
K=K+1
A=K/2*3-44+5
GO SUB 900
FOR L=1 TO 5
M(L)=A

END FOR L
IF K<1000 THEN GO TO 406

PRINT "E"
STOP

RETURN

REMARK Benchmark 8
PRINT "S"
K=0
K=K+1

2
OG(K)

C=SIN(K)
IF K<1000 THEN GO TO 400

PRINT "“E”

Page 67

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Notes on the Benchmarks (continued):

{4) The speed of compiled FOR loops (Benchmarks I, 6 and 7)
is a little misleading, as SuperBASIC FOR loops are allowed
to be considerably more sophisticated than those in
‘standard’ BASIC. Substantially faster floating-point
results are obtained if FOR loops are re-coded using
explicit ranges, such as:

FOR [51,2,3,4,5

in place of the implicit range used in the test programs:

FOR Isl TO 5

(6) The benchmark programs are very short, so they do not
show the maximum possible speed-up. The larger your program
is, the more SUPERCHARGEcan accelerate it.

COMPILERS AND MACHINE CODE
Although the compiler gives a large speed-up factor it does
net produce programs as fast as hand-written machine code.
We explain this apparent flaw in this section.

Diagnostic help

Compiled programs perform extensive error-checking while
they run. They ensure that array references are correct,
and that parameters such as colours, channel numbers or
print positions have sensible values. This testing is

performed efficiently but it inevitably reduces the speed
of compiled programs. The compiler also keeps track of the
BASIC line-number corresponding to the code being executed.

These diagnostic checks are considered essential, since it
would be very difficult to detect obscure bugs if they were
not present, and there would be an increased risk that the
machine would crash when errors occured. Muiti-tasking
crashes are especially unwelcome as they can affect
programs running concurrently.

Machine-code programmers are used to machine crashes; they
have a detailed knowledge of the code they are running and
are willing to expend a great deal of effort tracking down
bugs. Compiler users do not have this detailed knowledge,

and would not want to use it anyway - they choose to save
their own time, rather than that of the computer.

SUPERCHARGE USER'S MANUAL Page 68

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Compatibility

SUPERCHARGE must be compatible with the SuperBASIC
interpreter, or its great advantage over other QL compilers
- the ease of interactive testing - is lost. This means a
number of trade-offs:

(a) The compiler can only offer the simple data-
structures of SuperBASIC - 16 bit integers, strings and 44
bit floating-point variables (4 bits of every 6 byte
floating-point number convey no information about the
value}. The other data-types available to the machine-code

programmer - bits, bytes, addresses and 32 bit integers -
cannot be used because of the need for compatibility with
the interpreter.

Integer graphics co-ordinates would give greater speed, but
SuperBASIC requires that floating-point values are used, so
that SCALE can work under all circumstances. The speed of
memory-addressing commands (such as PEEK and POKE)is also
limited by the use of floating-point variables.

(b) The addressing conventions imposed by SuperBASIC
are not as efficient as they might be. To give one simple
example, programs would run more efficiently if character
arrays (strings) had elements numbered from zero, rather
than one.

(c) The speed of printing to the display is hamstrung
by all the options which may be used - windowing, different
MODEs, CSIZEs, INK, PAPER, FLASH, OVER and so forth. These
parameters can be changed within a program, so SUPERCHARGE
cannot make assumptions about them without running the risk
of incompatibility. The compiler does take steps to ensure
that groups of characters are printed moreefficiently than
by the interpreter.

(d) Since SuperBASIC is an extensible language, the
compiler must make some attempt to support future
extensions, including those which were not even mooted when
SUPERCHARGEwas designed and written.

We aim for the maximum compatibility that can be given
without greatly compromising the efficiency of compiled
code. Some people may feel that compatibility should have
been greater, while others might complain at the cost of
what compatibility has been provided. Like all compromises,
our decision cannot please everybody.

SUPERCHARGE USER'S MANUAL Page 69

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Special cases

It is true that the compiler cannot take account of special
cases in the same way that an experienced human programmer

can, To some extent this reflects the limitations of
digital computers and of our understanding of thought, but
there is still scope for much improvement to SUPERCHARGE
before these limits are approached.

A more practical limitation is the amount of memory

available for the compiler's ‘intelligence’. The authors
could not encode their entire knowledge of programming into
128K bytes - let alone leaving space for intermediate code
and a substantia! BASIC program!

As generated programs become moreefficient, the time
needed to produce them increases. The speed of code

produced by SUPERCHARCGEis limited by the fact that
compilations must be performed as quickly as possible.

Even if the compiler had the information and analytical
power needed to generate code as good as a human
programmer, it might end up working as slowly as the human.
At present SUPERCHARGE is much faster than even the most
prolific hacker.

Demonstrable correctness

The ‘simple-minded’ code produced by the compiler has one
other advantage over the hand-crafted variety - it usually
works first time.

In recent years there has been a great deal of academic
research into the task of proving the correctness of
programs; the conclusion, so far, is that this is extremely
difficult (without exhaustive experimentation). The
difficulty seems to increase disproportionately with the
intricacy of the code being analysed.

A compiler capable of producing very efficient code for
Many special cases is likely to be inherently less reliable
than a simpler creation. We have tried to pitch the
complexity of SUPERCHARGEat a level at which it offers
useful results without a great sacrifice of reliability.
This is the main reason why the complex ‘parser’ of
SUPERCHARGE was written in SuperBASIC and then compiled.

SUPERCHARGE USER'S MANUAL Page 70

GETTING THE MOST FROM SUPERCHARGE CHAPTER 7

Programming ‘tricks’ and optimisations

It is important to weigh up the pros and cons before using
‘trick’ techniques in your programs - they may make the
code less clear and harder to debug. With care, these three
tips can increase the speed of all SuperBASIC programs:

(a) Ordered SELECT
(b) Lazy IF evaluation
(c) Array re-dimensioning

All of the techniques work by reducing the amount of effort
required to obtain a specific effect.

(a) Ordered SELECT.

If the instances (or ‘cases') in a multi-statement SELECT
are re-ordered so that the most likely values comefirst, a

useful speed improvement may result. This trick works
because the only way such statements can be executed is to
test for each case; later cases do not have to be evaluated

if an earlier one matches. SUPERCHARGEcan't do this for
you because it can't guess which cases are the most common.
If the values tested for can easily be converted into a
continuous integer range, ON GOSUBis often faster than
SELECT, since one ‘test’ handles ail instances.

(b) Lazy IF evaluation.

If a test contains the AND keyword, BOTH tests are always
performed, even though the result is known as soon as one

has been evaluated. This must happen, in case either test
contains a function-call which has 'side effects’ on other
variables. You can save time, if your code doesn't do this,
by writing IF A THEN IF B THEN instead of IF A AND N THEN.
The first test should be the one most likely to fail. You
should be careful to keep END IFs matched properly.

(c) Array re-dimensioning.

The computer must do a lot of work when an array is
re-dimensioned - the old memory must be ‘reclaimed’ and new
space found. If LOCAL arrays are re-dimensioned SUPERCHARGE
will not reclaim the old memory until the procedure or
function is finished. Re-dimensioning is always the fastest
way to clear an array, as long as you don't alter the size,

SUPERCHARGE USER'S MANUAL Page 71

EXAMPLE PROGRAMS CHAPTER &

POWERFUL PROGRAMMING

In this chapter we present a few programs which give some

indication of the power of SUPERCHARGE. Doubtless you will

think of many more useful applications. Ultimately, the
scope of SUPERCHARGEis limited only by the imagination and
ingenuity of its programmers (This Means You!).

YET ANOTHER 'CLOCK’

For about a year the only proof that the QL user had of the
machine's multitasking capability was the 'Clock' program
listed in the User Guide. Only the luckiest users got a
User Guide that matched their machine, in any case. For
historical reasons, therefore, and for those who never got
the listing in the 'Concepts' section of the User Guide to
work, we list a 'Clock' program written for SUPERCHARGE.

10 REPEAT tick: AT 0,0: PRINT DATES: PAUSE 50

Adjust the size of window 1, or the values after AT, to
alter the position at which the clock appears. Add INK,
PAPER and PAN statements (etc) to taste. Load the task with
EXEC, and savour the thrill of multi-tasking as the
pioneers knew it. Use REMOVE TASK to get rid of it when you
get bored (this shouldn't take long - the clock will tell
you exactly how long). Alternatively you can use SET.
PRIORITY to reduce the priority of the task to 1 so that it
doesn't waste too much processor-time. The clock can be set
and adjusted with the SuperBASIC commands SDATE and ADATE.

A ONE-LINE SPOOLER

It is often useful to be able to copy files from one device
to another while you get on with some other task. This
simple but very useful program lets you do just that:

10 INPUT "Copy from "IF1$,"Copy to™IF25:COPY F1$ TO F2$

Compile this program in the usual way, then EXECit. Select
the device (and filename, if any) from which information is
to be taken, then specify the destination device or file.
The program copies data between the source and destination
while you get on with doing something else. Set the task
priority as required. Use DATASPACE (Chapter 4) to set the
buffer size: SUPERCHARGEuses all 'free' memory within a
task as a buffer for COPY. The report ‘IN USE’ appears if
you try to access a file or device while it is busy.

SUPERCHARGE USER'S MANUAL Page 72

END OF FILE CHAPTER 9

HOW SUPERCHARGE WAS BORN

Work on SUPERCHARGE began at the end of June 1984, as the
first ‘working’ QLs became available. At first the compiler
was intended for Southampton software house Quicksilva, but

they lost interest in the QL market when they were bought
out by the Argus Press magazine group. The project was
eagerly taken over by Freddy Vachha's upcoming QL software

house, Digital Precision.

SuperBASIC was potentially a very powerful, expressive
programming language, but it suffered because of rushed
implementation, dreadful documentation and some last-
minute changes intended to make it more compatible with its
forerunner, ZX Spectrum BASIC. Several nice features were
discarded en route, and much of the new code was untested.

The aim of the SuperBASIC compiler was to correct the
weaknesses of the interpreter, without affecting the power
of the language or its greatest asset - its expandability.
Supercharge (as it was later dubbed) should compile the
vast majority of existing SuperBASIC programs without
alteration. Incompatible code should be clearly indicated
so that it could be corrected with the minimum of fuss.

Supercharge should run on all versions of the QL, and a
program compiled on one system should run - without
alteration - on other versions. The code should be
efficient in its use of memory, fast, and capable of

multi-tasking. These requirements, and the complexity of
the language, meant that SUPERCHARGE had to be much more
sophisticated than other micro BASIC compilers.

When design work began few technical details of SuperBASIC
were available. It was far from clear how SuperBASIC was
meant to work. The QL User Guide was incomplete, and

programming tools were rare - the only 68008 assembler
available was a simple and slothful SuperBASIC program.

Work on the 'parser' of the compiler was started nonethe—
less. The program was written in SuperBASIC, for ease of
testing and experimentation - the slow speed of the
interpreter did not matter since the aim, from the start,
was that the compiler should eventually compile itself. The
syntax of SuperBASIC was distilled into a ‘grammar’, so
that a smail set of routines could be used to analyse any
valid SuperBASIC program. An intricate expression evaluator
was developed to keep track of the QL's powerful but
potentially inefficient ‘coercion’ features, and a library
of diagnostic routines was developed to simplify testing.

SUPERCHARGE USER'S MANUAL Page 73

END OF FILE CHAPTER 9

In April 1985 SUPERCHARGEcompiled its first program - a
simple recursive factorial calculator. Rather than generate
machine-code directly, the original compiler produced
macros which were assembled later. This temporary
arrangement made it easy to check the compiler's output by
eye, and provided a useful ‘bridge’ between readable
SuperBASIC and incomprehensible compiled code.

The compiler was then adapted to generate a concise, binary
intermediate code which could be passed to a purpose-built
native code generator. Gerry Jackson was given the job of
writing this program. He also devised the structure of the
‘template library’ which holds 68008 code routines before
they are compiled - in the conventional sense - into an
executable program. A wide range of SuperBASIC programs was
flung at the compiler, in order to check that it worked
correctly and gave sensible and helpful error messages when

asked to do the impossible.

The final stage of the development of SUPERCHARGEinvolved
the compilation of the compiler itself. Modifications were
made to ensure the greatest practicable degree of support
for 'extension' procedures and functions. DATASPACE was
written and the SUPERCHARGEutility commands were developed
and tested.

THE AUTHORS

SIMON N GOODWIN BSc worked for Racal for three years,

developing Business and Computer Aided Design systems,
before he went freelance. He is the author of a dozen
microcomputer packages, ranging from compilers to utilities
and games. He has lectured on compiler and interpreter
design. Simon Goodwin is a prolific communicator, author of
over 100 articles for computing and electronics magazines
since 1979, and an experienced broadcaster on TV and Radio.
At present he is Personal Computer World magazine's ‘agony
aunt', employed to solve the (computer-related!) problems
of readers through the monthly ‘Computer Answers’ column.

GERRY JACKSON MSc has spent 15 years with a major British
computer company, where he become one of the few Britons to
design and make both an original microprocessor chip and a
2,000 integrated-circuit minicomputer. Heis also a
Computing Course Tutor with the Open University. In the
field of software Gerry Jackson has written processor
simulators and implementations of the Forth programming
language for the Dragon and QL computers.

SUPERCHARGE USER'S MANUAL Page 74

END OF FILE CHAPTER 9

CREDITS
We wish to acknowledge the skill of Jan Jones and Tony
Tebby, designers of the QL SuperBASIC interpreter. Tony
Tebby's QDOS notes and Jan Jones’ book, 'QL SuperBASIC -
the definitive handbook' were the source of much useful
information. The handbook is recommended to all serious
SuperBASIC programmers - it is published by McGraw Hill.
Tony's notes are published by almost everyone - we favour
the 'QL Advanced User Guide' (Adder) when disassembling and
'The Sinclair QDOS Companion’ (Sunshine) when assembling.

SUPERCHARGEwas designed and written by Simon N Goodwin,
between July 1984 and September 1935; additional code and
memos were contributed by Gerry Jackson. Mission control
was by Freddy Vachha. Thanks are also due to Julie Butler,
Mary Cassidy, Chas Dillon, Mike Gottlieb, Andy Pennell,

Tony Tebby and A.H Rom for heip and/or encouragement.

SUPERCHARGE was developed on standard QL systems, fitted
with the CST floppy disk system, supplied by Computamate
of Scotia Road, Burslem, Stoke on Trent; Tel. 0782 811711.

Simplex Data expansion memory was also used. Both products
are highly recommended on grounds of quality, efficiency
and reliability.

The SUPERCHARGE program and its documentation is Copyright
1985 by Simon N Goodwin. SUPERCHARGE for the Sinclair QL

computer is published by Digital Precision Limited,

The ‘Intellectual Property Department! (wow!) of Sinclair
Research Limited has threatened to send the boys round if
we do not make it clear that 'SINCLAIR' and 'QL' are trade
marks of Sinclair Research.

LENSLOKis a trade mark of ASAP Developments Ltd.

IMPORTANT NOTICE

While all reasonabie steps have been taken to ensure that
SUPERCHARGEis bug-free and accurately documented, the
purchaser should be aware that it is impossible to test any
compiler under all possible circumstances. [t is the
responsibility of the purchaser to ensure that SUPERCHARGE
is fit for any specific purpose. No responsibility or
liability is accepted for loss of business caused, or
alleged to be caused, by its use.

SUPERCHARGE USER'S MANUAL Page 75

END OF FILE CHAPTER 9

Gerry Jackson's SUPERFORTH

FORTHis a structured, intermediate-level programming
language, which combines the the speed of machine-code with
high-level control constructs and interactive testing
facilities.

SUPERFORTH is a complete, ultra-fast implementation of the
Forth '83 standard. In addition to the standard commands
SUPERFORTH includes a plethora of extra features:

* Support for all the QL's features including sound and
graphics. Input and Output may be re-directed at will.

* Full 32 bit integer arithmetic, allowing lightning-quick
calculations to nine digits of precision.

* All floating-point arithmetic operations are supported,

including Logarithmic and Trigonometric functions.

* Multi-tasking (demo supplied) with full job control for
SUPERFORTH and machine-code programs. SUPERFORTHitself
runs as a task, so other programs may run concurrently.

* A powerful screen editor allows Forth blocks to be edited
and saved in standard format on disk or microdrive. Named
files may be used instead of Forth blocks - these files
may be prepared with any text editor, including Quill.

* The comprehensive 80-page manual supplied with SUPERFORTH
serves as a reference guide language and a tutorial for
those new to the language.

PLUS... PLUS... PLUS... PLUS... PLUS... PLUS... PLUS...

The SUPERFORTH package also includes an extremely powerful
implementation of the classic boardgame REVERSI. This
superb program is written entirely in SUPERFORTH, and the
well-written source-code is included for you to study.

REVERS! offers nine levels of play, with near-instantaneous
response on levels 1 and 2. It beat the Spectrum champion,
MOF Othello, 10-0 in a supervised match - in fact we have
yet to find any program capable of beating REVERSI on equal
time - or any human capable of beating it at its top skill!
level. Many options enable you to exchange sides, retract
moves, set Up positions and display evaluations at will.

Digital Precision SUPERFORTH + REVERSI: both for £29.95.

SUPERCHARGE USER'S MANUAL Page 76

GLOSSARY CHAPTER 10

GLOSSARY

ABORTED Stopped because it was completely impossible to continue.

ADD-ON COMMANDS Resident procedures & functions in machine code linked in
to SuperBASIC to make them invokable just like ordinary
SuperBASIC commands (‘available when the QL is switched on).

ARRAY An ordered collection of a number of elements of the same
type, the position of each element being uniquely defined
by an ordered set of discrete index values. The number of
index values required to specify the position of an
element is equal ta the number of dimensions of the array.
One dimensional arrays are often called vectors or strings:
two dimensional arrays are called matrices or tables.

ASSEMBLY LANGUAGE A convenient notation for expressing machine code in
a form (using alphanumeric mnemonics) easily comprehensible
by humans.

ASSIGNMENT A statement within most languages (including SuperBASIC)
where anew value is given to a variable.

BASIC An acronym for Beginner's All purpose Symbolic Instruction
Code. BASIC is a mid-1960s programming language developed
from FORTRAN. It is the most common microcomputer
language. Despite being subject to an ANSI standard, there
are many variants of it: SuperBASIC is almost certainly
the most powerful & flexible of them.

BENCHMARK A test or series of tests designed to measure the
performance of a system of software & hardware, for
comparative purposes. Typically used to test speed.

BINARY Expressed with a number base of 2 (ie; allowable digits
Ol).

BITWISE OPERATOR A logical operator that works on binary digit structure
rather than on Boolean (True/Faise) principles.

BUGS Localised errors in a program or system. The SuperBASIC
interpreter possesses them in large quantities.

cs (We've heard so many that we
will leave this space blank
for you ta fill ins.seseee?

CALL To transfer control to a subroutine, function or procedure,
with the provision to return to the instruction following
the call instruction at the end of executing the called
code.

SUPERCHARGE USER'S MANUAL . Page 77

GLOSSARY CHAPTER 10

CALL SY REFERENCE To call a procedure or function with one or more

CALL BY VALUE

CASE

Parameters with the specification of the parameters such
that changes to their value within the procedure or
function causes corresponding changes to their value
outside it.

To call a procedure or functian with one or more paramet
with the specification of the parameters such that changes
to their value within the procedure or function has no
effect an their value outside it. This is done by making an
exact copy of the parameters at the time of the call, &
discarding the copy on return.

Character format applicable to the alphabetic set only:

can @ither be UPPER (ASCII 65 to 90) or lower (ASCII 97

to 122). In olden times (before computers or Eddie Shah)

type was assembled using two cases (as in boxes) - the one

en top used for capitals, & the lower one for little

letters. Hence Case. Interesting tidbit.

CENTRAL PROCESSING UNIT The principal operating part of the computer,

CHANNEL

CODE GENERATOR

COMPATIBLE

COMPILER

COMP ILE~TIME

“GONICURRENCE

SUPERCHARGE USER’S MANUAL

comprising an arithmetic/logic unit & a timing unit to

contre] communications of all sorts. On the QL the central

processing unit (CPU) is the Motorola M&8008 microprocessor.

A route for transmitting data ta devices.

The part of the compiler that operates last of all, to
generate native code for output to a device.

In the case of software: the ability of a piece of
software to accurately reproduce the behaviour of its
predecessor (with particular reference to accepting the
Same input formats). SUPERCHARGE is compatible with
SuperBASIC.

& program to translate a symbolic high level language inte
native code automatically. In the case of SUPERCHARGE, the
high level language is Sinclair SuperSASIC & the native
code is M68008 machine code.

As opposed to run-time, the actual time at which a high
level language is translated into native code. SUPERCHARGE
shifts many operations which under the interpreter would
be performed in run-time ta compile-time to be done once
& for all.

The pragress of twa or more tasks in parallel on a
computer.

Page 78

GLOSSARY

CONDITIONAL

CONTIGUOUS

CORRUPT

CURSOR

CHAPTER 10

A logical statement comprising a condition which, if
Satisfied, will result in specific action (in the case
of a conditional branch, a transfer of program contral)
being perform

Immediately adjacent.

When applied to programs or data (as opposed to suppli
of computer hardware & software): in some way changed
(possibly to the point of unusability or irretrievability).
This is to the dismay of the programmer/operator, who has
forgotten to make a backup. Corruption can be caused by a
failure of the machine or of the storage medium, or by an
errant program. SUPERCHARGE owners who actually use
microcartridges for file storage will be all toa familiar
with the symptoms.

A symbol on the display screen indicating the active
position & usually signalling the computers readiness
to accept input.

DEBUGGED PROGRAM A program in a state in which Sinclair could reasonably
be expected to discontinue it.

DEVICE INDEPENDENCE The ability within a programming language to use
exactly identical commands to contre! input & output
from vastly differing devices, the device name being a
sufficient identification for the operating system to
do the needful. SuperBASIC & SUPERCHARGE are both device
independent.

DIGITAL PRECISION Us.

DIMENSIONING

DISCRETE

ELEMENT

EPROM

EXPRESSION

Operation performed in defining an array to specify the
number of dimensions it is to have & also the maximum
value of the index corresponding to each dimension.

Net varying & not capable of varying in a continuous way,
instead only in steps.

A member of an n-dimensional array, referenced by an
ordered set of m indices.

€n acronym for Erasable Programmable ROM - a memory chip
capable of being repeatedly reprogrammed by the user by

controlled exposure to UV radiation.

A collection of numbers, strings, variables & parentheses
connected by operators & capable of being evaluated:

SUPERCHARGE USER'S MANUAL Page 79

EXTENSIONS

GLOSSARY CHAPTER 10

Another word for add-On commands.

EXTERNAL REFERENCE A reference within a program to another program

FLOATING POINT

FUNETION

GLOSSARY

HARDWARE

HEX

cutside it. Until exact data on the location etc of the
Second program is available to the first one, the
reference is said to be unresolved.

@ representation of real numbers enabling numbers within a
wide range of magnitudes to be concisely expressed &
compactly stored.

A subroutine which returns a value & which can be invoked
from within an expression.

You are looking at one now!

Unlike software, those portions of a computer system that
are capable of being kicked. For example, a microcartridge
tape is capable of being kicked (we suspect it often is!)
& hence is hardware, while the program on it is software.

Expressed with a number base of 16 (ies allowable digits
0-9, A-F).

HIGH LEVEL LANGUAGE @ programming Language in which both control & data

IDENTIFIER

INLINE CODE

INTEGER

1NTERACTIVE

INTERMEDIATE CODE A very concise

structures reflect the nesds of the programmer, rather
than the specific design & hardware of the computer. In the
QL, SuperBASIC is the high level language — the SUPERCHARGE
compiler translates it into native cod

Posh name for Name.

As opposed to threaded code, code that does not involve
calls to a series of subroutines.

A whole number in the range -327468 to +32747 (inclusive)
as far as SuperBASIC is concerned.

A mode of working in which there is an immediate or near-
immediate response to commands once they are input. The
SuperSASIC interpreter allows interactive debugging - it
is principally these commands which are not supported by
SUPERCHARGE. It seems very reasonable to expect users to
have done most or all of the program debugging using the
interpreter before invoking the compiler.

finition of a program produced as an
interim information stor# during actual campilation.

SUPERCHARGE USER'S MANUAL .. Page 80

GLOSSARY CHAPTER 10

INTERPRETER A program to analyse a unit of code (in SuperBASIC, a...
statement) in a high level language & then to carry out the
actions specified within that unit, rather than produce a
machine code translation for subsequent execution. In the
case of the GL, the SuperBASIC interpreter is supplied free
with the machine. By & large, the structure & syntax of
SuperBASIC do nat make interpreting it essential or even
preferable to compiling it - the decision to supply an
interpreter rather than a compiler was that it is easier to
write an interpreter!

INTERPRETER DATA STRUCTURE The information maintained by an interpreter.

so that it can keep track of the modification & the

execution of @ program.

308 ® collection of tasks & their related data. This term is
sometimes used as a synonym for task, which is confusing.”

KLUDGE Affectionate (7!) term for a Sinclair EPROM.

LINE An ordered sequence of one or more statements in a BASIC
program, referenced collectively by a line number.

LINKING The combination of one or more machine code programs,
resolving all external references between them. Linking is -
used either to add on prewritten subroutines or to build
up a complex program step by step from simpler ones.
SUPERCHARGE does not support linking. This is because
SUPERCHARGE already supports add-on commands, & because
SuperBASIC does net give any specification whatsoever for
linking (remember, SUPERCHARGE compiles SuperBASIC & not
some language we dreamed up on the spur of the moment!!).
External programs can always be CALLed or EXECed instead. "?

Loop @ sequence of instructions within a program that is
repeated until a prescribed condition is satisfied. ome *

LOW LEVEL LANGUAGE 4 programming language (typically assembly language
or machine cade) in which control & data structures are ~
direct reflections of central processing unit architecture.

MACHINE CODE The operation cod@ of a machine, specific to its awn

central processing unit. In the OL, the machine code is
Motorala M68008 code which is identical to Mé8000 except
in the number of clock cycles some instructions take ta
execute.

MATHS STACK The stack where intermediate calculation data is stored.

SUPERCHARGE USER’S MANUAL "2°" page 81

MICROPROCESSOR

MOTOROLA

MULTITASKING

NAME

NATIVE CODE

NESTING

OBVIOUSLY

GLOSSARY CHAPTER 10

A semiconductor chip with a fixed operation code set. It
is characterized by its speed, internal word length,
external word length & architecture. The M68008 inside the
QL has a 7.5MHz clock, internal word length of 14/32 bits,
an @ bit external data bus & 32 bit architecture.

The US manufacturer of the GB80XX family of microprocessors.
Motorcla is a communications corporation - much of their
turnover com from mobile wireless communications, car
radios & the like. They are pretty big.

The concurrent execution of a number of distinct tasks.
Despite claims to the contrary, SuperBASIC cannot in any
sense multitask. SUPERCHARGE, however, produces code that
can multitask with any combination of other SUPERCHARGE
tasks / machine code programs / code generated by other
multitasking high level QL language compilers / the
interpreter task & any other task you can think of.

A sequence of alphanumeric characters & underscores, the
first character of which must be non-numeric.

Program code in a format suitable for direct execution by
a central processing unit: ie; code containing no symbolic
references & no unresolved external references. A synonym
is absolute code.

The embedding of a syntactic structure within an instance
of another syntactic structure. The term is often used
in Connectian with loops.

We're not quite sure about it, & can’t prove it anyway.

OPERATING SYSTEM The collection of software that controls both system

OPERATION CODE

OPERATOR

OBJECT CODE

resources & the processes utilising these resources on a
computer. On the QL the operating system is QDOS.

The collection of instructions for specifying the
operation of a particular central pracessing unit,
defining the repertoire of operations it can perform.

@n entity, usually represented by a symbol, that can be
applied to one or more operands (constants, variables,
functions or expressions) so as to yield a result. A unary
operatar is one that is applied to just one operand (eg;
NOT): a binary operator is an operator applied to two
operands (eg; +).

The output of a compiler - in the case of SUPERCHARGE,
directly executable M6d000 machine code.

SUPERCHARGE USER'S MANUAL 7 Page 82

GLOSSARY CHAPTER 10

OPTIMISATIDN The production of object code that in some way makes best
use of the resources of the computer: usually minimisation
of execution time is the objective (rather than reduction
of object code size, which is less relevant when memory ‘is
abundant). Optimigation can either be global (sequenc
are reordered, invariant operations are moved outside
loops, loops are merged, etc) or local (code is adapted
to exploit machine architecture & quirks, redundant
operations are excluded, etc). SUPERCHARGE performs a .
great deal of local optimisation & a certain amount of
global aptimi$ation. Time & Space optimisation can be
selected on a statement to statement basis using the REM+
& REM- facility on SUPERCHARGE.

PARAMETER Information passed to a procedure, subroutine or function.

PARENTHESES Posh name for brackets.

PARSING The process of deciding whether a sequence of input evan.
is a syntactically & semantically valid sentence in a
language. The parser i SUPERCHARGE has as its input a
SuperBASIC program & as its output intermediate code.

Pass A stage in the process of compilation, involving a
complete scan through the program or the corresponding. »
intermediate code. Compilation typically involves a
number of passes.

PRECEDENCE The conventional order or sequence in which multiple
operators within an expression are to be evaluated. Both

SuperBASIC & SUPERCHARGE follow the B(Bracket)U(Unary Op) -
M/D (Multiply & Divide)A/S(Add & Subtract) hierarchy.

PRIORITY A numerical value used to dictate the proportion of system
resources (typically but not always central processing ~~”
unit time) to be devoted to a specific task.

PROCEDURE @ section of a program identified by a name, capable of
being called ¢rom anywhere in the program (including frdm’:
within itself) & able to carry out operations on data
specified externally as parameters.

PROCESS Another word for task.

SUPERCHARGE USER’S MANUAL aah Page 83

PROGRAM

apos ~

Qu

REGISTER

RELOCATABLE

REMARK

ROM ne

RUNSTIME,

SEMANTICS

GLOSSARY CHAPTER 10

A set of statements that can be submitted to a commuter
& used to direct its behaviour. SuperBASIC programs an
the QL are procedural programs: ie; programs where a very
precise definition of the sequence of steps to be followed
by the computer in order to obtain the desired results has
been explicitly provided (rather than programs which only
specify the constraints & which leave the computer to
decide on what steps to take & in what sequence to take
them.

We've been reliably (ies by Sinclair) informed that this
is the GL‘s operating system. We've been more reliably
informed that its more like a semi-random collection of
machine code routines. Whichever it is, there is
unfortunately no way to get at it via SuperBASIC.

What the #7!#£$?7°+! are you doing here if you need to look
this up!

An acronym for Random Access Memory, which is a silly
Mame because ROM is random access too. RAM is
characterised by being read/write memory.

An entity used to store information within a computer
system (usually within the central processing unit) for
fastest possible access times.

As applied to a program, one that can work anywhere in
memory Since it @#ither contains no absciute memory
addresses or contains memory addresses expressed relative
to an origin somewhere in the program. SUPERCHARGE
produces fully relocatable code.

A comment in a high level language inserted to make the
Program less incomprehensible. SUPERCHARGE ignores remarks
except for REM+ & REM- (for optimization).

An acronym for Read Only Memory - you need powerful
electromagnetic fields, X-Rays, Quanta of UV light, nuclear
bombs or real physical violence to change the contents of
ROMs.

The time at which a program is executed, as opposed ta
the time it was written or compiled.

The part of a language definition concerned with the
Specification of the actual meaning or effect of a text
written in compliance with the language’s syntax. Semantics
involve the analysis of symbols taken in context & not
individually.

SUPERCHARGE USER’S MANUAL’ Page 84

GLOSSARY CHAPTER 10

SINCLAIR RESEARCH The people whe made it all possible - & then very

SITE LICENCE

SUPERCHARGE USER’S MANUAL

nearly made it impossible. What do they get up to in the
daytime?! Despite all their help, SUPERCHARGE has finaliy:’~
seen the light of day.....

That which you are required by Digital Precision to have
if you want to use SUPERCHARGE to produce programs (or
parts of programs) or to us@ SUPERCHARGED programs, AND
if you wish to sell or distribute them commercially. The
Licence is for software houses or other entities (hereon
collectively referred to as software houses) that sell
or otherwise distribute programs: a programmer does NOT
need a Site Licence (unless he/she starts commercially ~~~?
selling or distributing SUPERCHARSED programs, in which
case he/she becomes a ‘software house’). The Site Licence
is a legal document obtainable from Digital Precision
by mail for just £250 (incl VAT): a VAT invoice will be
provided. The software house need only purchase ONE
Site Licence from Digital Precision irrespective of the
number of DIFFERENT SUPERCHARGED programs Seing sold. The
Site Licence is of indefinite duration & will not be
revoked. It relieves the software house of ALL future
requirements to pay Digital Precision royalties on the
proceeds of sale by it of all SUPERCHARGED programs.
Failure by a software house engaged in selling or othe
distribution of SUPERCHARGED programs to obtain the
required Site Licence in advance will render it liable
to action under the civil & criminal law. Digital Precision
shall in such cases seek to recover full legal costs, back—
royalties computed an estimated sales as well as punitive :~
damages from the software house. Further, Digital Precision
may seek a Court injunction prohibiting the software house
from selling or distributing SUPERCHARGED programs until a
Site Licence is obtained. Programmars are notified that
SUPERCHARGED programs will always contain certain codes &
constructs to make them identifiable as having been m
generated by SUPERCHARGE. If a programmer sells or
otherwise transfers rights in a SUPERCHARGED program to a
software house, the pragrammer is strangly advised to .
inform them that SUPERCHARGE has been used. It is quite %
likely that the software house will already have a Site
Licence for SUPERCHARGE. If they do not, the programmer is
strongly advised to inform them about this condition & to
instruct them to obtain a Site Licence immediately. If the
programmer does not do this, & Digital Precision sues-the-
software house, the software house is extremely likely to
seek indemnity from the programmer or at the least to
withhold royalties payable to the pragrammer.

continued...

ie Page 85

SLICE

SOFTWARE

SOURCE CODE

STACK

STATEMENT

STRING.

STRUCTURE

‘SUBROUTINE

SUBSCRIPT -—

GLOSSARY CHAPTER 10

To sum matters up - to encourage the use of SUPERCHARGE,
we've kept the Site Licence fee very low, & made it a once-
only payment (unlimited duration, no further royalties).
You only need one Site Licence no matter haw many copies
of how many different SUPERCHARGED programs you will be
marketing. We are being very reasonable. Please do not
force us to become unreasonable

@ part of an array obtained by restricting the range of
values of one or more of the indices of the array to a
set of contiguous discrete values which is a subset of
the set of original values of the index or indices defined
when dimensioning the array. One or more af the indices
may be eliminated altogether.

Those portions of a computer system which cannot be
kicked - the intangible bits like programs.

The form of a program input to a compiler for translation
into object code. In SUPERCHARGE, the source code is a
debugged SuperBASIC program.

A linear LIFO (Last-In,First-Out) data list whi all
ace > Pemovals & insertions are made at one end (the
top). There are at any time a number of stacks operating
within the QL's memory.

The sentence-like unit which is the building block for a

high level language.

€n ordered sequence of characters.

When applied to a program: its overall form, with emphasis
bath on its component parts & on the interrelationships
between these parts. In a well structured pragram, the
breakdown into components has been carried out in a
consistent & recognised way, & the interfaces between
components are easy to fallow & well-defined. SuperBASIC
is one of the BASICS which allows fully structured
programming. SUPERCHARGE supports ALL the structured
program constructs of SuperBASIC.

& sectian of code to which control is transferred by a
call & Gn whose completion control reverts to the
instruction after the call. In SuperBASIC, subroutin
with names are referred to as procedures. Subroutines
often save space & make @ program more readable.

A means of referencing an element in an array, by
“appending to tHe name af the array the indices which
uniquely identify the element.

SUPERCHARGE USER’S MANUAL : Page &6

GLOSSARY

SUBSTRING

SUPERBASIC

SUPERCHARGE

SUPERCHARGED

SYNTAX

SYSTEM

CHAPTER 10

@ string which is contained exactly within a main string:
ies the main string contains somewhere within it the same
characters as the substring in the same sequence & without
any intervening characters.

The programming language supplied free as the host
environment on the OL. An advanced, enhanced & very -
well-structured variant of BASIC.

The State of the Art Digital Precision SuperBASIC Compiler
of which you are now a proud owner.

As applied to a program, ane that has b
using SUPERCHARGE.

nm produced

The set of laws governing & defining the permitted
sequences of characters in a programming language. Unlike
semantics, syntax is not concerned with the meaning of the
constructs but only with their fora.

That which is obtained by combining software & hardware.

SYSTEM VARIABLE A valu# held by a system an a semi-permanent basis ta

TAG

TASK

store statuses, defaults & other data on the utilisation
of system resources.

An identifier used to discriminate between variants of
the same type.

A unit of system activity. A task is composed of a sat
of program instructions, a workspace area & a descriptor’
defining current statuses af any system resources allocated
ta it. SUPERCHARGE produces tasks which may be run
concurrently.

TASK IDENTIFIER A pair of integers, the first an index number of the

THREADED CODE

TOKENISATION

task & the second a tag. Together they uniquely identify
the task.

A code containing a sequence of entry points for routine
An unconditional branch is made ta a routine whose address
is indicated by a word in the cade: on completion the
routine is terminated by another unconditional branch to
the new entry point indicated by the next code ward.

The conversion of a program in text form into a less
verbase binary form consisting of units called token. ~
Strangely enough, tokenisation on the GL increases rather
than decreases verbosity - for example, the value @ is
tokenised into SIX bytes! !

SUPERCHARGE USER’S MANUAL iy,» Page 87

GLOSSARY CHAPTER 10

TRAP A system state triggered by a signal to the microprocessor
that the current sequence of instructions is ta be
abandoned & a sequence appropriate to the interruption
commenced in its place (such sequence often lying witnin
the operating system). Traps are used for all sorts of
error handling & for invoking just about everything.

VARIABLE A value-stored somewhere within the computer & capable of

being changed. Variables are referenced by their name.

WORKSPACE f& reserved area for a task or other program to read from,

write to, manipulate & generally use.

JEOERGEESOOTOTO TORI IR TOITRAAT AT I III RAI IIIS

*
* THE GLOSSARY WAS WRITTEN BY FREDDY VACHHA BSc *

k
*

FEESUEaIOEIOICTGORCIARA RIOR IORI A OK

SUPERCHARGE USER’S MANUAL Page 88

SUPERCHARGING ADVANCED MATHEMATICAL FUNCTIONS CHAPTER 11

Skip this chapter unless you have a mathematical bent AND need
fast computations of advanced math functions.

The advanced mathematical functions (trigonometric, inverse
trigonometric, logarithmic & exponential) are computed with great
accuracy (far more than is almost ever needed) and consequently
very low speed by the interpreter. SUPERCHARGE supports these
functions to the same level of accuracy (compatibility is the
object):it is hence also slow, albeit faster than the interpretér.
In this chapter we discuss faster methods of dealing with these
functions - speed is very much an issue whenever the drawing of
graphics is concerned: it is fair to point out that when large
figures are to be drawn, the time taken to actually plot the
pixels - as opposed to the time taken to calculate WHERE they
should be plotted - may be substantial. If this is the case we
would say that the processor is I/O bound - in plain English,
SUPERCHARGE will have less effect in such cases.

The recommended way of dealing with such functions is with a
look-up table. An array of 90 elements, for example, could be used
to hold the values of the sines of integer angles from 12 to 90
degrees. The array is filled only once, at the beginning of the
Program (either from a file, a set of DATA statements or as oa
result of computation). Linear interpolation will then give
reasonably accurate results for non~integer angles: eg: to find
SIN(22.71DEG) we use SIN(22.71DEG) = SIN(22DEG) + 71 x
(SIN(23DEG)-SIN(22DEG)) - this gives a result which is 99.997%
accurate (ie; good to four decimal places - more than enough).

However, you may not wish to use look-up tables. Space may be
short, or the range of values to be covered may be too Large, or
the rapidity of variation in some regions (ie; as with TAN near
PI/2) may make interpolation impossible. In such cases a quite
acceptable approximation is obtained by summing the first few
terms of a suitable convergent series for the function.

Here are the most important of these series - in most cases,
summing them to 3 terms will give at least 2 digits of accuracy,
which is good enough for many graphical purposes. If you want more
accuracy, use more terms. Note that all angles are represented in
radians. Always convert angles (using relationships like SIN
(PI-M)=SIN(X)) to suitable ranges of values (eg: between -PI/2 &
+PI/2 for SIN).

SIN(X) = X - X°3/3! + X°5/5! -
COS(X) = 1 - X*2/2! + X*4/a1 - oe
TAN(X) = X + X°3/3 + 2#X°5/15 + 17KK*7/315 +... . [xX*2¢PI/4]
ARCSINCX) = X + 1/2*X°3/3 + 1/2%3/4kxX75/5 +... 1, (x°2<1}
ARCCOS(X) = PI/2 -— ARCSIN(X) < exactly > (X*2<1]
ARCTAN(X) = X - X%3/3 + X*5/5 - 2... {x*2<1]

= PI/2 - 1/X + 1/3/X*3B - 2 2 iX*2>1]
SINH(X) = X + X°3/3t + X°5/51 +
COSH(X) = L + X*2/2! + X*4ys41 + a te
TANHCX) = SINH(X)/COSH(X) <- exact Ly 3. -
"ARCSINH(X) = LN (X + SQRT(X*2+1)) << exactly >
ARCCOSH(X) = LN (X + SQRT(X*2-1)) < exactly > [X>=1]

SUPERCHARGE USER’S MANUAL Page 89

SUPERCHARGING ADVANCED MATHEMATICAL FUNCTIONS CHAPTER 11

ARCTANH(X) .= L/2¥EN((1+X)/(1-X)) < exactly > [x*2c1!
WENC1+X) =X --8°2/2 + 849/38 - 2 2 Exteci
EN(L-%) = - X°- X78/2 - X73/3-- 2 ww, {xe
EXP(X) = 1 + X + X*2/21 + X73/31 4+ oe
ATX = e*(X*#LN(A)) < exactly >

When defining such functions make sure that the function name
isn’t a SuperBASIC reserved word (examples of which are LN, EXP,

SIN etc)! Also, make the maximum use of integers in the function
definitions (or you may end up with the ‘’speeded-up’ Funetion

working slower than the SuperBASIC one!).

An example of a very fast function to calculate SIN(X) is given
below. It assumes values for X are in radians & are in the range 0
to 2*PI (you could put checks on this into the definition). If you
study it carefully you will be able to write simitar definitions

for all the advanced functions listed earlier in this chapter

DEFine FuNction SINE_FAST(X)
LOCal Y%

IF X21.5707963 THEN
IF X<3,.1415927 THEN
X=3.1415927-X

END IF
END IF
IF X>=3.1416927 THEN

IF X<4.712389 THEN
X=9.424778-X

END IF
END IF
IF X>=4.712389 THEN
X=X-6.2831853

END IF
Y%=100%X
YR=YR-YRRY% / 125 *Y%/4BO+YRAYS / 1L2Z5*Y% / 160 4Y%/160*Y%/3750
RETURN .O1*Y%

END DEFine SINE_FAST

The computation of YX looks complicated because of the several
restrictions stated on page 49.

i> Clearly Y% will always lie in the range from -158 to +157 (X
has been made to lie between -PI/2 & +PI/2, and %=100KX). We
must make sure that no intermediate answer can ever lie outside
the interval -32768 to +327657: hence expressions like Y%*Y%/125*Y%
appear. The "worst" case is 158 * 158 / 125 * 158 = 31554 (or
31442 if integer multiplication is being carried out) which is
less than 32767 in magnitude. Note that as we explain on page 49,
the -32768 to +32767 range is a limit imposed not by SUPERCHARGE
but by the integer size available on the microprocessor

ii> In order to make the result as accurate as possible, we divide
by aS small a number as we can early on. For example, the second
term has as a denominator 3!*100*2 = 60000. 125 is the smallest
factor of 60000 which prevents an overflow. 480 is, of course,
60000 / 125.

SUPERCHARGE USER’S MANUAL Page 90

SUPERCHARGING ADVANCED MATHEMATICAL .FUNCTIONS . - CHAPTER 11

iii> The third term should have a denominator of 5!x*100*4 =
1.2E+10. In this.case we have been able to factorise it, &2 choose
suitable factors - if no suitable factors could be found; we would
have made each denominator besides the last .one. the smallest
integer that would prevent overflow. We would then use as the last
denominator the integer closest to the number, required to make the
product of the denominators correct. For example, if in the above
case the overall denominator was 1.1E10 instead of 1.2E10, the 4
denominators to be chosen would be 121,158,158 & 3642 { 1.1£10
121 / 158 / 158 = 3641.6). The rounding is fine - we are only
after 2 digits of accuracy, and in any case the third term is
always smaller than the two before and hence less significant.
iv> In the penultimate line of the listing, note we have chosen to
multiply by .01 instead of dividing by 100. We are aware that
there will be a tiny loss of accuracy (refer to pages 45-46) but
the improvement in speed given by multiplication over division is
more than adequate compensation!

FEOIORIOGOOIORIICCaK
* *
* CHAPTER 11 WAS WRITTEN BY FREDDY VACHHA BSc *
* *
FOIOICOOOOIIIRIGOIGIGOK

SUPERCHARGE USER’S MANUAL Page 91

INDEX
Page

ABORTED: cscoce « wacwe « tierce w evave © aterere sranare 6 wives © eres © orate stay’ SHEN Fee ee 77

ACCURACY vi cece cere ren eeevees . 4,43,45-49,55,89-91
ADD-ON COMMANDS/PROCEDURES ... 1,7-9,27,32-42,56,69,77
ADD-ON MEMORY45 :
ADDRESSING CONVENTIONS
ADVANCED MATHEMATICAL FUNCTIONS
AH ROM
AMBIGUITY .
AMBIGUOUS NAME
AND wg oe s vas
APPROXIMATIONS
ARCCOS
ARCCOSH .
ARCSIN
ARCSINEH
ARCTAN .
ARCTANH . .
ARITHMETIC. RANGE AND ACCURACY
ARRAY AND STRING HANDLING
ARRAY ELEMENTS-.-45 Wage ge :
ARRAY NAME REQUIRED0.:seseeeee
ARRAY OPERATION NOT IMPLEMENTED
ARRAY SLICING 1... -... cece cece e eee

ARRAY SUBSCRIPTS ++ 4,22,59, 86
ARRAYS .. 2. ee eee 4,18,19,22,143, 44, 49-51,59,71,77
ASSEMBLY LANGUAGE . te #8
ASSIGNMENT-- 00220 c eee eeuae
ASSIGNMENT TO FUNCTION ATTEMPTED
ASTERISKS
AUTHORS-.--,
AUTO-2-244-
BACKING UP
BAD PARAMETER
BASIC++--
BENCHMARKS :
BINARY NUMBER FORMAT ..
BITWISE OPERATOR .
BOOT . .
BRACKETS-----5
BUFFER FULL
BUFFERS .,.....
BUGS
BV.BFBAS
BY.CHBAS
BV.CHRIX ...
BYV.RIP
BV.TGBAS
BV.TKBAS
BYV.VVBAS

SUPERCHARGE USER’S MANUAL Page 92

- CHANNEL NOT OPEN

“ COMPATIBILITY,

‘

" CONTINUE

~ CONVERGENT SERIES

” COPY_N

$) cos.
° COSH
- CPU

“CLOSE
2 CODE~GENERATOR

_ - DEBUGGING /EDITING
“> DECIMAL

INDEX

CALCULATIONS IN DATA STATEMENTS

CALL BY ALUE
CASE oe 5 sieee cs arecul eeewame © west’ = ae
CENTRAL PROCESSING UNIT
CHANGING PRIORITY

CHANNEL NUMBERS
CHANNEL SPECIFICATION NEEDED
CHANNELS -................40..
CHECK STATUS
CLEAR
CLOCK

COERCION 2.0... eee cee
COMMAND MEANINGLESS IF COMPILED

COMPILATION ABORTED .
COMPILATION LISTING :
COMPILE-TIME . aa
COMPILERS masse
COMPLEX FUNCTIONS bee cee
GONCURRENCE
CONDETIONAL
CONTIGUOUS

CONTROL

CONTROL F5

oie
COPYRIGHT :

CORRECTNESS
CORRUPT

CREEP ..
CURSOR Lee
DATA AREA
DATA STATEMENTS ...
DATASPACE4., : “4,14, 20,83, 89

ws. 816,30,31,72, 74
veteee 4543553, 79

DEFINE.
DEFINITIONS
DELETE. .
DEMO_BAS

45445
«e 12

SUPERCHARGE USER’S MANUAL 2 A as via Page 93

INDEX

DEVELOPMENTS: 0°: scams ium oecee Fev fs tana
DEVICE
DEVICE INDEPENDENCE
DEVICE SHARING
DEVICES
DEVICE_STATUS
DIAGNOSTICS
DIM4.
DISCRETE
DISPLAYS
DISTRIBUTION OF COMPILED’ PROGRAMS
DLINE
EDIT ..
EDITING
ELSE .. :
END oe. ocacs os aaa ;
END DEFINE * os Eas . . oats g * 22,24
END FOR 22,25,24
END IF
END IF’ EXPECTED
END OF STATEMENT EXPECTED
END REPEAT cee cece cece ee
END REPEAT EXPECTED ...
END SELECT 3 veoved eves eve
END SELECT EXPECTED
EOP: cesne eras 3 omen 0 04
EPROM
ERROR CHECKING
ERRORDIAGNOSIS FAILED
ERROR LOCATION
ERROR REPORT

“ EXAMPLE PROGRAMS
EXEC
EXEC_W
EMU) sey 2c,
EXP eves sat
EXPRESSION 2%
EXPRESSION NOT ALLOWED IN DATA.
EXPRESSION SYNTAX INCORRECT \..

” EXPRESSION: TOO COMPLEX :
EXTENSIONS: 7
EXTERNAL DEVICES: .
EXTERNAL REFERENCE
FAULTY. LINE NUMBER
POLE ck 9 one 5 es oa :
FILE HANDLING
FINANCIAL PROGRAMMING
PINE-TUNING0.05
FLOATING POINT NUMBERS

SEE ADD-ON COMMANDS
SEE DEVICES

 4.9.45, AB, 80
44,51,56,24

fed on Tabi ete
SUPERCHARGE USER’S MANUAL ws Page 94

INDEX

Page

- FREE MEMORY of... ec eee ee ie eeePG ¢ Ga Se 2G Eeeoe ee 35,41,42

_ GOSUB

> ENTERPRETER

* ENT ERACTIVE COMMANDS i

FUNCTIONS
FUNCTIONS MUST RETURN A VALUE
GLOBAL VARIABLES
GLOSSARY

4,7,21,, 22, 28,P44, 51,80, 83- gl

GoTo
GRAPHIC
GRAPHICS
HARDWARE :
BEX oo. rascen oe es
HIGH LEVEL LANGUAGE
HISTORYe..e4005
I/O BOUND ..
IDENTIFEERS
IF...
EBLEGAL CHARACTERS
IMPLICE® STRENGS
IN USE
IN-LENE CODE . a
ENCORRECT NUMBER OF PARA’
ENCORREGT SUPERBASIG SYNTAX
INPUT 2. eee eee
ENPUT VALIDATION .
INPUT_MONE¥ .0 0.0.0.0. 000.
INTEGER FOR LOOPS
INTEGERS0....
INTELLIGENCE

«SEE NAMES
20,51,52

“a,ge
ENFERMED LATE CODE 3, 8,12,13,24,74,80

4,5,6,7,55,81
ENTERPRETER ‘DATA STRUCTURE wi. BL
ENVAREANTS EN LOOPS 2. . 58
“SM ROM : . 55
JOB :.. 35,81

. KEYBOARD 29

LARGE ‘PROGRAMS ©.
LEARNING © FROM “MESTARES «

UENSLOK Selo b eevee yeccebes sone seen SLL petie!iia

LIBRARY ‘OVERHEAD .-... We hoe Pe - eee ee lees are+ 64
LICENCE. : ITE aut
LINE ..
LINE NUMBERS. wees :
LINEAR INTERPOLATION.
LINKING
EIst
LISTTASKS
EN 20s:
LOAD...
LOADING.~ TIME

SUMBRCHARGE USER’S MANUAL Se = ee “Page 95

INDEX

LOCAL ARRAYS ..
LOCAL VARIABLES
LOCALS MUST FOLLOW DEFINITIONS
LOOK-UP TABLES ... 7
LOOP DOES NOT EXIST HERE
LOOP «INDEX
LOOPS 6 cua
LOW LEVEL LANGUAGE
MACHINE CODE
MACROS
MATHEMATICAL FUNCTIONS
MATHS STACK
MEMORY
MEMORY ALLOGAT (GN
MERGE ..
MESSAGES a
MG ROMa

41,81,41
~ &,12,30,35

oy 3;,28,351,42
4,21, 23,32, 53

SEE ERROR REPORTS

“16,17
MICRODRIVE STORAGE 8,12
MICROPROCESSOR 5,82
MISSING ARRAY SUBSCRIPT
MISTAKE
MOTOROLA "
MRUN
MULTITASKING 7,28-32, 50, 55, 57, 72, 82
NAMES : 4,14,22,43,44,45, 82

NATIVE CODE
NESTING :

NON-EXISTENT LOOP OR SELECTION
NOT. IMPLEMENTED .
OBJECT CODE
ON...GOSUB

. GOTO
ONLY FUNCTIONS MAY RETURN ‘VALUES °
“OPCODE ‘
OPEN
OPENING FILES ;
OPERATING SYSTEM
OPERATION CODE
OPERATOR
OPTIMISATION
OUT OF MEMORY
OVERFLOW. !
PARAMETER Lo
PARAMETERS ©
PARENTHESES
PARSER/PARS ING
PASS :. :
PATCH

RATION GODE
53

41,44, 64,55, 83
1s SEE BRACKETS
8,13,14;,26, 70,83

SUPERCHARGE USER'S MANUAL peng et .,,, Paga.96

* PROGRAM ‘EDITING

INDEX

BAUSE..e3..' we...
PIRATE copies” seta
POSITIONING UNDER THE INTERPRETER
PRECEDENCE
PRECISION.....:-+..:0-.
PREVIOUS -DEFINITION INCOMPLETE
PRINT_MONEY ares Ye
PRIORITY
PROCEDURES
PROCEDURES DO NOT HAVE VALUES
PROCESS ..i.0.....
PROGRAM-....

PROGRAM NAME

PROGRAMMING
PROTECTION se aces
QDOS 2 mies fees o oes vee
QDOS ERROR MESSAGES ..
RAM = 84
READ - 53
RECOMMENDED ‘ADD 76
RECONFIGURATION OF SUPERCHARGE 16
REDIMENSIONING ARRAYS : : cau TL
REGISTER .. 0... ceca eee : . : : * . . 2s 84
RELOCATABLE : 34
REMARK a4
REMARK + 64
REMARK - =. 64

~ REMOVETASK . 35
RENUM sees 53
REPBAT: iiss EGG toa 20,144, 51
REPORTS ... SEE ERROR REPORTS
RESPR : : 2 < : : ‘ : «. 36
RESTORE : : : : FAs eres eae §3,52,52
RESTRICTIONS SEE COMPATIBILITY
RETRY:

ROUNDING.

‘ SALE OF COMPELED PROGRAMS

RETURN .
RETURNS:
ROM ow eee

RUN-TIME

SAVE
SCANS:

SURBEN STORAGE
SELECT. 0... 0.45
SEMANTICS

SERIAL. DEVICES
SERIES. 2... 544

SUPERCHARGE USER’S MANUAL 7 nan . Page 97

INDEX 2a

SET_PRIORITY
SEXEC4. an
SHORT FORMS
SIMPLE VARIABLES
SIN...
SINH .: 2 ae rane
SITE LICENCE
SIZE Of COMPILED CODE
SLICING -...4..
SOFTWARE :
SOURCE CODE
SPOOLER
SORT J... :
BTACK0..0. .
STATEMENT IS NOT YET SUPPORTED
STATEMENTS
STOP 2 eae
STOPPING TASKS
STORAGE FRAGMENTATION
STRING CONCATENATION : ; : see as ee
STRING HANDLING wa ees ; ‘ “48 “Bi, 60
STRING SLICING eee F E ‘SREGING
STRINGS ~ . 50,86
STRUCTURE *. 86
STRUCTURED COMMANDS 65
STYLE
SUBROUTINE
SUBSCRIPT
SUBSTRING Seo ae ‘ 3 : ies
SOPER SPRITE GENERATOR : : on ee ~ 40

SUPERBASIC .. 87
-SUPERCHARGED i see 87

- SUPERFORTH, 76
SUPPORT FACILITIES 17
SYNTAX 587

. SYSTEM ..
SYSTEM VARIABLES
TABLES “OF VALUES
TAG ...
TAN...

89
33 34, 87

: 33
33

TASK-IDENTIFIER
- TASK-NUMBER
TASK=TAG
TASKS .
TESTING
THEN LIF .
THREADED CODE
TOKENISATION
TOO MANY STRUCTURES

SUPERCHARGE USER’S MANUAL eee bp il Page

-

98

INDEX

TRAP So ee
TRAPPING ERRORS
TRICKS

UNEXPECTED SYMBOL IN SUPERBASIC
UNIQUENESS OF NAMES
UNMATCHED BRACKETS .
VALIDATION

ries 3 Aa ow oF 23
3,4, 23, 25,54,55,88

- SEE DISPLAYS

END FOR VAR ASSUMED
WARNING: LOCAL ‘STRINGNAMES$ (256) -A9SUMED // 2.
WARNING: PARAMETERS ARE NOT RETURNED
WARNING: VARIABLE NAME ASSUMED
WARNINGS ee : : ¢ é
WHEN 22...
WHEN ERROR
WINDOWS .
WORKSPACE
ZERO PRIORITY.

SUPERCHARGE USER’S MANUAL : “ Page 99

